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Abstract— This paper aims to present a local net-
work model of Susceptible-Exposed-Infectious-Quarantined-
Recovered disease transmission taking into account the com-
munity structure of the population. The population structure is
generated by genetic algorithm based on the network modularity
concept for the heterogeneous property. The basic reproduc-
tive number of the model is derived and used to predict the
epidemiological situation. In numerical simulation, the disease
transmissions within and across the communities are considered.
The results show that this approach is able to capture the
essential feature of epidemic spreading in human community.
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munity detection, disease transmission, multi-group epidemic
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I. I NTRODUCTION

MATHEMATICAL theory of epidemic proposed
by McKendrick and Kermack in 1927 has

impacted on both understanding of epidemic scattering
and public health planning via a long term forecasting
from compartmental models [13], [14], [15], [28]. In
these models, populations are divided to different classes
based on the states of the disease and are able to change
their status. The two standard compartmental models
including Susceptible-Infectious-Recovered (SIR) and
Susceptible-Exposed-Infectious-Recover (SEIR) epidemic
models have been widely applied to study the spread
of many infectious diseases such as smallpox, measles,
cholera, influenza and tuberculosis [26]. To staunch
the spread of infectious diseases, especially influenza,
isolation strategy is often used as a practical intervention
procedure to reduce the infectiousness from infected
people to susceptibles. The quarantine class is thus taken
into consideration in the SEIR model. This model is
known as the SEIQR model [7], [9].
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In the compartmental models, uniform mixing
is assumed, i.e., all susceptible individuals can catch
the disease with the same infection rate. Thus, the
compartmental models do not reasonably reflect the
disease transmission in the human community. It has
been realized that the structure of community is directly
significant to the disease proliferation. In recent years,
many researchers have focused on the study of disease
transmission using the combination of the compartmental
models and complex networks [1], [30], [34], [35]. The
social contact at schools, offices and public places is the
crucial factor for the propagation of infectious diseases
like pertussis, SARS, H1N1 and H5N1, through the
population [17], [33]. Dascalu et al. (2011) introduced
the way to construct communities in a cellular automata
for the study of disease transmission between children
[5]. It is shown that the contact among people in the
same community occurs a lot more than those among
different communities. The way to study the transmission
of epidemic should consider the community structure
and the interaction of people in the communities. For
community establishment in the network, most of recent
algorithms for constructing a network use the network
modularity as a practical measure to find clear partitions
(communities) of the network [3], [6], [21], [22], [25],
[27]. Girvan and Newman (2002) proposed an algorithm
to generate community network using the concept of
modularity to create the community in a complex network
and their algorithm has nonlinear time-complexity with
respect to the number of edges in the constructed
network [20]. Tasgin and Bingol (2006) proposed a
new community detection algorithm based on genetic
algorithm (GA) which has linear time-complexity [19],
[29]. For the application of complex network in
epidemiology, many researchers have proposed epidemic
network models in a discrete space domain [16], [18],
[33], [36]. Barthélemy et al. (2005) presented SIS and
SIR dynamical patterns and analyzed the time evolution
of epidemic outbreaks in complex networks [2]. Likewise,
Suna and Gao (2007) investigated SIR dynamic behavior
of epidemics on scale-free networks with community
structure [31]. Dangerfield et al. (2008) studied a
Susceptible-Infectious-Susceptible (SIS) epidemic model
by integrating stochasticity and network structure [4].
Jumpen et al. (2011) proposed SEIQR-SIS epidemic
network model and its stability [10], [11]. Nodes in their
network were classified into hubs and people, and they
found that hubs had significant effect on the disease
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transmission. None of these extensions had considered
the role of people structure to the disease transmission
on the network. The aforementioned researches show that
the development of proper epidemic network model is
still worldwide active.

In this paper, we propose a social network with com-
munity of the study of the SEIQR disease transmission. To
mimic the real structure of human society, Genetic Algo-
rithm (GA) is used to detect a suitable community of each
person in the network. The rest of the paper ia organized
as followed. Section II presents an implemented GA-
network algorithm using a community detection method.
In section III, the SEIQR network model is introduced and
used in conjunction with the constructed GA-network to
simulate the disease transmission. Then, some numerical
results are given in section IV, followed by conclusion in
section V.

