
  
Abstract—Wind power output is always uncertain but, in a 

sufficiently long time interval, the output exhibits statistical behavior 

that is meaningful enough to be characterized by probability 

distribution. The aim of this paper is to develop a model for 

probabilistic wind power generation. In particular, we successfully 

derive the analytical expression and statistics up to the fourth order of 

the wind power density function. The work also extends the 

modeling of wind power output up to a regional scale by Gram-

Charlier series. Model results are checked by empirical power data 

and Monte Carlo simulation. This paper discusses some applications 

of the wind power statistics such as probabilistic production costing 

and reliability evaluation in power system literature.  
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I.  INTRODUCTION 

LECTRICAL energy is increasingly produced from 

renewable sources worldwide for a number of reasons such 

as environmental concern, elevating fossil fuel prices, political 

motive, etc. Wind power is one of the most popular forms of 

renewable energy. Yet wind power is intermittent and virtually 

uncontrollable. Its large-scale deployment would influence 

power system in unprecedented ways. High penetration wind 

power poses a need of refinement to a number of existing 

methodologies for power system analysis. 

Power system analysis has a lot to do with probabilistic 

evaluation, notably, production costing and reliability. In order 

to incorporate wind power generation into existing analytical 

framework, probabilistic wind power model is highly desirable. 

Such model shall represent wind power generator as a multi-

state (capacity) unit. Early attempt did not consider failure and 

repair characteristics of wind turbine [1]. It was improved to 

incorporate wind turbine availability by discrete convolution 

[2][3]. In [4], wind speed is modeled by Markov chain, then 

power curve and availability of individual wind turbines are all 

taken into account to form the probability distribution of wind 

farm output capacity. Building the wind power generation 

model using the Markov method theoretically requires a 

stochastic process for the wind speed. From a different 

                                                           
This work is supported by Research Grant Council, Hong Kong SAR, 

under grant HKU7186/08E. The first author is also supported by the CLP 

Fellowship in Electrical Engineering, awarded by the CLP Holdings Limited. 

Henry Cheng, Yunhe Hou and Felix Wu are with the Department of 

Electrical and Electronics Engineering, The University of Hong Kong, Hong 

Kong, China (email: mkcheng@eee.hku.hk; yhhou@eee.hku.hk; 

ffwu@eee.hku.hk) 

 

perspective, wind energy production in a sufficiently long time 

interval shall be able to be statistically characterized if the 

wind speed distribution and power curve representation are 

reasonably accurate. Say, in a year, wind power generation 

should follow certain probability density function (PDF). 

Simulated wind power PDF was first noted in [5]. 

Mathematically, analytical expression of the wind power PDF 

based on wind speed distribution and linearized power curve 

can be derived; reference [6] and [7] works on Weibull and 

Rayleigh wind speed respectively, and both are able to provide 

first order statistic (mean) of the wind power PDF. More 

complicated works based on Weibull wind speed and 

nonlinear power curve simultaneously are also available [8][9]. 

Consideration of wind directions in the wind power 

distribution is reported in [10]. 

The objective of this work is also to build a probabilistic 

wind power model. Polished from our earlier paper [11], this 

paper aligns with previous references, but works in a 

simplified domain that permits relatively straightforward 

analytical derivation of higher order statistics of the wind 

power PDF. The wind power statistics have important 

applications in conjunction with production costing and 

reliability evaluation. Production costing of conventional 

generators can be performed by cumulant method [12][13]. 

Those higher order statistics can supplement the cumulant 

method to determine expected cost of the conventional 

generation net of wind power. The wind power statistics can 

also be utilized in reliability evaluation, which is similar to the 

handling of generator’s forced outage rate by cumulant method 

[14][15].  

Previous works tend to be confined by modeling the output 

of single wind turbine or wind farm, but are not readily 

generalized to wind power output in regional scale, which is 

needed for production costing and reliability evaluation in a 

national perspective. The wind power statistics make the 

modeling of regional wind power possible by furnishing 

analytical approximation of the total wind power PDF using 

Gram-Charlier series. If wind power output is treated as a 

random variable, then any total regional wind power is 

obtained by recursively adding all individual distributions. 

