
 

 

  
Abstract—In [1], [2] some basic and detailed ideas, respectively, 

of algebraic controller design in the ring or quasipolynomial 
meromorphic functions (RMS) with optimal controller tuning via 
spectral abscissa minimization using some advanced iterative 
algorithms were presented and introduced. The aim of this paper is to 
follow with these theoretic contributions in order to examine and 
verify the usability and applicability of the whole methodology. A 
case study of controller design, tuning and simulation of a 
mathematical model of a real-life unstable time-delay system (TDS), 
namely, the roller skater on the controlled swaying bow is presented. 
Four introduced iterative optimization algorithms are tested and 
benchmarked. 
 

Keywords—Time-Delay Systems, Optimization, Spectral 
Abscissa, Pole Placement, Iterative Algorithms, Artificial 
Intelligence.   

I. INTRODUCTION 

PTIMIZATION became a necessary part of managing 
many technical, industrial and even everyday processes 

and activities. It became naturalized also in control theory; 
especially while controller design and tuning. Obviously, the 
more complex the controlled object or its model is the more 
advanced optimization method ought to be utilized. 

Time delay systems (TDS) and models can be found in 
many theoretical and practical applications covering various 
fields of human activity, such as technology, informatics, 
biology, economy etc for decades. Already Volterra in [3] did 
formulate differential equations incorporating the past states 
when he was studying predator-pray models. Examples of 
other models can be found e.g. in [4]-[7]. The well-known fact 
is that TDS has mostly a complex structure and they are not 
easy to control by a standard means [8]. In [9] modern, 
algebraic controller design in the ring of proper and stable 
meromorphic functions (RMS) has been introduced. This 
conception have been then extended e.g. in [10], [11]. 

In [1], [2] optimal pole placement for TDS by means of 
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controller structure design in RMS and via the spectral abscissa 
minimization using four advanced iterative algorithms was 
introduced. Namely, the Quasi-Continuous Shifting 
Algorithms (QCSA) [12]–[13], the (Extended) Gradient 
Sampling Algorithm (EGSA) [14]-[16], the Nelder-Mead 
algorithm (NM) [17] the Self-Organizing Migration Algorithm 
(SOMA) [18] were described in these papers to find optimal 
controller parameters. 

In this part of the contribution, a mathematical model of an 
attractive real-life system with internal delays serves as a 
benchmark for the optimization algorithms. It describes unstable 
system with the roller skater on a controlled swaying bow, 
according model presented e.g. in [10]. An infinite dimensional 
control system is achieved using a simple feedback loop and via 
algebraic approach in RMS. Pole assignment strategy minimizing 
the spectral abscissa is then used as a tuning procedure to set 
free controller parameters suitably. The efficiency of the four 
iterative algorithms mentioned above are then tested and 
benchmarked by simulations. Alternatively, one may also 
minimize the abscissa of closed-loop zeros in order to suppress 
closed-loop response overshoots. 

The chapter is organized as follows. A concise overview of 
algebraic controller design in RMS is presented in Section II. A 
brief description of optimization techniques from [1], [2] utilized 
in this paper is introduced in Section III. In Section IV, a 
mathematical model of the skater on a swaying bow is presented. 
The derivation of the controller structure for the particular plant, 
in the RMS ring, is provided in Section V. Finally, a simulation 
comparison of the algorithms is given in Section VI. 

II. OVERVIEW OF CONTROLLER DESIGN IN RMS RING 

A brief summary of the basic steps and usability of RMS in 
controller design follows, for details, see details e.g. [10], [19]. 

For algebraic controller design in RMS it is initially supposed 
that not only the plant is expressed by the transfer function 
over RMS but a controller and all system signals are over the 
ring. Let ( )sW  be the Laplace transform of the reference 

signal, ( )sD  stands for that of the load disturbance, ( )sE  is 

transformed control error, ( )sU0  expresses the controller 

output (control action), ( )sU  represents the plant input 

affected by a load disturbance, and ( )sY  is the plant output 

controlled signal in the Laplace transform. The plant transfer 
function is depicted as ( )sG , and ( )sGR  stands for a controller 

in the scheme depicted in Fig. 1. 
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Fig. 1 Control feedback scheme 

 
External inputs, reference and load disturbance signals, 

respectively, have forms 
 

( ) ( )
( ) ( ) ( )

( )sF

sH
sD
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sW

D

D

W

W == ,  (1) 

 
where ( )sHW , ( )sH D , ( )sFW , ( )sFD ∈RMS. 

