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Abstract—In this article, a fuzzy goal programming (GP)
and method of approximation is presented for the solution
of a multiobjective linear plus linear fractional programming
problem. In the proposed approach, membership functions are
defined for each fuzzy goal and then a method of variable
change on the under- and over- deviational variables of the
membership functions associated with the fuzzy goals of the
model is introduced. Then the problem is solved efficiently
by using goal programming(GP) methodology and method
of approximation(MAP). Three numerical examples is given
for verification of the method. The examples are solved by
optimization software TORA@ 2.0 version, 2006.
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I. INTRODUCTION

Optimization is the task of finding one or more solutions
which corresponds to minimizing (or maximizing one or
more specified objectives and which satisfy all constraints
(if any). A single objective optimization problem involves a
single objective function usually results a single solution,
called an optimal solution. On the other hand, a multi-
objective optimization task considerers several conflicting
objectives simultaneously. In such cases there is usually
no single optimal solution, but a set of alternatives with
different trade - offs, called Pareto optimal solutions, or non
dominated solutions. Despite the existence of multiple Pareto
optimal solutions, in practice, usually only one of these
solutions is to be chosen. Thus compared to single objective
optimization problems, in multiobjective optimization, there
at least two equally important task: an optimization task for
finding Pareto optimal solution and a decision making task
for choosing single most preferred solution.
The main interest in fractional programming was gener-
ated by the fact that a lot of optimization problems from
engineering, natural resources and economics require the
optimization of a ratio between physical and /or economic
functions. The problems, where the objective functions ap-
pear as a sum of a linear function and a fractional function

constitute a linear plus fractional programming problem.
If we take more than one objective in this problem then
the problem is referred to multiobjective linear plus linear
fractional programming problem.

A general linear plus linear fractional programming
(LLFP) problem is defined as the following way:

Maximize F (x) = (pT x + θ) +
cT x + α

dT x + β
subject to
Ax = b (1)
x ≥ 0,

where x, c, d, p ∈ Rn , b ∈ Rm , α , β , θ ∈ R.

For some values of x, dT x + β may be equal to zero
but here we take only the case dT x + β > 0. If
we take more than one objectives in general linear plus
fractional programming problem, then the problem is known
as multiobjective linear plus linear fractional programming
problem, mathematically it can be written as:

Maximize F (x) = [F1(x), F2(x), . . . Fk(x)],

where Fi(x) = li(x) +
fi(x)
mi(x)

, (2)

x ∈ X.

and, li(x) = pT
i x + θi, fi(x) = cT

i x + αi , mi(x) =
dT

i x + βi , are real valued function on X , where X =
{x : Ax (≤, =, ≥) b, x ≥ 0, x ∈ Rn, b ∈ Rm, A =
(aij)m×n, θi, αi, βi ∈ R}, and dT

i x + βi > 0 (i =
1, 2, . . . , k)∀ x ∈ X .
Here, X is assumed to be non - empty convex bounded set
in Rn.

If an uncertain aspiration level is introduced to each of
the objectives of MOLLFP, then these fuzzy objectives are
called fuzzy goals. The Fuzzy multiobjective linear plus
linear fractional programming problem (FMOLLFP) can be
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defined as

Find X(x1, x2, .....xn) such that
Fi(x) / gi or Fi(x) ' gi ∀(i = 1, 2, . . . , k)
subject to
x ∈ X = {x ∈ Rn, Ax ≤ b, x ≥ 0 with b ∈ Rm,

A ∈ Rm×n} (3)

Fi(x) = (pT
i x + θi) +

cT
i x + αi

dT
i x + βi

where gi is the aspiration level of the ith objective Fi and / ,
' indicate fuzziness of the aspiration level. The membership
function µi(x) must be described for each fuzzy goal. A
membership function can be explained as given below:
If Fi(x) / gi, then

µi(x) =



1 if Fi(x) ≤ gi

ti−Fi(x)

ti−gi
if gi ≤ Fi(x) ≤ ti

0 if Fi(x) ≥ ti

(4)

If Fi(x) ≥ gi, then

µi(x) =



1, if Fi(x) ≥ gi

Fi(x)−ti

gi−ti
, if ti ≤ Fi(x) ≤ gi

0, if Fi(x) ≤ ti

(5)

and ti and ti are the upper tolerance limit and lower
tolerance limit, respectively, for the ith fuzzy goal.