Correlations due to intra-farm and inter-farm proximity are all 

efficiently rendered by the correlated cumulant method [12]. 

The resultant regional wind power distribution is anticipated to 

be bell-shaped suggested by the Central Limit Theorem. 

This paper is organized as follow. Section II offers the 

proposed wind power model, with most of its derivation kept 

in the Appendix. Section III highlights the data sets of wind 
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speed and power. Pre-processing of data is carefully explained 

in Section IV. Section V of this paper is a collection of 

simulated and empirical results.  

II.  IDEAL WIND POWER MODEL 

 Most probabilistic wind generation models start with 

discussion on the wind speed distribution. Several distributions 

other than Gaussian had been early suggested [16]. Among 

them, the Weibull and its special case Rayleigh, have generally 

been recognized and are employed in engineering literature 

[17][18]. On the other hand, the wind turbine power curve is 

often made linear for simplicity. A generic wind generation 

model based on those simplifying assumptions is always nice, 

yet ideal. It may not be able to address a number of issues such 

as empirical distribution mismatch, power curve actual 

performance, wake effect when scaling up power from single 

turbine to wind farm, and some minor problems like wind 

direction and turbine outage. 

Aerodynamic principle states that the power in airflow 

follows a cubic relationship with the free wind speed w: 

31

2
airP Awρ=      (1) 

where ρ is the air density and A is the area swept by the rotor. 

Not all of this power is extractable by a wind turbine as 

mechanical power, apart from the power loss during 

conversion to electrical power. In fact if the turbine output 

power Pwt is measured and divided by Pair, the ratio is referred 

as power coefficient CP: 

wt
P

air

P
C

P
=        (2) 

It is observed that no matter how the wind turbine is designed, 

there is a maximum value for CP, known as the Betz Limit and 

CPMax equals 0.593. In other words one can never extract more 

than 60% of the power in airflow. Furthermore, power 

coefficient is a nonlinear function of tip speed ratio γ [19], in 
which γ is defined as 

r

w

ω
γ =        (3) 

where r is the radius of the blade and ω is the angular speed of 

the rotor. To achieve the maximum power coefficient, the tip 

speed ratio has to remain constant at a particular value. It 

implies that the desirable γ  value occurs at a particular wind 
speed for fixed speed wind generator. For variable speed wind 

generator its rotational speed can be adjusted to track the wind 

speed in order to operate the wind turbine at optimal tip speed 

ratio, hence preserving maximum power coefficient [20].  

Knowing that the power in airflow follows a cubic 

relationship with free wind speed, the ascending segment of 

the power curve should better be modelled as a curve. 

However, it does not necessarily mean the output power is 

proportional to w
3
 because the actual performance is 

complicated by the power coefficient. The power curve should 

theoretically be represented by general nonlinear function. So 

in order for analytical formulation to be carried on, this work 

proposes to break down the ascending segment into many 

smaller linear pieces, as represented by the following 

expression: 
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and g0=0, g1, g2, …, gn-1, gm  correspond to the wind turbine 

output at win, w1, w2, …, wn-1, wr respectively. 
~

g is the random 

wind power, defined by constants ai and bi { [1, ]}i n∈ , gm is 

the maximum net output, and win, wr and wout are the cut-in, 

rated and cut-out wind speed respectively. Without loss of 

generality, consider breaking the ascending segment into only 

two segments, with (w1, g1) a knee point freely chosen on the 

curve part. 

On the other hand, the probability density function (PDF) 

and cumulative distribution function (CDF) of Rayleigh 

distribution of wind speed 
~

w  are respectively  
2
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where λ is the scale parameter. By integration with respect to 

each wind speed partition, CDF of the wind power is 

determined. Upon differentiating the CDF, the wind power 

PDF ~ ( )
g

f x is obtained as follow. 
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where δ(x) is a delta function to maintain the derivative-

integral relation between CDF and PDF. 
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 Based on the analytical wind power PDF, it is tempting to 

ask for its statistics. Derivation of formulae of higher order 

statistics is tedious and lengthy; therefore results of the four 

statistics, i.e. mean, variance, skewness and kurtosis are left in 

the Appendix. Effectively, the four statistics are cumulants of 

wind power PDF and they complete the statistical 

characterization of the wind power generation model. 

