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Function Representation Using Hypercircle
Inequality for Data Error

D. Poltem, K. Khompurngson, B. Novaprateep

Abstract—In this paper, the study of Hypercircle inequality for
data error (Hide) is briefly reviewed. Within the framework of
Hide and to find a function representation from inaccurate data,
the midpoint algorithm is provided. We give a new result for a
function representation that has the form of the representer theorem.
We illustrate some important facts for a practical computation and
study the problem in the learning value of a function for a learning
kernel. We demonstrate the potential of this framework by comparing
our result to the regularization method, which is the standard method
in the learning value of a function. The present example compares the
performance of the methods when the optimal values of regularization
parameters are used.
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I. INTRODUCTION

ONE of the most important issue of the scientific problem
is to find a function representation from data when

only finite samples are known exactly [2], [3], [8], [10],
[19]. Tikhonov regularization in reproducing kernel Hilbert
spaces (RKHS), known as the representer theorem, is one
of the most important role in a learning problem. It plays
an important role in approximation as it allows to write the
solution in learning problem easily.

In the regularization theory, for the target function from
domain T to the range Y ⊆ R we call T the input set and
Y the output set. Suppose that a finite set {(tj , dj) : j ∈
Nn} ⊆ X × Y of samples of target function is available. For
the simplicity of enumerating with the finite sets, we set Nn =
{1, 2, ..., n} for n ∈ N. Following the framework of Tikhonov
regularization in the machine learning, we let the hypothesis
space H be a reproducing kernel Hilbert space (RKHS) of
real value function on a set T . For each t ∈ T , there exists a
function Kt ∈ H (called representer of t) with the reproducing
property

f(t) = ⟨f,Kt⟩

for all f ∈ H . Since Kt is a function in H , by the reproducing
property, for each of s ∈ T we can write

Kt(s) = K(t, s)
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Aronszajn’s theory of reproducing kernel Hilbert spaces [1]
states that a function K : T × T −→ R is a reproducing
kernel if it is a symmetric, that is K(s, t) = K(t, s), and
positive definite:

n∑
i,j=1

ajaiK(tj , ti) ≥ 0

for any n ∈ N and the choice of inputs
T = {tj : j ∈ Nn} ⊆ T and a = (a1, ..., an) ∈ Rn.
Moreover, we know that for any kernel K there is a unique
RKHS with K as its reproducing kernel. These important
and useful facts allow us to specify a hypothesis space by
choosing K [17].

Given t0 ∈ T , we are able to determine a meaningful ap-
proximation of t0 knowing that ||f ||K ≤ δ and |d−Qf |22 ≤ ε
where Qf := (f(tj) = ⟨f,Ktj ⟩ : j ∈ Nn) and | · |2 is a Eu-
clidean norm on Rn. The basic idea in learning a problem is to
determine a functional representation from the data. A possible
way to efficiently solve the learning problem is provided by
regularization networks, which amounts to minimization of the
following Rρ functional defined for f ∈ H

Rρ(f) := |d−Qf |22 + ρ||f ||2K (1)

where ρ is a positive number. According to representer the-
orem [4], [12], [13], [15], [16], [19], [20], the form of the
solution of equation (1) is, under general condition:

fρ(t) =
∑
j∈Nn

c(ρ)jK(tj , t), t ∈ T (2)

for some real vector c(ρ) = (G + ρI)−1d where I is n × n
identity matrix and Gram matrix G = (K(ti, tj) : i, j ∈ Nn).

However, the regularization theory is only applied to cir-
cumstances for which data is know exactly [6], [7]. Then our
previous work [11], [14] extends it to circumstances for which
there is known data error. We have discussed the Hypercircle
Inequality for data error (Hide) in a learning problem. The
midpoint algorithm for finding the value of function at the
given points was proposed. As the midpoint algorithm, we
define the interval of uncertainty

I(t0, ερ, δρ) = {f(t0) : |d−Qf |2 ≤ ερ, ||f ||K ≤ δρ}.