Multiobjective linear plus linear fractional programming
(MOLLFP) are applied to different disciplines such as
transportation, problem of optimizing enterprize capital, the
production development fund and social, cultural and con-
struction fund [7]. Basically it is used for modeling real life
problems with one or more objectives when compromisation
situation occurs [10]. Multiobjective linear plus linear frac-
tional programming problem have been extensively studied
by authors and the research is based on the theoretical
background of fractional programming. As a matter of fact,
many ideas and approaches have their foundation in the
theory of fractional programming (See [1, 15]).

Teterev [10] pointed out this type of problem and he
derived optimality criteria for (LLFP) using simplex type
algorithm. Shaible [1, 2] has pointed out for LLFP that
for these problems a local maximum is not a global one
and an optimal solution is not attained at an extreme point
of polyhedron in general. Chaddha [8] presented a dual
of a maximization problem for linear plus linear fractional
programming problem under linear constraints. His approach

is based on assertion of Teterev [10] which have been
already proven to be erroneous. In [4], Hirche clarified
some deficiencies of Chaddha’s [8] proposed duality and
illustrated the fact about the behavior of the objective func-
tion. Singh, Gupta and Bhatia [5] studied multiparametric
sensitivity analysis for LLFP using the concept maximum
volume in the tolerance region. They constructed critical
regions for simultaneous and independent perturbations in
the objective function coefficients and in the right-hand -
side vector in the given problem. They derived necessary
and sufficient conditions to classify perturbation parameter
as focal and non-focal. In [6] , Gupta and Singh studied
multiparametric sensitivity analysis under perturbations in
multiple rows or columns of the constraint matrix in linear
plus linear fractional programming problem.

Recently, Jain and Lachhawani [3] have given the solution
procedure for sum of linear plus linear fractional multiobjec-
tive programming problem fuzzy under rule constraint. They
suggested the use of if - then fuzzy reasoning method to
determine the crisp functional relationship between the ob-
jective function and decision variables under the assumptions
that the denominator of the fractional part of the objective
function is non - zero on the constraint set and finally solved
the the resulting programming problem to find a pair of
optimal solution of original problem. Kheirfam [13] studied
classical sensitivity analysis, when the coefficients of the
objective function and right hand side are parameterized.
Recently Singh [14] derived optimality and duality con-
ditions for transportation with linear plus linear fractional
programming problem. He also established weak duality and
strong duality theorem for the dual model.

In this article, we propose an algorithm to the solution
of multiobjective linear plus linear fractional programming
problem (MOLLFP) using goal programming procedure. In
the Goal Programming (GP) model formulation of the prob-
lem, first the objectives are transformed in to fuzzy goals by
means of assigning an aspiration level to each of them. Then
achievement of the highest membership value (unity) to the
extent possible of each of the fuzzy goals is considered.
In the solution process, the under- and over- deviational
variables of the membership goals associated with the fuzzy
goals are introduced to transform the proposed model in
to an equivalent non - linear goal programming (NLGP)
model to solve the problem using Wolf - Frank method of
approximation programming ( MAP). Our attempt is to give
simple solution procedure for MOLLFP.

II. GOAL PROGRAMMING

Goal programming is one of the first method expressly
created for multiobjective optimization (Charnes et.al. 1955;
Charnes and Cooper, 1961[20]). It has been originally de-
veloped for MOLP problems (Ignizio, 1985).
In goal programming, the DM is asked to specify aspiration
levels gi(i = 1, 2, . . . k) for the objective functions. Then
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deviation from these aspiration levels are minimized. An
objective function jointly with an aspiration level is refereed
to as goal. For minimization problems, goals are of the form
Fi(x) ≤ gi and aspiration levels are assumed to be selected
so that they are not achievable simultaneously. After the goal
have been formed, the deviations d+

i −d−i = max[0, Fi(x)−
gi] of the objective function values are minimized.
A typical GP is expressed as follows

Minimize
k∑

i=1

|Fi(x)− gi|

subject to (6)
x ∈ X = {x ∈ Rn; Ax ≤ b, x ≥ 0}.

Where Fi is the linear function of the ith goal and gi is the
aspiration level of ith goal.
Let Fi(x) − gi = d+

i − d−i , d−i , d+
i ≥ 0. Equation (5)

can be formulated as follows

Minimize
k∑

i=1

(d+
i + d−i )

subject to
Fi(x)− d+

i + d−i − gi = 0, i = 1, 2, . . . k (7)
d+

i , d−i ≥ 0
x ∈ X = {x ∈ Rn; Ax ≤ b, x ≥ 0}.