II. GA- NETWORK ALGORITHM

To simulate the social activities, we have devel-
oped a network with community structure. A partition
of communities in the network is based on the GA. Our
algorithm follows closely to the GA proposed by Tasgin
and Bingolas [19]. The resulting network is then used to
study the SEIQR disease spread. Details of our network
construction are inStep1 andStep2. GA algorithm for a
community detection is inStep3.

Our network consists of people nodes together with
connecting links inside a unit square. LetN , Cn andM be
total numbers of people nodes, chromosomes and possible
communities, respectively.

Step1 Randomly select locations ofN people nodes
in a unit square by setting the lower bound of
shortest distance among people nodes.

Step2 Search for neighbors of each people node inside
the contact radius and generate connecting links
between the node and its neighbors.

Step3 Partition the network into communities based on
the connecting links using GA as follows:

(i) Initialization: There areCn chromosomes
and each chromosome containsaN cells
stored the community identification (Com-
mID) of N people nodes. For every chromo-
some, a number of CommIDs are randomly
selected. Each CommID is assigned to a ran-
dom node (cell) together with its neighbors
as displayed in Fig. 1.

(ii) Selection: We select two chromosomes
called as a source chromosome (CS) and a
destination chromosome (CD) as follows:

(a) Calculate modularity(H) of the

CommID of a1 ⇒ 3 4 7
CommID of a2 ⇒ 15 9 2

...
...

...
... · · ·

...
CommID of ai−1 ⇒ 1 16 · · · 3
CommID of ai ⇒ 14 12 · · · 5
CommID of ai+1 ⇒ 7 13 · · · 4

...
...

...
... · · ·

...
CommID of aN−1 ⇒ 9 12 5
CommID of aN ⇒ 10 16 11

Fig. 1. Initialization ofCn chromosomes

chromosomes by the expression:

H =
∑

g

[

eg
e

−

(

deg

2e

)2
]

where eg denotes the number of
edges in communityg, deg denotes
the sum of degrees of each vertices
of community g and e is the total
number of edges in the network.

(b) Sort the chromosomes according to
their modularity in descending order.

(c) Select two chromosomes. Number of
their selections is based on their mod-
ularity. A source chromosomeCS is
the one with the higher modularity.

(iii) Crossover: We randomly select CommID
named as ID-select. We then check the val-
ues in any cells inCS . If the value equals
ID-select, then the values in the correspond-
ing cells CDof CS are changed to be the
same ID-select as shown in Fig. 2.

1 2 1 2
3 ID-select⇒ 4 3 3
...

...
...

...
...

3 ID-select⇒ 7 3 3

11 9
One way
−−−−−→
Crossover

11 9

12 3 12 3
...

...
...

...
...

3 ID-select⇒ 4 3 3
2 4 2 4

CS CD CS CD

Fig. 2. One way crossover from source chromosomeCS to destination
chromosomeCD

(iv) Mutation: A node may be put into a ran-
dom community in the network.

(v) Clean-up: For a node having a high com-
munity variance (CV), its CommID and its
neighbors’ CommID are changed to be the
CommID of most neighbors.
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(a) Randomly select a node for each chromo-
some. Calculate its community variance
by the expression:

CV (i) =

∑

(i,j)∈E

f(i, j)

deg(i)

where E is the set of all edges in the
network and

f(i, j) =

{

1, CommID(i) 6= CommID(j)

0, otherwise.

(b) If CV (i) is higher than the threshold
value, then CommIDs of that node and
its neighbors are changed to the one that
occurs most often among them.

(vi) Repetition: The process is repeated from
(ii) to (v) until the value of network mod-
ularity is between 0.3 and 0.7 exhibiting a
good community structure. The expression
H = 0 if a community has no within-
community edges whilstH = 1 when all
nodes are put into a single community [19],
[29], [32].

Finally, the chromosome with the highest modu-
larity is chosen to be the community structure of
the social network which is incorporated to study
the SEIQR model in the subsequent section.

III. T HE SEIQR-NETWORK MODEL AND ALGORITHM

The SEIQR-network model has been developed to
study the spread of the infectious disease based on SEIQR
dynamics and multi-group structure in the complex net-
work [12]. This section illustrates the SEIQR-network
model and its threshold parameter calculation, and guides
an algorithm for the simulation of SEIQR-network model
on GA-network presented in section II.