Clearly, the best choice for this number is a function whose
values at t0 is a midpoint of the interval I(t0, ερ, δρ). The
most important issue in a learning problem is the choice
of the data representation. Then the purpose of this paper
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is to present the approximation function that we obtain
from the midpoint algorithm. We then compare our result to
the regularization method. To compare these two methods,
the regularization estimator fρ(t0) can be viewed as an
element in the interval I(t0, ερ, δρ). In the previous work
[11], [14], we found that the learned function has the form
of representer theorem (2), but the choice of the coefficients
in equation (2) are generally different from those obtained
from a regularization procedure. Therefore, a learned function
that has the form of representer theorem for a practical
computation is described and analyzed in this paper. In
addition, this present paper proposes a new choice to choose
value of δρ. We also report some results from numerical
experiment in the learning value of a function by using
midpoint algorithm with different values of δρ.

This paper is organized as follows: In section 2, we re-
call the Hypercircle Inequality for data error measured with
square loss and the way to get a function representation to
the midpoint algorithm. Section 3 deals with the midpoint
algorithm. After a short introduction about the framework of
Hide and the midpoint algorithm, we present some numerical
simulations based on our analysis and discuss some extensions
of our framework.

II. HYPERCIRCLE INEQUALITY FOR DATA ERROR

In this section, we describe the necessary background. Most
of the results below are based on results from our previous
work [11], [14]. Some improvements and simplifications of
our previous work on Hide are provided.

Let Hilbert space H over the real number with inner product
⟨·, ·⟩ and choose a finite set of linearly independent elements
X = {xj : j ∈ Nn} in H . Let M be the n−dimensional
linear subspace of H spanned by the vectors in X . That is,
we denote

M := {
∑
j∈Nn

aixi : a ∈ Rn}

Let Q : H → Rn be a linear operator H onto Rn, which is
defined for any x ∈ H as follows

Qx = (⟨x, xj⟩ : j ∈ Nn). (3)

Alternatively, the adjoint map QT : Rn −→ H is given at
a = (aj : j ∈ Nn) ∈ Rn as follows

QTa =
∑
j∈Nn

ajxj (4)

Consequently, the Gram’s matrix of the vectors in X is

G = QQT =


⟨x1, x1⟩ ⟨x1, x2⟩ ... ⟨x1, xn⟩
⟨x2, x1⟩ ⟨x2, x2⟩ ... ⟨x2, xn⟩

...
...

...
...

⟨xn, x1⟩ ⟨xn, x2⟩ ... ⟨xn, xn⟩



which is a symmetric and positive definite. To prove this, we
let 0 ̸= a ∈ Rn and we have that

aTGa = aTQQTa

= (a,QQTa)

= ⟨QTa,QTa⟩ = ||QTa||2 > 0.

Therefore, G is a positive definite matrix. Next, let us review
basic facts about Hi, [3], [12], and discuss what we need for
Hide.

Let X = {xj : j ∈ Nn} be set of linearly independent
elements in H . Then given any d ∈ Rn we can find an element
x(d) ∈ R(QT ) such that

Qx(d) = d.

We have x(d) = QTG−1d.
Moreover, from this formula we obtain the useful equation

min{||x|| : x ∈ H,Qx = d} = ||x(d)||
=

√
(d,G−1d). (5)

Let H be the Hilbert space over the real number and X =
{xj : j ∈ Nn} be a finite set of linearly independent elements
in H. Let d be a given vector in Rn, and δ be a positive
number. The hypercircle, H(d, δ) is a subset of H, which is
defined by

H(d, δ) = {x : x ∈ δB,Qx = d}.

where B := {x : x ∈ H, ||x|| ≤ 1} is the unit ball in H [5].

We point out that the hypercircle H(d, δ) is a convex subset
of H which is sequentially compact in the weak topology on
H.

If d ∈ Rn then H(d, δ) ̸= ∅ if and only if

||x(d)|| =
√
(d,G−1d) ≤ δ.

Moreover, in this case x(d) ∈ H(d, δ).

To describe Hypercircle inequality for data error (Hide),
we provided it in the case that the data error is measured with
Euclidean norm. We refer the reader to the paper [11] for more
information about the proof of Hide measured with any norm
on Rn.
Let d be a given vector in Rn and

E2 = {e : e ∈ Rn, |e|2 ≤ ε}

where | · |2 : Rn → R+ is a Euclidean norm on Rn and
ε is some prescribed positive number. The hyperellipse,
H(d|δE2), is a subset of H which is defined by

H(d|δE2) = {x : x ∈ δB,Qx− d ∈ E2}

where δB := {x : x ∈ H, ||x|| ≤ 1} is the unit ball in H.