Where d−i ≥ 0, d+
i ≥ 0 are, respectively under - and over

-deviations of ith goal.
Problem (6) has been applied to solve many real world
problems.

A. Weighted Goal Programming
In the weighted goal programming approach (Charnes and
Cooper, 1977), the weighted sum of deviation is minimized.
This means that in addition to the aspiration levels. The DM
must specify positive weights. Then we solve a problem

Minimize
k∑

i=1

wi(d+
i + d−i )

subject to
Fi(x)− d+

i + d−i ≤ gi, i = 1, 2, . . . k (8)
d+

i , d−i ≥ 0
x ∈ X = {x ∈ Rn; Ax ≤ b, x ≥ 0}.

On the other hand, in the lexicographic goal programming
approach, the DM must specify a lexicographic order order
of the goals in addition to the aspiration levels. After
lexicographic ordering, the problem with the deviations as
objective functions is solved lexicographically subject to
the constraints. It is also possible to use a combination of
the weighted and lexicographic approaches. In this case,.

several objective functions may belong to the same class
of importance in the lexicographic order. In each priority
class, a weighted sum of deviations is minimized. Let us also
mention a so called min - max goal programming approach
where maximum of deviations is minimized and meta - goal
programming ( Rodriguez Uria et.al., 2002), where different
variants of goal programming are incorporated.
Goal programming is a very widely used and popular
solution method. Goal setting is an understandable and very
easy of making decisions. The specification of the weights
or the lexicographic ordering may be more difficult.
Let us finally add that goal programming has been used
in a variety of further developments and modifications.
Among others, goal programming is related to some fuzzy
multiobjective optimization methods where fuzzy sets are
used to express degree of satisfaction from the attainments
of goals and from satisfaction of soft constraints.

B. Fuzzy Goal Programming
In fuzzy goal programming approaches, the highest degree

of membership function is 1. So, for the defined membership
function in (4) and (5), the flexible membership goals with
aspiration levels 1 can be expressed as

Fi(x)− ti

gi − ti
+ d−i − d+

i = 1

or (9)
ti − Fi(x)

ti − gi
+ d−i − d+

i = 1

Where d−i ≥ 0, d+
i ≥ 0 with d+

i .d−i = 0 are, respectively
under - and over -deviations from the aspiration levels.
In conventional GP, the under- and over-deviational variables
are included in the achievement function or minimizing them
and that depend upon the type of the objective functions to
be optimized.
In this approach, only the under - deviational variable d−k
is required to be achieve the aspired levels of the fuzzy
goals. It may be noted that any over - deviation from fuzzy
goal indicates the full achievement of the membership value.
Recently, B. B. Pal. et.al [17] proposed an efficient goal
programming (GP) method for solving Fuzzy multiobjective
linear fractional programming problems.In this paper, the
idea of B.B.Pal for FMOLFP is extended to FMOLLFP.

III. LINEAR APPROXIMATIONS OF NON - LINEAR
PROGRAMS

Algebraic procedures such as pivoting are so powerful
for manipulating linear equalities and inequalities that many
nonlinear programming algorithms replace the given prob-
lem by an approximating linear problems [2]. Separable
programming is a prime example and also one of the most
useful of these procedures. As in separable programming
these non - linear algorithms usually solve several linear
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approximations by letting the solution of the last approxi-
mation suggest a new one.
By using different approximation schemes, this strategy can
be implemented in several ways. we are restricted ourself
only Frank - Wolf Algorithm and its extension.

A. Frank - Wolf Algorithm
Let x(0) = (x0

1, x
0
2, . . . x

0
n) be any feasible solution with

linear constraints [2]:

Max F (x1, x2, . . . xn)
subject to

n∑
j=1

aijxj ≤ bi, (i = 1, 2, . . . m)

xj ≥ 0, (j = 1, 2, . . . n).

Here x(0) might be determined by Phase I of the simplex
method. This algorithm forms a linear approximation at the
point x(0) by replacing the objective function with its current
value plus a linear correction term; that is by the linear
objective

F (x(0)) +
n∑

j=1

cj(xj − x0
j )

where cj is the slope, or partial derivative of F with respect
to xj , evaluated at the point x(0). Since f(x(0)), cj , and xj

are fixed, maximizing the objective function is equivalent to
maximizing

Z =
n∑

j=1

cjxj .