Let the plant be governed by the transfer function 
 

( ) ( )
( )sA

sB
sG =  (2) 

 
where ( ) ( )∈sBsA , RMS are coprime, i.e. there does not exist a 

non-trivial (non-unit) common factor of both elements. Details 
about divisibility can be found in [20] where the ring is also 
defined and some its properties introduced. 

A. Feedback Stabilization 

Given a Bézout coprime pair ( ) ( )sBsA , ∈RMS the closed-

loop system is stable if and only if there exists a coprime pair 
( ) ( ) MSsQsP R∈,  of controller transfer function denominator 

and numerator, respectively, satisfying the Bézout identity 
 
( ) ( ) ( ) ( ) 1=+ sQsBsPsA  (3) 

 
 A particular stabilizing solution of (3), say ( ) ( )sQsP 00 , , can 

be further parameterized as 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )sZsAsQsQ

sZsBsPsP

m0

0 0

=
≠±=

 (4) 

 
where ( )∈sZ RMS. Parameterization (4) is used to satisfy 

remaining control and performance requirements, such as 
reference tracking, disturbance rejection etc. 

The proof of the statement above can be done analogously 
as in [9]. 

B. Reference Tracking 

The task is to find ( )∈sZ RMS in (4) so that the reference 

signal is being tracked. The analysis on the scheme in Fig. 1 
yields the following: ( )sFW  must divide the product 

( ) ( )sPsA in the ring. 

C. Load Disturbance Rejection 

Similarly as in the previous subsection, the load disturbance 
is tracked if ( )sFD  divides ( ) ( )sPsB  in RMS. 

III. OPTIMIZATION ITERATION METHODS SUMMARY 

A concise description of some numerical optimization 
techniques we decided to utilize for the minimization of the 
objective function (= spectral abscissa) of the study case 
follows. All these approaches enable to overcome all the 
difficulties with non-convexity and non-differentiability of the 
spectral abscissa function. The reader is referred to [2], [12]-
[18] for details. 

The objective function for retarded TDS agrees with the 
spectral abscissa ( )Kα , i.e. 

 
( ) ( ) ( )i

i
sΦ Remaxminminmin

KKK
KK == α  (5) 

 
where 
 
K = {k1, k2, ..., kr} (6) 
 
is the set of (free, selectable) controller parameters and is  

stand for system poles. 
For LTI-TDS of neutral type it is necessary to introduce 

more complex objective function including the requirements 
on so-called strong stability [21], see details herein and e.g. in 
[2], [13], [16]. 

A. QCSA 

The QCSA for retarded systems was introduced in [12] and 
it was extended in [13] for neutral ones. The algorithm is 
based on the iterative shifting of the right-most poles of the 
spectrum to the left by small changes K . The version for 
retarded systems can be described as follows. 

Input: Objective function ( )KΦ . 

Step 1: Set termination parameters and the number of moved 
(controlled) poles 1=m . 

Step 2: Compute the right-most poles, e.g. using 
QuasiPolynomial Mapping based Rootfinder (QPMR), [22]. 

Step 3: Compute the sensitivity of m  right-most poles w.r.t. 
changes in K , i.e the sensitivity matrix. 

Step 4: Move m  right-most poles to the left-half plane by 
applying small changes in K  using the sensitivity matrix. 

Step 5: If necessary, increase m . Stop when the available 
degrees of freedom in the controller do not allow to further 
reduce ( )Kα ; otherwise, go to Step 2. 

Output: Values of optK . 

Note that neutral LTI-TDS require additional test to 
determine the position of the right-most vertical strip of poles, 
see details in [14]. The strong stability condition has to be 
tested as well. 
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B. NM 

The NM algorithm belongs to the class of comparative 
(direct search) algorithms and it was originally published in 
[17]. This easy-to-use and very popular method does not 
require the calculation of derivatives of the objective function 
and thus it is suitable also for non-smooth functions. The basic 
steps of the general algorithm can be done as follows. 