In the special case that ε = 0, we denote that the hyperel-
lipse becomes to hypercircle as follows

H(d, δ) = {x : x ∈ δB,Qx = d}.
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Moreover, we point out for any d ∈ Rn there is x(d) =
QTG−1d such that

Qx(d) = d and ||x(d)||2 = (d,G−1d)

where (·, ·) is Euclidean inner product on Rn.

Moreover, we point out that if H(d, δ) ̸= ϕ then the vector
x(d) = LTG−1d is the best estimator to estimate the value
of ⟨x, x0⟩ when x ∈ H(d, δ). That means, the best estimator
has the form of linear combination of the vector in X and the
coefficient is given by G−1d. In additional, the best estimator
x(d) is independent of vector x0.

Indeed, let us add the relation between them as shown below

H(d|δE2) =
∪

e∈E2

H(d+ e, δ).

So far, we obtain that for each e ∈ E2 there is the vector

x(d+ e) = QTG−1(d+ e) ∈ M

such that

Qx(d+ e) = d+ e and ||x(d+ e)||2 = (d+ e,G−1(d+ e)).

Now we ready to disscus when H(d|δE2) ̸= ϕ. Let us
recall the following facts.

Definition 1: Let A be an n×n symmetric matrix and d ∈
Rn . The spectrum of the pair (A, d) is defined to be the set
of all real numbers λ for which there exists an x ∈ Rn with
euclidean norm one such that

A(x− d) = λx. (6)

Since G is positive definite matrix, we then assume that
0 < λ1 ≤ λ2 ≤ ... ≤ λn are eigenvalue of G−1 and

{uj : j ∈ Nn}

is a corresponding orthonormal set of eigenvector. Next, we
write the vector d in the form

d =
∑
j∈Nn

γju
j

for some constants γj ∈ R and define the subset I of Nn by
I := {j : λjdj = 0}.

Theorem 1: The spectrum of the pair (ε2G−1, d
ε ) consists

of all real λ such that

g(λ) =
∑
i∈I

λ2
i γ

2
i

(ε2λi − λ)2
= 1 (7)

togerther with each eigenvalue λk of ε2D
I

for which

g(λk) < 1

where k ∈ I := {j : λjdj = 0}.

Proof. We refer the reader to [5] for the proof.

Lemma 2: If Λ and Λ′ are the least and greatest value in
the spectrum of the pair (ε2G−1, d

ε ) then

min
e∈Rn

|e|≤ε

(d+ e,G−1(d+ e)) =

 Λ
I
+ Λ

I

∑
j /∈I

λj |γj |2

ΛI − ε2λj
, if |d| > ε

0, if |d| ≤ ε

and

max
e∈Rn

|e|≤ε

(d+ e,G−1(d+ e)) =

 Λ′
I
+ Λ′

I

∑
j /∈I

λ′
j |γj |2

Λ′
I
− ε2λ′

j

, if |d| > ε

0, if |d| ≤ ε

Proof. We refer the reader to the paper for the proof [5].

Theorem 2: Let Λ be the least value in the spectrum of the
pair (ε2G−1, d

ε ) . If |d| > ε then H(d|δE2) ̸= ϕ if and only if

Λ + Λ
∑
j /∈I

λj |γj |2

Λ− ε2λj
+ ≤ δ2

Proof. We refer the reader to [5] for the proof.

Before we state the next theorem, let us define

M := {x(d+ e) = LTG−1(d+ e) : e ∈ E}.

Next, we have the following

Theorem 3: Let Λ′ be the greatest value in the spectrum of
the pair (ε2G−1, d

ε ).
If |d| > ε then

M ⊆ H(d|δE2)

if and only if

Λ′ + Λ′
∑
j /∈I

λ′
j |γj |2

Λ′ − ε2λj
≤ δ2 (8)

Therefore, we point out that if we choose

Λ′ + Λ′
∑
j /∈I

λ′
j |γj |2

Λ′ − ε2λj
≤ δ2

then the best estimator, x(d+ e0), is in the interval

I(x0, x(d+ e)) = {⟨x, x0⟩ : x ∈ H(d|δE2)}.