 

III.  WIND SPEED AND POWER DATA 

  Overall this work is based on two sources of hourly wind 

data. The first one is a multi-decade, speed-only database of 

tens of Dutch locations [21]. The second one [22] is less 

extensive, but with corresponding output from a real wind 

turbine, which is most valuable. Brief descriptions of them are 

as follow. 

  

A. Royal Netherlands Meteorological Institute 

  

 There are more than 50 measuring stations, onshore or 

offshore, each has a name and ID. Every station measures its 

hourly wind speed, with figures of measuring height and 

roughness length. Data entry may be void (missing) or 

negative (faulty). Out of all 31 stations are chosen that are 

most complete in the past 19 years (1991-2009). Void and 

negative data entries are assigned a very small positive value. 

All 29
th
 Feb in leap year are ignored for easy programming. 

Effectively, each location has 8,760 x 19 equals 166,440 hour 

wind speed. 

  

B. Vermont Small-scale Wind Energy Demonstration 

Program 

 

 In this dataset, wind speed and corresponding output of 

medium scale wind turbine (nominal 10kW) are available from 

a few sites. Data are recorded at hourly intervals. Within each 

hour, average wind speed and total energy production are 

known. Maximum and minimum wind speed and output power 

per hour are also given. It provides better insight because the 

average wind speed of an hour is weak to show any intra-hour 

highs and lows. Most importantly, those speed-power pairs can 

be used to determine empirically the wind turbine power 

curve. Separately, specifications of the actual wind turbine are 

found in [23]. 

IV.  DATA PRE-PROCESSING 

A. Wind speed measuring height 

  

 Normally, wind speed is measured at a convenient height 

above ground. It has to be interpolated to wind turbine hub 

level for power conversion. In general wind profile follows a 

logarithmic relation with its height above ground [25]:  

0

ln( )h

h
w

z
∝         (8) 

where h is the elevation, wh is the wind speed at the elevation 

concerned and z0 is so-called the roughness length. Roughness 

length indicates surface friction and is defined as the height 

drops to where the mean wind speed becomes zero. It is 

necessary to up-scale measured wind speed to the hub level. 

All Dutch wind speeds in section III.  A are scaled to 100m 

high. 

  

B. Wind speed partitions and the parameter lambda 

 

 Cut-in, rated and cut-out speeds of a wind turbine are 

designed to suit the prospective wind regime where it is 

located. The rule of thumb of design is based on the annual 

average wind speed 
_

w  onsite: win equals 0.6
_

w ; wr equals 1.5-

1.75
_

w  and wout equals 3
_

w [20]. Next, value of the scale 

parameter λ is needed for generating Rayleigh random variates. 

Such value can be estimated from a set of historical wind 

speed data. Alternatively, if the long-term average wind speed 

is known, the lambda could be determined passively by the 

following equation  

_

2
w

λ π
= ,          (9) 

which relates λ and the Rayleigh mean.  

 

C. Power curve 

 

 Power curve measures the conversion ability of a wind 

turbine. A simplified power curve consists of linear segments 

is described in (4). In general the ramp segment should rise 

nonlinearly because aerodynamic principle states that the 

power in airflow follows a cubic relationship with free wind 

speed. Meanwhile, its actual performance depends on 

generator type (fixed or variable speed) and control method 

(pitch or stall controlled). In practice, power curve data are 

empirical and given by wind turbine manufacturer. It consists 

of power values (and losses) across a range of operating wind 

speed, e.g. in pp. 68 of [18]. Hence an empirical power curve 

may not have a proper mathematical form. 