Input: Objective function ( )KΦ . 

Step 1: Construct the initial working simplex S, set 
transformation and termination parameters. 

Step 2: Calculate the termination test information (the 
number of iterations or the minimum simplex size). If the test 
is satisfied, stop the algorithm. 

Step 3: Order simplex vertices as the worst, second worst 
and the best one. 

Step 4: Calculate the central point and reflex the worst 
vertex. If the reflection is successful, accept the reflected point 
in the new working simplex and go to Step 3. 

Step 5: Try to use contraction (for a poor reflection) or 
expansion (for a fair reflection). If this succeeds, the accepted 
point becomes the new vertex; otherwise, shrink the simplex 
towards the best vertex. Go to Step 3. 

Output: The best vertex optK and its function value 

( )optΦ K . 

C. EGSA 

The EGSA is based on the gradient sampling algorithm 
developed in [14] as its extension to (neutral) TDS, see [15], 
[16]. The original algorithm is essentially an extension of the 
well-known steepest descent method, where a numerical 
estimation of the gradient is calculated instead. This enables to 
calculate it even in points where the objective function is not 
differentiable. The basic steps of the EGSA can be given as 
follows. 

Input: Objective function ( )KΦ . 

Step 1: Initialize a starting point 0K arbitrarily. Set control 

(how to calculate gradient estimation, step length etc.) and 
termination parameters. 

Step 2: Choose 1+r  points near by 0K . Compute the 

Clarke subdifferential and the (non-smooth) steepest descent 
direction using the gradient sampling method. If the norm of 
the direction is very small, then terminate the algorithm. 

Step 3: Calculate the step length along the direction from 
Step 2. If it fails choose another (substitute) direction. If all 
possible directions fail, stop. 

Step 4: Update the current position iK to 1+iK  and go to 

Step 2. 
Output: The best position and its function value. 

D. SOMA 

The SOMA is ranked among genetic algorithms, dealing 
with populations, see e.g. [18]. Population specimens 
cooperate while searching the best solution (the minimum of 
the cost function) and, simultaneously, each of them tries to be 

a leader, i.e. “the best one”. They move to each other and the 
searching is finished when all specimens are localized on a 
small area. The main steps of the basic algorithm strategy 
called “All to One” can be formulated as follows. 

Input: Objective function ( )KΦ . 

Step 1: Set control (step length, a perturbation vector, etc.) 
and termination parameters. Generate a population based on a 
selected prototypal specimen. 

Step 2: Find the best specimen (leader), i.e. that with the 
minimal function value. 

Step 3: Move all other specimens towards the leader and 
evaluate their function values in each step. 

Step 4: Select the new population and test the minimal 
divergence of the population. If it succeeds, stop. Otherwise, 
go to Step 2. 

Output: The leader and its function value. 

IV. MODEL AND CONTROL OF THE SKATER ON A SWAYING 

BOW 

In this section, a mathematical model of a real-life 
controlled system is introduced which will be used 
subsequently when benchmark and comparison of the four 
minimization techniques. Namely, an unstable model of the 
roller skater on a controlled swaying bow is described briefly 
by mean of the transfer function. Consequently, a 
corresponding controller using the RMS ring is derived. 

A. Model of the Skater on a Controlled Swaying Bow 

Consider an unstable system as in Fig. 2 expressing a roller 
skater a swaying bow. In [10] it has been stated that the 
transfer function of the system reads 

 

( ) ( )
( )

( )( )
( )( )sass

sb

sU

sY
sG

ϑ
ϑτ
−−

+−==
exp

exp
22

 (7) 

 
where ( )ty is the skater’s deviation from the desired 

position, ( )tu  expresses the slope angle of a bow caused by 

force P, delays ϑτ ,  means the skater’s and servo latencies, 

respectively, and b, a are real parameters. Skater controls the 
servo driving by remote signals into servo electronics. As 
presented in literature, let b = 0.2, a = 1, 3.0=τ s, 1.0=ϑ s. 
 