The original idea of Hide to optimally estimate one feature
of an x ∈ H(d|δE2) was presented in the previous work [11].
We define a feature of x ∈ H as the value of a prescribed
linear functional Fx0 defined at x as

Fx0(x) := ⟨x, x0⟩.
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The interval of uncertainty for the feature Fx0 is defined as

I(x0, d|δE2) = {Fx0(x) : x ∈ H(d|δE2)}

which is closed and bounded. We also define the interval in
R by

I(x0, d|δE2) = [m−(x0, d|δE2),m+(x0, d|δE2)] (9)

where

m+(x0, d|δE2) := max{Fx0(x) : x ∈ H(d|δE2)} (10)

and

m−(x0, d|δE2) := min{Fx0(x) : x ∈ H(d|δE2)}.

We observe that

m−(x0, d|δE2) = −m+(x0,−d|δE2).

Consequently, a center of the above interval is

m(x0, d|δE2) =
m+(x0, d|δE2)−m+(x0,−d|δE2)

2
. (11)

To state the main result of this section, a function
representation from midpoint algorithm, we introduce
the following terminology.

The proposition below is important and useful to determine
the best estimator in the hyperellipse H2(d, ε) for the feature
Fx0 . To this end, let us define P : H → M which is the
orthogonal projection of H onto M as for any x ∈ H

Px = QTG−1(Qx).

Proposition 1: If H(d|E2(δ)) ̸= ∅ and x0 /∈ M then there
exist e± ∈ E2 such that

Fx0(x±(d+ e±)) = m±(x0, d|E2(δ)). (12)

Moreover, the vector

x±(d+ e±) =

x(d+ e±)±
√
δ2 − ||x(d+ e±)||2

dist(x0,M)
(x0 − Px0)

Proof. We refer the reader to [11] for the proof.

Theorem 4: If H(d|E2(δ)) ̸= ∅ then there is a e0 ∈ E
such that x(d+ e0) is the best estimator for the feature Fx0 .
Moreover, the vector e0 ∈ Rn can be chosen on the line
segment joining e− and e+.

Proof. We refer the reader to [11] for the proof.

That is, we have that

Fx0(x(d+ e0)) = m(x0, d|δE2)

and x(d+e0) = QTG−1(d+e0) ∈ M. Therefore, we can see
that the best estimator is still the form of linear combination
of the vector in X and the coefficient is given by

G−1(d+ e0)

for some e0 ∈ E2. However, we observe that the best
estimator is depend on the vector of x0.

Specifically, to find the best estimator we only need to
evaluate the two number m+(x0,±d|E2(δ)) and then compute

1

2
(m+(x0, d|E2(δ))−m+(x0,−d|E2(δ))).

These points are arguments that may suggest the main results
of this section. For the purpose of establishing a function
representation from midpoint algorithm, we know that the
learned function has the form of representer theorem (2), but
the choice of the coefficients in equation (2) are generally
different from those obtained from a regularization procedure.
Therefore, the following proposition formally establishes the
way to get the coefficients in equation (2) that obtains from
the midpoint algorithm.

Next, we will describe a duality formula for the right-hand
side of the interval of uncertainty and then show how to find
the vector e0.

Proposition 2: If H(d|E2(δ)) contains more than one point,
x0 /∈ M, and x0

||x0|| /∈ H(d|E2(δ)), then

m+(x0, d|E) = min{δ||x0 −QT c||+ ε|c|2 + (c, d) : c ∈ Rn}
(13)

where (·, ·) is a Euclidean inner product on Rn. Moreover,
the minimum c∗ ∈ Rn is the unique solution of the nonlinear
equation

−δQ(
x0 −QT c∗

||x0 −QT c∗||
) + ε

c∗

|c∗|2
+ d = 0 (14)

and

x+(d) := δ
x0 −QT c∗

||x0 −QT c∗||
(15)

satisfies

x+(d) = arg max{Fx0(x) : x ∈ H(d|E2(δ))}. (16)

Proof. We refer the reader to [11] for the proof.

Before we state the main result of this paper, let us define
the real-valued function h : [0, 1] → Rn as following

h(λ) = ⟨x(d+ λe+ + (1− λ)e−, x0⟩.