This linear approximation problem is solved, giving an opti-
mal solution y = (y1, y2, . . . yn). At this point the algorithm
recognizes that, although the linear approximation problem
indicates that the objective improves steadily from x(0) to y.
Therefor, the algorithm uses a procedure to determine the
maximum value for F (x1, x2, . . . xn) along the line - seg-
ment joining x(0) to y. Letting x1 = (x1

1, x
1
2, . . . x

1
n) denote

the optimal solution of the line - segment optimization,
we repeat at x1. Continuing in this way, we determine a
sequence of points approach x1 = (x1

1, x
1
2, . . . x

1
n) any point

x∗ = (x∗1, x
∗
2, . . . x

∗
n) that these point approach in the limit

is an optimal solution to the original problem. The Frank
- Wolf algorithm is convergent computationally because it
solves linear programs with the same constraints as the
original problem.

B. MAP(Method of Approximation)[2]
The Frank - Wolf algorithm can be extended to general

nonlinear programs by making linear approximations to the
constraints as well as the objective function. When the
constraints are highly nonlinear, however, the solution to
the approximation problem can become far removed from

feasible region since the algorithm permits large moves
from any candidate solution. The Method of approxima-
tion programming (MAP) is a simple modification of this
approach that limits the size of any move. As a result, it
is sometimes referred to as a small - step procedure. Let
x(0) = (x0

1, x
0
2, . . . x

0
n) be any candidate solution to the

optimization problem:

Max F (x1, x2, . . . xn)
subject to,

gi(x1, x2, . . . xn) ≤ 0, (i = 1, 2, . . . m)

Each constraint can be linearized, using its current value
gi(x(0)) plus a linear correction term, as:

˜gi(x) = gi(x(0)) +
n∑

j=1

aij(xj − x0
j ) ≤ 0,

where aij is the partial derivative of constraint gi with
respect to variable xj evaluated at the point x(0). This
approximation is a linear inequality, which can be written as

n∑
j=1

aijxj ≤ b0
i ≡

n∑
j=1

aijx
0
j − gi(x(0).

since the terms on the right hand side are all constants. The
MAP algorithm uses these approximations, together with the
linear objective function approximation and solve the linear
programming problem:

Maximize Z =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ b0
i , (i = 1, 2, ..m), xj ≥ 0, (j = 1, 2, ..n).

We might expect then that the additional work required by
the line - segment optimization of Frank - Wolf algorithm
is not worth the slightly improved solution that it provides.
MAP operates on this premise, taking the solution to the
linear programs as the new x1. The partial derivative data
aij , bi, and cj is recalculated at x1, and the procedure
is repeated. Continuing in this manner determines points
x1, x2, . . . , xk, . . . and as in Frank - Wolf procedure any
point x∗ = (x∗1, x

∗
2, . . . , x

∗
n) that these points approach in

the limit is considered a solution.

IV. SOLUTION METHOD

We consider the multiobjective linear plus linear fractional
programming problem of the form (2).
Assume fuzzy aspiration level gi and tolerance limit (ti, ti)
for each objective function Fi, then we construct mem-
bership function for each objective using Zimmermann
Max - Min approach [16], then the problem (2) becomes
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FMOLLFP (3). The membership function µi must be de-
scribed for each fuzzy goal as equation (4) and (5).

The proposed algorithm can be explained in three steps:
Step 1: Determine x∗i = {x∗1, x∗2, ..., x∗n} for which the ith

membership function µi is to be constructed, associated with
ith objective function Fi(x) ∀ (i = 1, 2, . . . , k), where n
is the number of variable.
Step 2: The ith membership goal (8) can be written as

HiFi −Hiti + d−i − d+
i = 1, Hi =

1
gi − ti

. (10)

Substituting the expression for Fi

Hi{(pT
i x + θi)(dT

i x + βi) + (cT
i x + αi)}

+d−i (dT
i x + βi)− d+

i (dT
i + βi) (11)

= H
′

i (d
T
i x + βi),

where H
′

i = 1 + Hiti.
Similar expression for other membership goal can also be

obtained. However, for model simplification, the expression
in (10) can be considered as a general form of goal expres-
sion for any type of the stated membership goals. Using the
the method of variable change as presented by Kornbluth
and Steuer [21], the goal expression in (10) can be written
as follows: The simplified form of the expression in (10) is
obtained as

Cix
2 + Fix + D−

i −D+
i = Gi (12)

where, Gi = Hip
T
i βi + Hiαi −H

′

iβi

Ci = Hip
T
i dT

i

Fi = Hip
T
i dT

i + Hip
T
i βi + cT

i Hi − dT
i H

′

i

D−
i = d−i (dT

i x + βi)
D+

i = d+
i (dT

i x + βi)
with D−

i , D+
i ≥ 0 and D−

i .D+
i = 0,

since d−i , d+
i ≥ 0, d−i (dT

i x + βi) ≥ 0.