 Even wind speeds at different hours are the same, the 

energies produced could be different. Arguably, the speed is 

only average of an hour and intra-hour fluctuations could be 

significantly different. Wind turbine performance varies with 

wind gust, turbulence and wind directions to different extents. 

It is reported in commercial software WAsP [26] that wind 

speed within a particular directional sector does not normally 

show Weibull distribution, fortunately, improvement made to 

the estimation of power output by considering directional 

effect is little in most cases.  

 The approach here is to run regression on numerous real 

speed-power data to determine an empirical power curve [27]. 

The empirical power curve has theoretically captured any long 

run site characteristic, e.g. terrain, wind direction etc. Prior to 

the regression process, it is necessary to have a hypothesis of 

what the underlying function of the power curve is. And since 

a power curve can be reasonably partitioned into an ascending 

segment and a plateau, it is logical to have two underlying 

functions: cubic function and constant function of speed 

respectively. Then we use linear regression subroutine built in 

Matlab to obtain the fitted curves. 
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 We make reference to the data source mentioned in section 

III.  B. The site picked for demonstration is called RicLin. The 

span of data is typically a year of hourly speed-power data 

points, with omission of faulty measurements. Fig. 1 shows the 

power curve under trial regression.   

 
Fig. 1 Empirical power curve determined by regressing real data 

 

D. Scaling and wake effect 

 

 When many wind turbines are assembled in an array, 

downstream wind speed is reduced by upstream wind turbines. 

This is called wake effect. Hence the total power of wind farm 

is less than the proportional scaling of single wind turbine 

power. To account for the speed deficit, a wake effect model 

consolidated in [28] is applied. Let wx denote the reduced wind 

speed x metre behind the upstream turbine, w0 denote the 

undisturbed wind speed, then 

2
0[1 (1 1 )( ) ]x T

r
w w C

r kx
= − − −

+
,  (10) 

where r is the upstream turbine rotor radius, k is the so-called 

wake decay constant and CT is the thrust coefficient. k and CT 

depends on wind farm terrain and wind turbine type 

respectively. Downwind distance x is normally 12r to 24r. 

Though waked wind speed is different from the undisturbed 

one in magnitude, it still demonstrates a reasonable shaped 

Rayleigh distribution. Fig. 2 shows a sample waked wind 

speed profile for wind turbine with typical CT value [26].  

 We believe existing methods of how to incorporate wake 

effect into wind farm expected output could be improved. Our 

approach is conceptually very simple. If wind power is treated 

as a random variable, then any total wind power is obtained by 

recursively adding all individual output distributions. There is 

no need to distinguish wind turbine out of a wind farm in the 

summation process for the reason that, given any downwind 

turbine speed reduced by wake effect, the waked speed profile 

could be modeled by a new, separate distribution. Correlations 

due to intra-farm and inter-farm proximity are rendered by the 

correlated cumulant method. 

 
Fig. 2 Waked wind speed density function (b) compared with its original 

Rayleigh source (a) 

 

V.  MODEL RESULTS 

 This paper does not preclude the assumptions behind the 

generic wind generation model, rather, it investigates how 

much different the model prediction is compared with 

empirical result. Empirical result is based on real data of wind 

speed and power. Availability of comprehensive real data has 

been a difficult task in course of the research. In particular, 

wind speed and corresponding power data of large wind farm 

are very difficult to find in open source. This work makes use 

of the data as mentioned in Section III.  We tested locations 

for their analytical wind power distributions, which fit the 

same set of hourly empirical wind data satisfactorily. Results 

followed are divided into three parts.  

 

A. Verification of the statistical formulae by Monte Carlo 

simulation 

  

The formulae of four wind power statistics are checked by 

Monte Carlo simulation. Result variations due to power curve 

(three or four segments) and simulation runs are demonstrated 

in TABLE I. It can be seen that deviations between 

corresponding analytic and simulated values for the case of 3-

segment power curve is larger than those of 4-segment power 

curve, indicating the latter is a more accurate model. 