 

 
Fig. 2 Roller skater on a controlled swaying bow 
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B. Roller Skater Controller Structure Design 

Prior the numerical spectral abscissa optimization, 
anisochronic controllers have to be derived (Pekař and Prokop 
2011b). 

First of all, factorize the plant transfer function as 
 

( ) ( )
( )

( )( )
( )

( )( )
( )

( ) ( ) MSsBsA
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+
−−

+
+−

== ,,
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exp

4
0

22

4
0

ϑ

ϑτ

 (8) 

 
where 00 >m  is a selectable real parameter. Consider the 

reference and load disturbance in the form of a step-wise 
function, hence their Laplace forms are respectively 
 

( ) ( )
( )

( )

( )
( ) ( )

( )
( )

( )sm
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D
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D

D

W

W

W

W

00

, ====  (9) 

 
where w0, d0∈R, ( )smW  and ( )smW  are arbitrary stable 

(retarded) (quasi)polynomials of degree one and 
( )sHW , ( )sH D , ( )sFW , ( )sFD MSR∈ . 

Stabilization formula (3) using the generalized Euclidean 
algorithm, see details in [23], yields e.g. 
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(10) 
 
where p2, p1, p0, q3, q2, q1, q0∈R are free parameters. 

In order to satisfy tasks of step-wise reference tracking and 
load disturbance rejection, parameterization (4) can be used so 
that both, ( )sFW and ( )sFD , divide ( )sP ; hence, the numerator 

of ( )sP  satisfies ( ) 00 =P . To make ( )sP  as simple as possible, 

choose 
 

( )
( )
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2
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301
2
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00

expexp qsqsqsqsbpspspssass

msz
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+

=
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(11) 
 
where ∈0z R is a selectable parameter. Both divisibility 

conditions are satisfied if  
 

b

mp
z

4
00

0

−=  (11) 

 

This results in the final anisochronic controller of the 
transfer function 
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The reference-to-output transfer function reads 
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which gives rise to the characteristic quasipolynomial 
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Obviously, there are two factors in (14), a polynomial and a 

quasipolynomial one. Since the spectral assignment for the 
polynomial factor is trivial, the goal is to minimize the spectral 
abscissa of the quasipolynomial factor with seven unknown 
parameters. To cancel the impact of the quadruple real 
pole 01 ms −= , it must hold that ( )Kα>>0m . 

To sum up, the task is to solve the problem 
 

( ) ( )KKK
KK

αminargminarg == Φopt  (15) 

 
where ( )Kα  is the abscissa of zeros of the quasipolynomial 
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and 

 
Tqqqqppp ],,,,,,[ 0123012=K  (17) 

 
Alternatively, the optimization problem can be formulated 

as 
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V.  OPTIMIZATION TECHNIQUES COMPARISON 

The aim of the section is to compare the performance and 
efficiency of optimizing algorithms presented above based on 
the minimization of the spectral abscissa of the feedback 
characteristic quasipolynomial factor (16), derived when 
control of the skater on a swaying bow. 

Let the minimization starts by the QCSA from the point 
T]1,1,1,1,1,1,1[0 =K  defined in (17). This initial setting gives 

rise to the spectrum Ω (system poles is are from the region 

with Re is > -2) 

 
{ }1- 0.820218,- 0.604644,- 1, 1, 0.477189, 0.849185,0 =Ω  (19) 

 
Obviously, the feedback system is unstable with 
( ) 0.849185=Kα . The QCSA is capable to move some 

controlled poles to the left. Unlike the original paper [12], the 
number of controller poles is not increased gradually here, 
however, this quantity is changed depending on poles 
locations. More precisely, whenever a dominant root of (16) 
(or a bunch or dominant roots) secedes from the rest of the 
spectrum and the number of currently controlled roots is 
higher then the number of seceded ones, the number of 
controlled roots decreases so that only of seceded roots are 
controlled. 