Step 3: Now in making decision, minimization of d−i means
D−

i

(dT
i x+βi)

, which is also a non - linear one.
It may be noted that when a membership goal is fully

achieved, d+
i = 0 and when its achievement is zero, d−i = 1

are found in the solution.
So involvement of d−i ≤ 1 in the solution leads to impose

the following constraint to the model of the problem.

D−
i

(dT
i x + βi)

≤ 1,

i.e. − dT
i x + D−

i ≤ βi. (13)

It may be pointed out that any such constraint corresponding
to d+

i does not arise in the formulation and simplest version

of GP ( i.e. minsum GP)[17] is introduced to formulate
the model of the problem under consideration, then the GP
model formulation becomes:

Minimize F̄ =
k∑

i=1

w−i D−
i

also satisfy Cix
2 + Fix + D−

i −D+
i = Gi

subject to
x ∈ X = {x ∈ Rn, Ax ≤ b, x ≥ 0 (14)
−dT

i x + D−
i ≤ βi.

D−
i , D+

i ≥ 0, i = 1, 2 . . . k

w−i =


1

gi−ti
for µi(x) in (5)

1
ti−gi

for µi(x) in (4).

Where F̄ represents the fuzzy achievement function con-
sisting of the weighted under - deviational variables, and
the numerical weights w−i ≥ 0, i = 1, 2, . . . k represent
the relative importance of achieving the aspired level of the
respective fuzzy goals subject to the constraints sets of the
decision situation. Now above non-linear G.P can be solve
easily using Wolf-Frank method of approximation (MAP)
satisfying the nonlinear constrains.

V. NUMERICAL EXAMPLES

Example 1 Consider a MOLLFP with two objective
functions:

Max{F1(x) = (−x1 − 1) +
−5x1 + 4x2

2x1 + x2 + 5
,

F2(x) = (x2 + 1) +
9x1 + 2x2

7x1 + 3x2 + 1
}

subject to
x1 − x2 ≥ 2
4x1 + 5x2 ≤ 25 (15)
x1 ≥ 5
x1, x2 ≥ 0.

It is observed that F1 < 0, F2 ≥ 0, for each x in the feasible
region.

If the fuzzy aspiration levels of the two objectives are
−7.31, and 3.21, find x in order to satisfy the following
fuzzy goals.

F1(x) ' −7.31, F2(x) ' 3.21.

The tolerance limits for the two fuzzy goals are
(−9.04, 2.21) respectively. The membership function for
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the two fuzzy goals are i.e.

µ1(x) =



1, if F1(x) ≥ −7.31

(−x1 − 1) +
−5x1 + 4x2

2x1 + x2 + 5
+ 9.04

1.73
if − 9.04 ≤ F1(x) ≤ −7.31

0, if F1(x) ≤ −9.04

(16)

µ2(x) =



1, if F2(x) ≥ 3.21

(x2 + 1) +
9x1 + 2x2

7x1 + 3x2 + 1
− 2.21

1
,

if 2.21 ≤ F2(x) ≤ 3.21

0, if F2(x) ≤ 2.21.

(17)

Then the membership goal can be expressed as

(−x1 − 1) +
−5x1 + 4x2

2x1 + x2 + 5
+ 9.04

1.73
+ (18)

d−1 − d+
1 = 1

(x2 + 1) +
9x1 + 2x2

7x1 + 3x2 + 1
− 2.21

1
+ (19)

d−2 − d+
2 = 1

where, d−i , d+
i ≥ 0, with d−i .d+

i = 0, i =
1, 2, . . . k. Following the procedure, the membership goals
are restated as

−2x2
1 − x1x2 + 2.54x1 + 10.27x2 + (20)