Computation is implemented in Matlab 7.0 on a common 

desktop computer with 2.66GHz Intel® Core™ 2 processor 

and 2GB RAM. 
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TABLE I 

Checking wind power statistics by Monte Carlo simulation 

Rated power = 3000kW 
g
−
 

σ  skewness kurtosis 

excess 
3-segment 

power 

curve 

Monte Carlo 

10000 runs 
1190.7 1131.9 0.4209 -1.3377 

Analytic 1181.7 1127.7 0.4358 -1.316 

Deviations 

(%) 

1.86 1.07 5.73 3.26 

4-segment 

power 

curve 

Monte Carlo 

2500 runs 
1069 1117.8 0.6963 -1.0321 

Monte Carlo 

10000 runs 
1041 1106.2 0.7297 -0.964 

Analytic 1053.1 1103.4 0.7094 -0.9861 

Deviations 

(%) 

1.15 0.26 2.86 2.24 

 

 Wind power PDFs are also plotted for visual inspection. 

Fig. 3 shows the PDF of the case of 3-segment (simple) power 

curve, which is smooth in the middle. Fig. 4 shows the case of 

4-segment (improved) power curve in which the PDF shows a 

jump. Theoretically, the model accuracy increases as the 

power curve is partitioned more.  

 

 
Fig. 3 Wind power PDF built from simple power curve 

 

  
Fig. 4 Wind power PDF built from improved power curve 

 

B. Comparison between analytical and empirical wind 

power density functions 

  

 The fact that analytical and simulated results in Section V.  

A are matched only means the formulae are correctly derived, 

it does not guarantee the same for analytical and any empirical 

data. Analytical model uses only parameter of wind speed 

distribution and simplified power curve to calculate wind 

power. Empirical data are what actually be measured from the 

wind turbine under the same speed distribution. Accuracy of 

the analytical model lies on the fitness of distribution envelope 

and precision of power curve. The key effort of this part is to 

substantiate the proposed wind power model by benchmarking 

with some real speed-power data. Annual data of the Harvest 

Hill Farm, another site from the Vermont dataset, are used. Its 

analytical and simulated wind power PDFs are presented in 

Fig. 5(a) as control, the critical point is whether the analytical 

PDF models the empirical power data well in Fig. 5(b). 

Compared with Fig. 4, the empirical power distribution does 

not show any frequency at the right end of the horizontal axis, 

although the empirical power curve in Fig. 1 clearly shows 

occurrence of high power output. It is because the empirical 

power curve is made up of maximum values of speed and 

power within an hour whereas the wind power PDF is derived 

from hourly average values. It suggests that only persistently 

large wind speed can generate high power output. 

 
Fig. 5 Modeling empirical wind power by analytical PDF  

 

 The wind power distributions in terms of CDF for the case 

of RicLin and Harvest Hill Farm are also plotted in Fig. 6 and 

Fig. 7 respectively. It can be seen that the empirical and 

analytical distributions for concurrent year data are reasonably 

matched. More exhaustive empirical work would reinforce the 

robustness of the result. In terms of chronological simulation, 

[24] reported good tracking ability of its testing wind turbine 

for varying wind speed condition and anticipated power output. 
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Fig. 6 Wind power distribution CDFs for RicLin (Oct 07 – Sept 08)  

 
Fig. 7 Wind power distribution CDFs for Harvest Hill Farm (Mar 07 – Feb 

08) 

 

 It is beyond the scope of this paper to tell any dependence 

of inter-year wind speed, hence wind power distributions for 

each site. The research would involve enormous amount of 

empirical data, though availability of multi-year real wind 

power may be difficult to obtain. Apparently, inter-year wind 

speed distributions have distribution parameters in closed 

range, suggested by some trial work on the Dutch wind speed 

database, but assertion cannot be made until significant future 

work is done. Perhaps the annual average is the attribute that is 

the easiest to check for any long-term trend. We plot the 

annual average wind power, converted from hourly wind speed 

data of about two decades, for a Dutch location as in Fig. 8. 