Proposition 3: If H(d|E2(δ)) ̸= ∅ then there is a λ0 ∈
[0, 1] such that h(λ0) = m(x0, d|E2(δ)) where

λ0 =
m(x0, d|E2)− (G−1(d+ e−), Qx0)

(G−1(e+ − e−), Qx0)
.

Proof. By Proposition 2, there is x+(d) ∈ H(d|E2(δ)) such
that

Fx0(x+(d)) = m+(x0, d|E).
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That is, Qx+(d) = d + e+ for some e+ ∈ E2. Since
m−(x0, d|E) = −m+(x0,−d|E) and by Proposition 2 again,
we have that there is x+(−d) ∈ H(−d|E2(δ)) such that

Fx0(x+(−d)) = m+(x0,−d|E).

That is, Qx+(−d) = −d+ e′ for some e′ ∈ E2. Therefore,

−x+(−d) ∈ H(d|E2(δ)) and Q(−x+(−d)) = d− e′.

We set e− = −e′. Since h(0) ≤ m(x0, d|E2) and h(1) ≥
m(x0, d|E2), we can solve the linear equation above to find λ0

such that h(λ0) = m(x0, d|E2(δ)). Consequently, that value
is given by

λ0 =
m(x0, d|E2)− (G−1(d+ e−), Qx0)

(G−1(e+ − e−), Qx0)
.

The above proposition can be easily used for a practical
computation of a function representation from midpoint algo-
rithm. In the next section, we will describe some numerical
experiments in learning the value of a function and also
present a function representation of a learned function. We
also compare our results to the regularization method which
is the standard method in learning value of a function.

III. NUMERICAL EXPERIMENTS

As discussed in the introduction and review of Hide,
we conducted an experiment to compare the regularization
method and our midpoint algorithm. We will show a function
representation of a learned function by using our main goal
results that we obtained from section 2.

Let H be a reproducing kernel Hilbert space
over real numbers (RKHS). Given any set of points
T = {tj : j ∈ Nn} ⊆ T where T is an input set,
the vector {xj : j ∈ Nn} appearing in section 2 is
identified with the function {Ktj : j ∈ Nn} where
Ktj (t) = K(tj , t), j ∈ Nn, t ∈ T . The Gram matrix of the
function {Ktj : j ∈ Nn} is given as G = (K(ti, tj))i,j∈Nn .

Next, we choose the exact function g ∈ H and then compute
the vector Dg := (g(tj) : j ∈ Nn). Then, we corrupt the
data by additive noise. Thus, we define d = Dg + e. Indeed,
our problem becomes as follows. Given t0 ∈ T , we want to
estimate f(t0) knowing that ||f ||K ≤ δ and |d − Qf |22 ≤ ε
where Qf := (f(tj) =< K(tj , ·), f >: j ∈ Nn) and | ·
|2 is a Euclidean norm on Rn. As we briefly described the
regularization method in section 1, we give ρ > 0 and we
choose the function which minimizes this functional over H
on the following

|d−Qf |22 + ρ||f ||2K .

Then, we obtain the minimizer function

fρ(t) =
∑
j∈Nn

c(ρ)K(t, tj), t ∈ T

where (G+ ρI)c(ρ) = d. We define

ε2ρ = |d−Qf |22 =
∑
j∈Nn

(1− λj

ρ+ λj
)2γ2

j

and

δ2ρ = ∥fρ∥2K =
∑
j∈Nn

λjγ
2
j

(ρ+ λj)2

where 0 ≤ λ1 ≤ ... ≤ λn are the eigenvalues of the Gram
matrix G corresponding to the orthonormal eigenvectors
uj : j ∈ Nn and d =

∑
j∈Nn

γju
j .

As we want to compare the regularization method to the
midpoint algorithm, we then define the interval of uncertainty

I(t0, ερ, δρ) = {f(t0) : |d−Qf |2 ≤ ερ, ||f ||K ≤ δρ}.

Clearly, fρ(t0) in I(t0, ερ, δρ), However, the hyperellipse
H2(d|E(δρ)) consists of only one point, namely fρ. To prove
this, choose any h ∈ H2(d|E(δρ)). This mean that

||h||2K ≤ ||fρ||2K = δρ

and
|d−Qh|22 ≤ |d−Qfρ|22 = ερ.