D−
1 −D+

2 = −31.35,

3x2
2 + 7x1x2 − 6.41x1 + 3x2 + (21)

D−
2 −D+

2 = 8.84

where
D−

1 = 1.73(2x1 + x2 + 5)d−1
D+

1 = 1.73(2x1 + x2 + 5)d+
1

D−
2 = (7x1 + 3x2 + 1)d−2

D+
2 = (7x1 + 3x2 + 1)d+

2

Now the restrictions d−1 ≤ 1 and d−2 ≤ 1 gives

where
D−

1 − 3.46x1 − 1.73x2 ≤ 8.65
D−

2 − 7x1 − 3x2 ≤ 1

Thus the final equivalent GP formulation is obtained as

Find X(x1, x2)

Min (
1

1.73
D−

1 + D−
2 )

and satisfy
−2x2

1 − x1x2 + 2.54x1 + 10.27x2 +
D−

1 −D+
2 = −31.35

3x2
2 + 7x1x2 − 6.41x1 + 3x2 + D−

2 −D+
2 = 8.84

subject to (22)
D−

1 − 3.46x1 − 1.73x2 ≤ 8.65
D−

2 − 7x1 − 3x2 ≤ 1
x1 − x2 ≥ 2
4x1 + 5x2 ≤ 25
x1 ≥ 5
x1, x2 ≥ 0.

D−
1 , D+

1 , D−
2 , D+

2 ≥ 0, with, D−
i .D+

i = 0
i = 1, 2 . . . k

Now apply Frank - Wolf method of approximation(MAP).
If we assume the initial solution is x1 = 5, x2 = 0, D−

1 =
0, D+

1 = 0, D−
2 = 0, D+

2 = 0 from the feasible region,
then the non - linear problem transformed in to linear
approximation program as follows

Find X(x1, x2)

Min (
1

1.73
D−

1 + D−
2 )

subject to (23)
−17.46x1 + 5.27x2 + D−

1 −D+
1 = −81.35

−6.41x1 + 38x2 + D−
2 −D+

2 = −72.9
D−

1 − 3.46x1 − 1.73x2 ≤ 8.65
D−

2 − 7x1 − 3x2 ≤ 1
x1 − x2 ≥ 2
4x1 + 5x2 ≤ 25
x1 ≥ 5
x1, x2 ≥ 0
D−

1 , D+
1 , D−

2 , D+
2 ≥ 0, with, D−

i .D+
i = 0

i = 1, 2 . . . k

The optimal solution of the problem (23) is at the point
x1 = 5, x2 = 1, D−

1 = 0.68, D+
1 = 0, D−

2 = 0, D+
2 =

78.85. and minimum value is 0.39. Now repeat the process
for the point x1 = 5, x2 = 1, D−

1 = 0.68, D+
1 = 0, D−

2 =
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0, D+
2 = 78.85. and the new LPP is obtained

Find X(x1, x2)

Min (
1

1.73
D−

1 + D−
2 )

subject to (24)
−18.46x1 + 5.27x2 + D−

1 −D+
1 = −86.35

0.59x1 + 44x2 + D−
2 −D+

2 = 46.84
D−

1 − 3.46x1 − 1.73x2 ≤ 8.65
D−

2 − 7x1 − 3x2 ≤ 1
x1 − x2 ≥ 2
4x1 + 5x2 ≤ 25
x1 ≥ 5
x1, x2 ≥ 0.

D−
1 , D+

1 , D−
2 , D+

2 ≥ 0, with, D−
i .D+

i = 0
i = 1, 2 . . . k

The optimal solution of the problem (24) is at the point
x1 = 5, x2 = 1, D−

1 = 0.68, D+
1 = 0, D−

2 = 0, D+
2 =

0.11. and minimum value is 0.3944. since we obtained the
same value for x1 = 5, x2 = 1. So x1 = 5, x2 = 1 is the
final solution for the problem.
The solution for the original problem is given by
x1 = 5, x2 = 1, F1 = −7.31, F2 = 3.21. The membership
function values at (5, 1) indicate that goal F1 and F2 are
satisfied 100% and 100% respectively, for the obtained
solution.

Example 2: Let us consider a MOLLFP with three
objective functions

Max {F1(x) = (−x1 − 1) +
−5x1 + 4x2

2x1 + x2 + 5
,

F2(x) = (x2 + 1) +
9x1 + 2x2

7x1 + 3x2 + 1
,

F3(x) = (x1 + 1) +
3x1 + 8x2

4x1 + 5x2 + 3
}

subject to
x1 − x2 ≥ 2
4x1 + 5x2 ≤ 25 (25)
x1 + 9x2 ≥ 9
x1 ≥ 5
x1, x2 ≥ 0.