A. SEIQR-network Model

In the network, there areM communities. Each of
which hasNi people nodes fori = 1, 2, . . .M . As can
be seen in Fig. 3 considering theith community, the total
population sizeNi(t) is divided into five distinct epidemi-
ological subclasses of individuals which are susceptible
Si(t), exposedEi(t), infectiousIi(t), quarantinedQi(t)

and recoveredRi(t). Fig. 3 can be inferentially interpreted

Fig. 3. Progression diagram for the SEIQR disease transmission in the
ith community.

to the system of ordinary differential equations as follows.

dEi

dt
=

M
∑

j=1

[

βijEj + β̃ijIj
Ni

]

Si − (αi + κi + µi)Ei,

dIi
dt

= αiEi − (γi + δi + µi)Ii,

dQi

dt
= δiIi − (εi + µi)Qi, (1)

dRi

dt
= κiEi + γiIi + εiQi − µiRi.

dSi

dt
= Ai −

M
∑

j=1

[

βijEj + β̃ijIj
Ni

]

Si − µiSi,

The outbreak of the disease on the complex network
occurs when infectious and exposed individuals transmit
the disease to its susceptible neighbors via the edges
with an infection rateβ. It has been recognized that
the transmission probability in the same community
is higher than that between communities. Thus, the
transmission probability within a community is assigned
to be higher than the transmission probability between
communities. After the susceptible individuals receive
an amount of virus, their status become exposed. For
the disease having incubation period of1/α days and
sick period of1/γ days, an exposed individual becomes
an infectious individual at the transfer rateα and an
infectious individual recovers at the transfer rateγ. From
then, some infectious individuals are quarantined with the
rate δ in order to reduce an infection. Finally, infectious
and quarantined individuals will recover when they reach
the sick period.

From the system (1), certain assumptions for the model
are described as follows:

(i) Indices i, j = 1, 2, . . . ,M present theith and j th

communities of the sub-classesS, E, I, Q andR.
(ii) All parameters are non-negative constants defined

as follows:

(a) αi is the rate at which an exposed individual
Ei(t) becomes infected individualIi(t);
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(b) δi is the rate that individualIi(t) moves to the
quarantined individualQi(t);

(c) κi, γi andεi are the rates at which individuals in
the Ei(t), Ii(t) andQi(t) classes change their
status to be inRi(t).

(iii) The model (1) is considered with a recruitment-
death demographic structure such that

M
∑

i=1

dNi

dt
=

M
∑

i=1

(Ai − µiNi),

Ai is a constant recruitment in theith community
such thatAi = biSi(0), where bi and µi are the
natural death rate.

(iv) βij and β̃ij are the probabilities of catching the
disease per contact to the infectious or exposed
person, separately considered in two cases:

βij =

{

βhigh when i = j (intra-community)

βlow when i 6= j (inter-community)

and β̃ij is defined as the same sense asβij .

B. Threshold Parameter

Throughout this subsection,i varies from 1 to
M . To shorten our following computations, we denote

Ki = αi + κi + µi and Li = γi + δi + µi

for eachi. If we introduce the state vectorX by

X = (X1, X2, . . . , X5M )

= (E1, . . . , EM , I1, . . . , IM ,

Q1, . . . , QM , R1, . . . , RM , S1, . . . , SM ),

the first 2M equations after the arrangement of the sys-
tem (1) according to the state vectorX correspond to
the infectious compartments, namely,Ei andIi whilst the
last3M equations correspond to the compartmentQi, Ri

andSi, respectively. The disease free equilibrium after the
arrangement of the system (1) is in the form of

X0 = (0, 0, . . . , 0, A1/µ1, A2/µ2, . . . , AM/µM ),

and thus the solutions of the system stay in the region
[0,∞)5M given by

D = { X | Xi +XM+i +X2M+i +X3M+i +X4M+i

= Ei + Ii +Qi +Ri + Si ≤ Ai/µi }.

Together with nonnegative initial conditionX(0) = X0,
we can apply the next generation method to calculate the
basic reproductive number of the system (1). We rewrite
the system (1) as

Ẋ = F(X)− V(X)

where

F =

















F1

...
Fk

...
F5M

















, V =

















V1

...
Vk

...
V5M

















.