The evolution of system poles is displayed in Fig. 3 where 
the controlled ones are in bold lines. Notice that in an 
iterations range approximately of i = 600-1750, there is a huge 
number of bifurcations of a complex pair of roots or that a 
double real root into a pair of single real roots, and viceversa. 
This yields many changes in the number of controlled roots. 
Whenever a root remains uncontrolled, it eventually reaches 
the controlled rightmost bunch of roots. A detailed view on the 
iterations range of i = 600-1750 is in Fig. 4. 

From Fig. 3 it is obvious that the procedure can adjust the 
spectral abscissa such that ( ) 1.5−<Kα  and it seems that this 

improvement may continue long. However, as it is presented 
below, the improvement is limited – as was found during the 
preparing of this paper. Therefore, we decided to test the three 
remaining optimization methods so that they initiate at the 
point 

T]0.51334,5.245781,161.171962

,148.615441,27.592742,9.838022,5.4426[2400 =K
 (20) 

 
and we compare their efficiencies with the QCSA in a number 
of subsequent iterations. Time consumption of an appropriate 
method is measured as well. 

The overall development of K can be seen in Fig. 5; 
however, due to the noticeable rise in values for i > 1700, the 
detailed view on the iterations range of 1-1700 is in Fig. 6. 
 
 

 
Fig. 3 Evolution of real parts of the rightmost roots of (16) using 

the QCSA 
 
 

 
Fig. 4 A detailed view on Fig. 3 for iterations range of i = 600-

1750 
 

A. NM 

The evolution of ( )Kα  using the NM with the setting 

300=ni , 610−=Sε , 1,...,2,1 +== rjh j , see [2] for 

parameters definitions, is depicted in Fig. 7. Iterations are 
terminated in i = 288 since the simplex size becomes smaller 
then Sε . The results for 1,...,2,10 +== rjh j  are also added 

into the figure for the comparison. Corresponding 
developments of sK are not displayed here since there are no 
appreciable changes in the values. 

Obviously, the higher initial simplex edge length brings 
more possibilities how to escape from the local minimum 
which can bee seen in Fig. 7 and it prevents the premature 
termination due to the simplex size. 
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Fig. 5 Evolution of K for (16) and (17) using the QCSA 

 

 
Fig. 6 Evolution of K for (16) and (17) using QCSA – a detail for 

the iterations range of i = 1-1700 
 

The method is quite fast (≈ 8 s per iteration on Intel Core2 
Duo CPU E8500@ 3.16 GHz, 4BG RAM) because of a low 
number of spectrum calculations using qpmr function in 
Matlab [21]. This operation is the most time consumptive 
command in a program code, especially when a high accuracy 
with a large searching region is required. 

B. EGSA 

Analogously to the previous subchapter, spectral abscissa 

evolutions via the EGSA for settings 410−=ρ , 81 =+= rl , 
510−=ε , 6

max 102 −⋅=λ , 710−=Δλ  and 7
max 102 −⋅=λ , 

810−=Δλ , respectively, are displayed in Fig. 8. The number 
of iteration steps equals 100. For details about the parameters, 
see [2] again. 

It is apparent that the method does not bring a significant 
improvement (i.e. a sufficient decreasing) of ( )Kα mainly due 

to many cases when 0max == kλ . 

 
Fig. 7 Evolution of α(K) using the NM for hj = 1 and hj = 10, 

respectively, from i = 2400 
 

 
Fig. 8 Evolution of α(K) using the EGSA for Δλ = 10-7 and Δλ = 

10-8, respectively, from i = 2400 
 
It is questionable whether the obstacle can be solved by 

decreasing of ρ  or that of λΔ ; however, this example shows 

that a variation in λΔ  within one order does not bring a 
satisfactory result. On the other hand, a lower value of ρ  

results in a higher gradient norm which means a numerical 
difficulties. 

There are chosen 100 iterations since one iteration takes 65 
seconds in average which is eight times more time 
consumptive then the NM, since the EGSA requires (in the 
worse case) ( ) ( )( )1111 ++=+⋅++ kllkl  spectrum 

calculations per iteration. 