It is observed that F1 < 0, F2 ≥ 0, F3 ≥ 0 for each x in
the feasible region.

If the fuzzy aspiration levels of three objectives are
(−7.31, 3.21, 7.54) respectively, find x in order to satisfy
the following goals:

F1(x) ' −7.31,

F2(x) ' 3.21, (26)
F3(x) ' 7.54.

The tolerance limits for the three fuzzy goals are
−8.43, 2.59, 6.72 respectively. The membership functions
for the three fuzzy goals are given by

µ1(x) =



1, if F1(x) ≥ −7.31

(−x1 − 1) +
−5x1 + 4x2

2x1 + x2 + 5
+ 8.43

1.12
,

if − 8.43 ≤ F1(x) ≤ −7.31

0, if F1(x) ≤ −8.43

µ2(x) =



1, if F2(x) ≥ 3.21

(x2 + 1) +
9x1 + 2x2

7x1 + 3x2 + 1
− 2.59

0.62
,

if 2.59 ≤ F2(x) ≤ 3.21

0, if F2(x) ≤ 2.59

µ3(x) =



1, if F3(x) ≥ 7.54

(x1 + 1) +
3x1 + 8x2

4x1 + 5x2 + 3
− 6.72

0.82
,

if 6.72 ≤ F3(x) ≤ 7.54

0, if F3(x) ≤ 6.72.

Then the membership goal can be expressed as

(−x1 − 1) +
−5x1 + 4x2

2x1 + x2 + 5
+ 9.04

1.73
(27)

+d−1 − d+
1 = 1

(x2 + 1) +
9x1 + 2x2

7x1 + 3x2 + 1
− 2.21

1
+ (28)

d−2 − d+
2 = 1

where, d−i , d+
i ≥ 0, with d−i .d+

i = 0, i = 1, 2, . . . k
Following the procedure, the membership goals are restated
as

−2x2
1 − x1x2 + 2.54x1 + 10.27x2 +

D−
1 −D+

2 = −31.35, (29)
3x2

2 + 7x1x2 − 6.41x1 + 3x2 +
D−

2 −D+
2 = 8.84 (30)
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where
D−

1 = 1.73(2x1 + x2 + 5)d−1
D+

1 = 1.73(2x1 + x2 + 5)d+
1

D−
2 = (7x1 + 3x2 + 1)d−2

D+
2 = (7x1 + 3x2 + 1)d+

2

Now the restrictions d−1 ≤ 1 and d−2 ≤ 1 gives

where
D−

1 − 3.46x1 − 1.73x2 ≤ 8.65
D−

2 − 7x1 − 3x2 ≤ 1

Thus the final equivalent GP formulation is obtained as

Find X(x1, x2)

Min (
1

1.73
D−

1 + D−
2 )

and satisfy
−2x2

1 − x1x2 + 2.54x1 + 10.27x2

+D−
1 −D+

2 = −31.35
3x2

2 + 7x1x2 − 6.41x1 + 3x2

+D−
2 −D+

2 = 8.84
subject to (31)
D−

1 − 3.46x1 − 1.73x2 ≤ 8.65
D−

2 − 7x1 − 3x2 ≤ 1
x1 − x2 ≥ 2
4x1 + 5x2 ≤ 25
x1 ≥ 5
x1, x2 ≥ 0.

The solution of the above non - linear programming problem
is given by Frank - Wolf method of approximation(MAP)

The optimal solution of the problem (22) is at the point
(5, 1) and maximum value is 2. The point (5, 1) is the
efficient solution of the given original problem in the
feasible region. The solution for the original is given by
x1 = 5, x2 = 1, F1 = −7.31, F2 = 3.21. The membership
function values at (5, 1) indicate that goal F1 and F2 are
satisfied 100% and 100% respectively, for the obtained
solution.

Example 3: Let us consider a MOLLFP with three
objective functions

Max {F1(x) = (−x1 − 1) +
−x1 + 2x2 − 5
7x1 + 3x2 + 1

,

F2(x) = (−2x2 − 1) +
2x1 − 3x2 − 5

x1 + 1
,

F3(x) = (−3x1 − 1) +
5x1 + 2x2 − 19
−5x1 + 20

}

subject to
x1 ≤ 6
x2 ≤ 6 (32)
2x1 + x2 ≤ 9
−2x1 + x2 ≤ 5
x1 − x2 ≤ 5
x1, x2 ≥ 0.