Consequently, we have that

|d−Qh|22 + ρ||h||2K ≤ |d−Qfρ|22 + ||fρ||2K
If fρ is unique minimizer of Rρ, then h = fρ.

Since, the interval of uncertainty for the feature Ft0 is
defined as

I(t0, d|δE2) = {Ft0(x) : x ∈ H(d|δE2)}

which is closed and bounded. We also define the interval in
R by

I(t0, d|δE2) = [m−(t0, d|δE2),m+(t0, d|δE2)]

where

m+(t0, d|δE2) := max{Ft0(x) : x ∈ H(d|δE2)}

and

m−(t0, d|δE2) := min{Ft0(x) : x ∈ H(d|δE2)}.

We obtain

m−(t0, d|δE2) = −m+(t0,−d|δE2).

Consequently, a center of the above interval is

m(t0, d|δE2) =
m+(t0, d|δE2)−m+(t0,−d|δE2)

2
.

For the computation m+((t0, d|δE2)), we use the program
fminunc in the optimization toolbox of MATLAB 7.3.0 [8].
Therefore, our strategy in comparing the regularization and
midpoint estimator, is to consider a bigger value of ερ and
δρ. We choose ε = ερ and δ > δρ as we report an important
result for the choice of δ in section II. In order to establish
a function representation from midpoint algorithm, we know
that the learned function has the form of representer theorem
(2). We then compute the coefficients in equation (2) that we
obtain from the midpoint algorithm by using the following
expression:

h(λ) = ⟨t(d+ λe+ + (1− λ)e−, t0⟩
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where

λ0 =
m(t0, d|E2)− (G−1(d+ e−), Qt0)

(G−1(e+ − e−), Qt0)
.

Therefore, a function representation can be written in the the
form of the representer theorem as

t(d+ e0) = QTG−1(d+ λ0e+ + (1− λ0)e−).

A. Experiment

For the experiment, we use the Gaussian kernel on R.
Specifically, we choose

K(t, s) = Ks(t) = exp(− (t− s)2

2
) t, s ∈ R (17)

and the function g is chosen to be

g(t) = 2K1.8(t) +K3.3(t)−K1.2(t). (18)

The set T consists of 10 equally spaced points given by the
formulae t1 = 1 , tj+1 = tj + 0.5 and for all j ∈ N9.
We then generate the data vector d = (dj : j ∈ N10) by
setting dj = g(tj) + ej , j ∈ N10, where the error vector e is
generated randomly from a uniform distribution and given by
the formulae
e1+j = (−1)j0.00207, e2+j = (−1)j0.00607,
e3+j = (−1)j0.0063, e4+j = (−1)j0.0037,
e5+j = (−1)j0.00575, j = 0, 5.

TABLE I
THE MAXIMUM OF VALUE OF δρ FOR THE RANGE OF THE

REGULARIZATION PARAMETER ρ

ρ δρ Λ′ maximum δmax

10−5 1.97393 0.2506 4.5999 2.15

10−4 1.94015 0.7045 5.2487 2.34

10−3 1.93651 1.2334 5.9426 2.44

10−2 1.92595 19.3955 26.1935 5.12

10−1 1.85888 1016.1 1040.5 32.23

1 1.48779 46251 4.6392× 104 215.39

2 1.23694 120772 1.2099× 105 347.84

To find a function representation from our inaccurate data,
we choose δ that satisfy equation (8) then M in Theoem 3 is
smallest subset of M which is contained the best estimator of
< x, xq > when x ∈ H2(d|δE2). Table I shows the choices
of δ in the different values of regularization parameters ρ.
This table shows the minimum and maximum values of δ For
midpoint algorithm, for example, we consider the value of a
function in the case that ρ = 10−5. From section II, we then
obtain that H2(d|δE2) ̸= ∅ if and only if δ > 1.97393. We
also show that M ⊆ H2(d|δE2) ̸= ∅ if and only if δ > 2.15
as shown in table I.