The functionFk(X), the rate of appearance of the next
infection in kth compartment, is set to be

Fk =











































M
∑

j=1

[

βkjEj + β̃kjIj
Nk

]

Sk, 1 ≤ k ≤ M,

αk−MEk−M , M + 1 ≤ k ≤ 2M,

0, 2M + 1 ≤ k ≤ 5M.

The functionVk(X) is the difference in the transfer rate
of individual into and out of thekth compartment. It is in
the form

Vk =































KkEk, 1 ≤ k ≤ M,

Lk−MIk, M + 1 ≤ k ≤ 2M,

0, 2M + 1 ≤ k ≤ 5M.

If we denote Jacobian matricesF andV as

F =

[

∂Fj

∂Xk

]

(X0) and V =

[

∂Vj

∂Xk

]

(X0),

with 1 ≤ j, k ≤ 2M , thenF andV can be expressed as

F =

[

F1,1 F1,2

F2,1 F2,2

]

, V =

[

V1,1 V1,2

V2,1 V2,2

]

where the submatrices ofF andV are defined as follows:

F1,1 =

































β11A1

µ1N1

β12A1

µ1N1
· · ·

β1MA1

µ1N1

β21A2

µ2N2

β22A2

µ2N2
· · ·

β2MA2

µ2N2

...
...

. . .
...

βM1AM

µMNM

βM2AM

µMNM

· · ·
βMMAM

µMNM

































,

F1,2 =



































β̃11A1

µ1N1

β̃11A1

µ1N1
· · ·

β̃1MA1

µ1N1

β̃21A2

µ2N2

β̃22A2

µ2N2
· · ·

β̃2MA2

µ2N2

...
...

. . .
...

β̃M1AM

µMNM

β̃M2AM

µMNM

· · ·
β̃MMAM

µMNM



































,
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F2,1 =











α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 . . . αM











,

V1,1 =











K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...
0 0 · · · KM











,

V2,2 =











L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

...
0 0 · · · LM











,

F2,2 = V1,2 = V2,1 =











0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 . . . 0











.

The basic reproductive number can be determined by

R0 = ρ(FV −1)

whereρ(J) is the spectral radius of a matrixJ [24]. If
we further assume thatFV −1 has rank ofM + 1, then
the spectral radiusρ(FV −1) is of the form

1

2

M
∑

i=1

βiiBi +
1

2

√

√

√

√

(

M
∑

i=1

βiiBi

)2

+ 4

M
∑

i=1

αiβ̃iiBi

Li

where
Bi =

Ai

KiµiNi

.

Literally, the basic reproductive number can be used to
consider the epidemiological situation, i.e., the disease
will disappear whenR0 < 1 whilst R0 > 1 informs that
the disease will spread [8], [37].

C. Algorithm
The system (1) is now considered in a social complex

network. We assume that time step is one day and natural
death rate is zeroes. Approximating the first derivative of
each equation in the system (1) by forward finite different:

df

dt
≈

ft+△t − ft
△t

.

The system (1) becomes

Ei,t+1 = Ei,t +





M
∑

j=1

βijEj,t + β̃ijIj,t
Ni



Si,t△t

− (αi + κi)Ei,t△t,

Ii,t+1 = Ii,t + [αiEi,t − (γi + δi)Ii,t]△t,

Qi,t+1 = Qi,t + [δiIi,t − εiQi,t]△t,

Si,t+1 = Si,t −





M
∑

j=1

βijEj,t − β̃ijIj,t
Ni

Si,t



△t,

Ri,t+1 = Ri,t + [κiEi,t + γiIi,t + εiQi,t]△t.

Let τ be the maximum time for the simulation, and△t be
the time step. The spread of the disease based on SEIQR
dynamics is simulated by the following algorithm.

Step1 At initial time stept = 0 day, there areN people
nodes including a few infected nodes sayη in the
infectious class (I-class) andN−η people nodes
in the susceptible class (S-class).

Step2 Set t = t+△t.
Step3 Updating stage of people nodes based on their

neighbor status:

(i) TheS-class nodes move to theE-class with
the transmission probabilityβhigh if they
are in the same community withI-class
nodes andβlow when they are in different
communities;

(ii) The E-class nodes move to theI-class with
the transfer rateα;
TheE-class nodes move to theR-class with
the transfer rateκ;

(iii) The I-class nodes move to theR-class with
the transfer rateγ;

(iv) The I-class nodes move to theQ-class with
the transfer rateδ;

(v) TheQ-class nodes move to theR-class with
the transfer rateε.