It is observed that F1 < 0, F2 < 0, F3 < 0 for each x in
the feasible region.

If the fuzzy aspiration levels of the three objectives are
−1.21, −0.17, −1.95 respectively.

F1(x) ' −1.21,

F2(x) ' −0.17, (33)
F3(x) ' −1.95.

The tolerance limits for the two fuzzy goals are
−6.28, −21, −17.2 respectively. The membership functions
for the three fuzzy goal are

µ1(x) =



1, if F1(x) ≥ −1.21

(−x1 − 1) +
−x1 + 2x2 − 5
7x1 + 3x2 + 1

+ 6.28

5.07
,

if − 6.28 ≤ F1(x) ≤ −1.21

0, if F1(x) ≤ −6.28

µ2(x) =



1, if F2(x) ≥ −0.17

(−2x2 − 1) +
2x1 − 3x2 − 5

x1 + 1
+ 21

20.83
,

if − 21 ≤ F2(x) ≤ −0.17

0, if F2(x) ≤ −21
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µ3(x) =



1, if F3(x) ≥ −1.95

(−3x1 − 1) +
5x1 + 2x2 − 19
−5x1 + 20

+ 17.2

15.25
,

if − 17.2 ≤ F3(x) ≤ −1.95

0, if F3(x) ≤ −17.2.

Then the membership goal can be expressed as

(−x1 − 1) +
−5x1 + 4x2

2x1 + x2 + 5
+ 9.04

1.73
+

d−1 − d+
1 = 1 (34)

(x2 + 1) +
9x1 + 2x2

7x1 + 3x2 + 1
− 2.21

1
+

d−2 − d+
2 = 1 (35)

where, d−i , d+
i ≥ 0, with d−i .d+

i = 0, i = 1, 2, . . . k
Following the procedure, the membership goals are restated
as

−2x2
1 − x1x2 + 2.54x1 + 10.27x2 +

D−
1 −D+

2 = −31.35, (36)
3x2

2 + 7x1x2 − 6.41x1 + 3x2 +
D−

2 −D+
2 = 8.84 (37)

where
D−

1 = 1.73(2x1 + x2 + 5)d−1
D+

1 = 1.73(2x1 + x2 + 5)d+
1

D−
2 = (7x1 + 3x2 + 1)d−2

D+
2 = (7x1 + 3x2 + 1)d+

2

Now the restrictions d−1 ≤ 1 and d−2 ≤ 1 gives

where
D−

1 − 3.46x1 − 1.73x2 ≤ 8.65
D−

2 − 7x1 − 3x2 ≤ 1

Thus the final equivalent GP formulation is obtained as

Find X(x1, x2)

Min (
1

1.73
D−

1 + D−
2 )

and satisfy
−2x2

1 − x1x2 + 2.54x1 + 10.27x2 +
7D−

1 −D+
2 = −31.35

3x2
2 + 7x1x2 − 6.41x1 + 3x2 +

D−
2 −D+

2 = 8.84
subject to (38)
D−

1 − 3.46x1 − 1.73x2 ≤ 8.65
D−

2 − 7x1 − 3x2 ≤ 1
x1 − x2 ≥ 2
4x1 + 5x2 ≤ 25
x1 ≥ 5
x1, x2 ≥ 0.

The solution of the above non - linear programming problem
is given by Frank - Wolf method of approximation(MAP)

The optimal solution of the problem (22) is at the
point (5, 1) and maximum value is 2. The point (5, 1) is
the efficient solution of the given original problem in the
feasible region. The solution for the original is given by
x1 = 5, x2 = 1, F1 = −7.31, F2 = 3.21. The membership
function values at (5, 1) indicate that goal F1 and F2 are
satisfied 100% and 100% respectively, for the obtained
solution.

VI. CONCLUSION

Various fuzzy approaches have been proposed for the
solution of multiobjective linear plus linear fractional pro-
gramming problem and most of the approaches have com-
putational burdensome. Our approach is to give simple
procedure for the solution of multiobjective linear plus linear
fractional programming problem using fuzzy set theory, goal
programming and method of approximation(MAP).
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