C. SOMA 

Evolutions of ( )Kα  using the SOMA with settings 

10=PopSize , 3=PathLength , 21.0=Step , 6.0=PRT , 

30=M , 410−=MinDiv , 1=Rad  and 10=Rad , respectively 
are depicted in Fig. 9. Again, a higher value of Rad  enables to 
scan the space of parameters more effectively resulting in a 
faster decrease of ( )Kα . Parameters are defined in [2]. 
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Fig. 9 Evolution of α(K) using the SOMA for Rad = 1 and Rad = 

10, respectively, from i = 2400 
 

Only 30 migration rounds (iterations) are chosen since every 
step is a rather time consumptive due to a high number of 
calling qpmr function. Meanwhile NM has approximately 2 or 
3 spectrum calculations per iteration, the SOMA requires 

( )( )StepPathLengthPopSize /1round ⋅−  enumerations. An 

iteration step takes approximately 560 s here, i.e. 1 iteration 
step of SOMA lasts 70 iterations of the NM. 

 

D. Partial Summary 

Compare now best results for every of the approaches 
between each other. There are two possibilities how to cope with 
it – one can either draw a comparison for every iteration step, or 
(which is more impartial) to compare results w.r.t. the same 
calculation time. Both of the results are displayed in Fig. 10 and 
Fig. 11, respectively. Finally, minimization in time range using 
the NM, SOMA and the using the QCSA (one iteration step of 
the NM equals one iteration step of the quasi-continuous shifting 
algorithm which is a time unit) can be seen in Fig. 12. 

From the figures above it can be evident that presented 
optimization algorithms can serve for searching the local 
minimum rather then the global optimum when solving the 
spectral abscissa of TDS. Simplex edge length and radius of 
the population are the crucial optional parameters in the NM 
and the SOMA, respectively. The higher values enable to 
scour the solution space more efficiently and these options 
reduce the risk of a premature termination due to small 
simplex size (as obvious from Fig. 11 where the simplex size 
reaches 10-8 at iteration step of i = 600) or a minimal 
divergence, respectively. The EGSA seems to be a rather 
useless because of troublesome gradient calculation and 
searching the step length. Moreover, this algorithm together 
with the SOMA are much slower then the NM since many 
spectrum calculations. 

The three latter numerical approaches in comparison to the 
QCSA are useful if ( )Kα  is nonsmooth at any point; however, 

to reach such points exactly is almost impossible. 

 
Fig. 10 Evolution of α(K) using the NM (dj = 10), EGSA (Δλ = 10-7) 

and SOMA (Rad = 10) in iterations range (starting from i = 2400) 
 

 
Fig. 11 Evolution of α(K) using the NM (dj = 10), EGSA (Δλ = 10-7) 

and SOMA (Rad = 10) in the calculation time range (starting from     
i = 2400) 

 
Although the NM is the oldest algorithm from the ones 

presented here, it provides the best results together with the 
SOMA, yet it is much faster when implemented. 

The final results for the best method here, i.e. the NM 
starting from i = 2400, are the following (compared to the 
QCSA in i = 2400) 
 

T

NM

]0.513388,5.246047,161.172496

,148.615484,27.592764,9.838107,5.442878[,2400 =K
 (21) 

 

⎭
⎬
⎫

⎩
⎨
⎧

=Ω
618151,-0.860.7664,-0.-

 , 2430.675,-0.7- 0.6329,- 0.5906,-
2400  (22) 

 

⎭
⎬
⎫

⎩
⎨
⎧

±
±±

=Ω
0.9842- j0.1609,0.7946- 

j0.0369,0.6255- j0.0369,0.6255-
,2400 NM  (23) 
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Fig. 12 Evolution of α(K) using the NM (dj = 10), SOMA (Rad = 

10) and the quasi-continuous shifting algorithm in calculation time 
range (starting from i = 2400) 

 
Controller parameters set as in (21) give the control 

responses depicted in Fig. 13. Control action for 5.00 =m  is 

not unstable, yet, with an oscillatory response of a very high 
period since feedback transfer function zeros are located in the 
right-half plane and too close to the imaginary axis. The result 
is quite poor also because of the fact that system poles lie too 
close to the imaginary axis. 
 