 

 
Fig. 8 Trend of multi-year annual average wind power for Valkenburg 

 

C. Regional wind power distribution 

 

An extended numerical example of this work is to 

synthesize the probability distribution of regional wind power 

output for production costing and reliability evaluation in large 

scale. As worked out, individual wind turbine output is a 

random variable characterized by probability distribution. 

Mathematically, any total wind power is the convolution sum 

of wind turbine random outputs. But obviously it is too 

overwhelming if thousands of wind turbines, each with 

numerous capacity states, are convoluted to yield the resultant 

distribution. We seek to employ the Gram-Charlier series to 

approximate the resultant wind power density function, but 

soon the substantial correlation among wind speeds is realized 

and the independence assumption of Gram-Charlier approach 

is potentially violated. Fortunately, the correlated cumulant 

method is readily applicable, which is the blueprint of this 

section. The cumulant method requires only one-off 

calculation of cumulants, and the value of analytical statistics 

derived earlier comes in place. No matter how individual wind 

turbines are different in terms of availabilities, ratings and 

wind profiles, etc., each wind turbine possesses a set of 

characteristic cumulants for the summation process. 

From Fig. 3 to Fig. 5, it is shown that the power density 

function of one wind turbine has concentration at zero output. 

When many of such PDFs of different capacities are added 

together, one would anticipate by Central Limit Theorem the 

resultant density function to be bell-shaped. We verify this 

belief by enumeration of real data. The resultant wind power 

density function can be obtained by two ways. On one hand, it 

is done by successive convolution of individual outputs, which 

is rendered by Matlab subroutine. On the other hand, the 

Gram-Charlier series gives an analytical approximation to the 

resultant wind power PDF by processing the cumulants of all 

individual outputs. The two approaches should match in 

outcome when sufficient quantities of wind turbine are 

grouped together. However, extensive real wind power data 

could be difficult to obtain as an open source. For research 

trial and illustration, we build a hypothetical scenario with 

reference to real data as much as possible.  
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Denmark is used as the backdrop of our hypothetical 

scenario. Denmark has over 3,000 MW wind power installed 

capacity in 2008 [29], shared by slightly more than 5,000 wind 

turbines in 2009, with breakdown by ratings as grouped in 

TABLE II [30]. The ideal exposition of this numerical 

example would be to synthesize a power density function of all 

wind turbines using empirical wind power data. As a 

compromise, wind power data are converted by wind speed, 

and hourly wind speed records of tens of Dutch locations for 

any single year are available. But obviously there are not 

enough wind speed profiles compared with the number of 

wind turbines, and by no means these wind speed profiles are 

matched with the actual wind turbine locations. Therefore we 

only conduct test example. 
TABLE II 

Wind turbine breakdown by capacities in Denmark 2009 

Ratings (kW) 0-225 226-

499 

500-

999 

1,000+ Total 

Numbers 1427 306 2596 749 5078 

  

Specific formulations of the test example follow. Thirty one 

wind speed profiles for a particular year from the Dutch 

database are extracted. Each profile of hourly wind speed is 

tagged with a wind turbine of randomised rating to enumerate 

the respective annual wind power distribution. All these power 

distributions exhibit randomness to various degrees, and are 

mildly correlated due to wind speed correlation. It is 

interesting and meaningful to check how closed to bell shape 

the resultant density function would be when individual wind 

power PDFs are convoluted successively. To visualize the 

improvements of large number, Fig. 9 plots the wind power 

PDFs generated by an occasion of six successive convolutions 

stage by stage. It is demonstrated that the resultant density 

function approaches bell shape when the number of sites 

convoluted increases. The corresponding cumulative wind 

power capacity increases along the horizontal axis. 

Fig. 9 Successive convolution of individual wind turbine outputs 

 

 Apart from numerical convolution, the resultant wind power, 

in terms of standardized density function, can be approximated 

by the correlated cumulant method. Fig. 10 shows the 

analytical approximation of the resultant wind power PDF to 

the same setting as by convolution. The envelope is laid on a 

histogram of simulation of a standard normal random variable 

for visual checking. It could be seen that the analytical PDF 

and the Monte Carlo simulation result are similar, but not yet 

matched for the fact that only seven sets of cumulants are 

available to synthesize the curve. The result is improved 

considerably when the number of wind turbines increases, say 

up to 31, as shown in Fig. 11. Then the analytical envelope is 

very much alike a standard normal PDF. 