Step4 RepeatingSteps2 andStep3 until the τ reaches
or there is no infectious and quarantined node in
the network.

IV. N UMERICAL RESULTS AND DISCUSSION

An experiment is brought up for studying the spread
of SEIQR infections in the social complex network having
1,000 people nodes classified into 16 communities (M =
16) by GA-network algorithm. To understand how the
disease spreads on the real-world population network, we
randomly set five infectious nodes at the beginning and
then simulate the SEIQR epidemic on the network over
time using the SEIQR network algorithm presented in
section III. Values of parameters used in this simulation
are expressed in TABLE I.

TABLE I

VALUES OF PARAMETERS USED INFIG. 4–8

Parameters Biological Description Value

Cr Neighborhood contact radius 0.060
α Transfer rate at whichE becomesI 0.250
β Transmission rate between people nodes 0.004
γ Transfer rate at whichI andQ becomeR 0.167
δ Quarantine rate 0.100
κ Transfer rate at whichE becomesR 0.020
ε Transfer rate at whichQ becomesR 1.000

In Fig. 4, the topology of our network are presented
at four different times in which square nodes represent
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people in the largest community and circle nodes are in
other communities.

(a) t = 0 day

(b) t = 20 days

(c) t = 30 days

(d) t = 40 days

Fig. 4. The topology of a portion of our network at four different times.

Effect of transmission rate is considered. In Fig. 6,
we choose three different transmission rates of 0.002,
0.004 and 0.006. The results indicate that an increase of
transmission rate from 0.002 to 0.006 increases the peak
of infection proportion from 0.038 to 0.401.

The influence of quarantine rate is also investigated.
The result shows a faster spread of the disease for a lower
quarantine rate as shown in Fig. 7. That is, a decrease
of quarantine rate from 0.02 to 0.005 increases the peak
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Fig. 5. Disease transmission obtained from the network modelwith
H = 0.7 whereS, E, I, Q andR are respectively presented by dash-
dot line, dashed line, solid-square line, solid line and dotted line.
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(a) Transmission rateβ = 0.002
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(b) Transmission rateβ = 0.004
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(c) Transmission rateβ = 0.006

Fig. 6. Effect of three different transmission rates of the network on the
SEIQR disease transmission whereS, E, I, Q andR are respectively
presented by dash-dot line, dashed line, solid-square line, solid line and
dotted line: (a)β = 0.002; (b) β = 0.004 and (c)β = 0.006.
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of infection proportion from 0.070 to 0.293. Decreasing
quarantine rate yields a faster spread of the disease, a
lower peak number of infections and a shorter period of
the transmission.
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(a) Quarantine rateδ = 0.05
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(b) Quarantine rateδ = 0.1
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(c) Quarantine rateδ = 0.2

Fig. 7. Effect of three different quarantine rates of the network on the
SEIQR disease transmission whereS, E, I, Q andR are respectively
presented by dash-dot line, dashed line, solid-square line, solid line and
dotted line: (a)δ = 0.05; (b) δ = 0.1 and (c)δ = 0.2.

V. CONCLUSION

The appropriate structure of social complex network
has been organized by the community detection method
using GA-network. Then, it is cooperated with the
SEIQR-Network model to study the spreading behavior
of an epidemic. The simulation results point that the
network modularity, the transmission rate and the
quarantine rate have significant impacts on the disease
transmission. The higher transmission rate and lower
quarantine rate directly raise the rate of infection. The

higher quarantine rate leads to the smaller number of
infection. Therefore, the proposed network model can
describe the essential feature of disease transmission.

ACKNOWLEDGMENT

This research was supported by Centre of Excellence
in Mathematics, PERDO, CHE, Ministry of Education and
Faculty of science, Mahidol University, THAILAND.

REFERENCES
[1] H. N. Agiza, A. S. Elgazzar and S. A. Youssef, Phase Transitions

in some Epidemic Models Defined on Small-world Networks,Int.
J. Mod. Phys. C, 14, 2003, pp. 825–833.
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