 
 
Fig. 13 Control responses (y(t) - left, u(t)- right) for the setting as 

in (23) obtained by the NM, for m0 = 0.5 and m0 = 2 
 

E. Improved Results 

During the preparing of this paper, we try to perform a new 
test consisting in continuation of iterations, which have been 
started by the QCSA and displayed in Fig. 3. Results for the 
iteration range [ ]3520,3000∈i  can be seen in Fig. 14. 

It is clear that the improvement of the spectral abscissa 
terminates at 3305=i . The values of K and the corresponding 
spectrum (its dominant part, more precisely) in this iteration 
step read 

 

T]5617613,26247749,106523133

,8222650,10560107,640264.2,469418.2[3305 =K
 (24) 

⎭
⎬
⎫

⎩
⎨
⎧

=Ω
27345,-1.801.6745,-1.-

 , 61871.5617,-1.- 1.5056,- 1.4454,-
3305  (25) 

 

 
Fig. 14 Evolution of real parts of the rightmost roots of (16) using 

the QCSA within the iteration range [ ]3520,3000∈i  

 
The NM yields the development of ( )Kα  as in Fig. 15. 

 
Fig. 15 Evolution of α(K) using the NM for hj = 1, hj = 10 and hj = 

100, respectively, from i = 3305 
 
As can be seen from (24), values of K are very high and 

unusable in practice. However, we try to test the remaining 
algorithms starting in this local minimum, i.e. from 3305=i . 

Again, the longer the initial simplex edge is, the slower but 
much better the minimization is obtained. It is substantial that 
the local minimum from the QCSA has been improved by the 
NM. 

The EGSA gives results displayed in Fig. 16. Amazingly, 
the improvement of the spectral abscissa is much better then 
for i = 2400 (see Fig. 8 for the comparison) and, again, a new 
local minimum has been found. 

Finally, the development of ( )Kα  using the SOMA for two 

different initial population radii is shown in Fig. 17. The result 
is almost comparable with the NM, yet, the iteration process is 
much slower compared to this classical optimization method. 
This fact is clear from Fig. 18 where the best results from all 
the three methods are compared in the time range. 

To sum up, the best result with the minimal value of ( )Kα  

obtained by the NM gives the following position of the right-
most poles as in (26). 
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Fig. 16 Evolution of α(K) using the EGSA for 510−=Δ kλ , from   

i = 3305 
 

 
Fig. 17 Evolution of α(K) using the SOMA for Rad = 1 and Rad = 

10, respectively, from i = 3305 
 

 
Fig. 18 Evolution of α(K) using the NM (dj = 100), EGSA (Δλ = 10-5) 

and SOMA (Rad = 10) in the calculation time range (starting from     
i = 3305) 

 

 
 

⎭
⎬
⎫

⎩
⎨
⎧

±
±±

=Ω
.88280.1486j,-11.7203-

0.0291j,1.5048- 0.0065j,1.5048-
,3305 NM  (26) 

 
The corresponding values of K do not differ significantly 

from (24). Simulated control responses are not displayed here 
due to the numerical problems with simulation program 
(caused by high values of controller parameters). 

VI. CONCLUSION 

The study case supported by simulation verifies the usability 
of a standard shifting algorithm (QCSA) as an initial procedure 
when minimizing the spectral abscissa. However, once the 
local minimum is reached, it is convenient to utilize another, 
more sophisticated, optimization algorithm which can deal 
with a non-smooth or non-Lipshitz functions. 

We have shown that the classical Nelder-Mead algorithm 
gives very good results. Besides a significant improvement of 
the spectral abscissa, it is quite fast because of a very small 
number of spectrum evaluations. 

Self-Organizing Migration Algorithm provides comparable 
results, yet, it is much slower here. If one does not care about 
the time, this approach is a good choice as well. The usability 
of the (Extended) Gradient Sampling Algorithm is debatable. 
In the first test, it has provided fast spectral abscissa 
improvement, yet next iterations have not brought a 
significantly better evolution. The second test has given much 
better score; however, the results have not been as satisfactory 
as in for other methods. 

In the future research, we can extend the methods to neutral 
TDS, improve the controller structure design or to optimize 
control and termination parameters of presented optimization 
methods, i.e. to perform some kind of “meta-optimization”. 
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