We shall estimate the value of a function at f(2.7) where
f is unknown function in the Hilbert space corresponding
to the Gaussian kernel. The result of the computation is
indicated by using ε = ε(ρ) and δ > δ(ρ) with differerent

TABLE II
THE VALUE OF A FUNCTION OBTAINED FROM GAUSSIAN KERNEL ON R
FOR BOTH METHODS WITH THE REGULARIZATION PARAMETER ρ AND

DIFFERENT VALUES OF δ CHOOSING FROM INTERVAL OF THE DELTA

ρ fρ(2.7) m(t0|δ = 2) m(t0|δ = 5) m(t0|δ = 50)

10−5 1.6114 1.8493 1.8497 1.8497

10−4 1.6114 1.8487 1.8497 1.8496

10−3 1.6114 1.8484 1.8498 1.8496

10−2 1.6114 1.8481 1.8498 1.8496

10−1 1.6114 1.8476 1.8498 1.8496

ρ fρ(2.7) m(t0|δ = 2) m(t0|δ = 100) m(t0|δ = 370)

1 1.6114 1.7478 1.8497 1.8497

2 1.6114 1.5851 1.8497 1.8497

TABLE III
THE COEFFICIENTS OF FUNCTION APPROXIMATION OBTAINED FROM

GAUSSIAN KERNEL ON R FOR BOTH METHODS WITH THE
REGULARIZATION PARAMETER ρ = 10−5 AND DIFFERENT VALUES OF δ

CHOOSING FROM INTERVAL OF THE DELTA .

Coefficients
Parameters

ρ = 10−5 δ = 2 δ = 5 δ = 10 δ = 50

c1 -0.132 -0.010 -0.012 -0.011 -0.009

c2 0.240 0.059 0.065 0.061 0.057

c3 0.492 -0.227 -0.235 -0.230 -0.224

c4 0.510 1.254 1.261 1.257 1.252

c5 0.405 1.028 1.026 1.027 1.029

c6 0.263 -0.383 -0.386 -0.384 -0.382

c7 0.134 0.189 0.195 0.191 0.186

c8 0.032 -0.085 -0.093 -0.088 -0.082

c9 -0.013 0.029 0.035 0.031 0.027

c10 -0.018 -0.006 -0.008 -0.006 -0.005

values of the regularization parameter ρ. Our computation
indicates that the midpoint algorithm provides a better result
than the regularization approach (fρ(2.7)) to the exact value
of g(2.7) = 1.8466 (see table II).

For the purpose of establishing a function representation
from the regularization method and the midpoint algorithm,
the learned function has the form of representer theorem:

fρ(t) =
∑
j∈Nn

c(ρ)jK(tj , t), t ∈ T .

Our computation shows that the choice of the coefficients in
the above equation are generally different from those obtained
from both methods as shown in table III. For midpoint
estimator, after we increase value of δ, the coefficients are
close to the same value.

The function representations from the regularization
method and the midpoint algorithm compared to the exact
function are shown in figures 1 and 2. Our computation
indicates that the midpoint estimators for the regularization
parameters ρ = 10−5 and ρ = 2 give a better choice of
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Fig. 1. Graph of the exact function for Gaussian kernel on R and function
approximation using coefficients obtained from regularization method and
midpoint algorithm with ρ = 10−5.
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Fig. 2. Graph of the exact function for Gaussian kernel on R and function
approximation using coefficients obtained from regularization method and
midpoint algorithm with ρ = 2.

function approximation than the regularization estimator. As
we see from figures 1 and 2, the function representation that
we obtain from the midpoint algorthim with different values
of δ is close to the same function.

Figures 3 and 4 show the value of a function obatianed
from midpoint algorithm with different values of regularization
parameter. We simulate the the result in the range of delta as
shown in table 1. From these two figures indicate that the
value of a function tend to the same value when the value of
δ increased.

IV. CONCLUSION
In this paper, some basic facts of the Hypercircle Inequality

were provided. The function representation from midpoint al-
gorithm was presented in section 2. In section 3, we presented
a numerical experiment to present a function representation
from midpoint algorithm. Our computation indicated that the
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Fig. 3. The value of a function obtained from exact function and the midpoint
algorithm from the range of δ at t0 = 2.7.

0 50 100 150 200 250 300 350
1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

δ

V
al

ue
 o

f 
a 

F
un

ct
io

n

 

 

ρ = 1
ρ = 2

Fig. 4. The value of a function obtained from midpoint algorithm from the
range of δ at t0 = 2.7.

midpoint algorithm on the learning tasks provided, at least in
our computational numerical experiments, better results than
the regularization approach.
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