 
Fig. 10 Standardized PDF of Gram-Charlier series of 7 variables 

 

 
Fig. 11 Standardized PDF of Gram-Charlier series of 31 variables 

 

As an attempt we have compared resultant wind power PDF 

by numerical convolution and by analytical approximation. 

Some possible reasons of mismatch are aware of. Apparently, 

faulty wind speed data explain partially. The fact that only 

cumulants up to the fourth order are used also leads to less 

precision. 

VI.  CONCLUSION 

 This paper has provided a probabilistic wind power model 

based on Rayleigh wind speed distribution and linearized 

power curve. Formulae of wind power statistics up to the 

fourth order are completely derived. The model is not only 
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checked by simulation, but also benchmarked with empirical 

data, and shows satisfactory performance. The model can help 

evaluate production costing and reliability with wind power. 

VII.  APPENDIX 

 Suppose f(x) is the wind power density function, its r
th
 

moment (about zero) and r
th
 central moment are given 

respectively as  

( )r

rm x f x dx
∞

−∞
= ∫  and   (VII.1) 

1( ) ( )r

rc x m f x dx
∞

−∞
= −∫     (VII.2) 

In particular, m1 is the mean and c1=0. For completeness we 

may also define m0=c0=1. By binomial theorem, any r
th
 

moment can be expressed in terms of the r
th
 and lower order 

central moments [31]. Therefore,  
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or vice versa, 
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They can be deduced interchangeably and it is more 

convenient to start with the mean m1 and then all higher order 

moments can be generated. Consider (VI.1), 
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The first two terms are the same except with different 

parameters for different power curve segments, implying that 

the formula derived for one segment should work for others. 

For simplicity, we abuse the notation of a and b by omitting 

their subscripts. Let 
x b

y
aλ
−
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where the lower and upper limits of the integration domain are 

denoted by k1 and k2 respectively for convenience (for the 

segment g0 to g1, let the limits be l1 and l2 respectively). For an 

integral of the form
2

n yy e dy−∫ , denote it by nI . Let 

2
1

, 2
2

n
yy dh
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−= − = − and consider integration by parts, 

then recursively 
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For n=1, it is observed that  
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For n=0,  
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After considering the integration domain, 
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Hence 0I can be expressed in terms of error function erf(.): 

0 2 1{ ( ) ( )}
2

I erf k erf k
π
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Although an error function does not have closed form solution, 

one can expand the integrand 
2y

e
− by Taylor series and 

integrate term by term to obtain an approximation. In modern 

computer programs, it is readily generated by numerical 

integration.  

 By now we have obtained a recursive formula of any higher 

order of the integral nI once 1I and 0I are generated. Let us 

show the derivation up to 3I for the calculation of the mean 

and variance.  

 

A. Mean 

 

 The mean of the random wind power is obtained by setting 

r=1 in (VI.1). From (VI.6), 
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Adding the results of two segments together, the mean or first 

order moment m1 is 
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B. Variance 
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 The variance of 
~

x , or the second order central moment, is 

given by (VI.2). Conveniently, from (VI.4) we can use  
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Therefore we need m2 first. Setting r=2 in (VII.6), 
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Adding the results of two segments together, then m2: 
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The formula of variance follows when m1 and m2 are known.  

 

C. Skewness and Kurtosis 

  

 It becomes clear that any higher order moments or central 

moments can be built for better characterization of the PDF. 

Also eventually any orders of cumulant can be calculated by 

(VI.5) and those cumulants could readily be used in the Gram-

Charlier series. Without showing the steps, the third and fourth 

cumulants are stated as follow. 

Third cumulant: 
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Fourth cumulant: 
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By definition, we can also find skewness and kurtosis excess 

respectively as: 
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