
 

 

  
Abstract—We propose a system of differential equations in 

order to investigate bone remodeling process based on the 
effect of vitamin D. The model is then analyzed by using 
singular perturbation technique in order to identify different 
dynamic behaviors exhibited by the model. Numerical 
simulations are also carried out to support our theoretical 
predictions. Both of theoretical and numerical results show 
that the model can exhibit a periodic behavior corresponds to 
the pulsatile serum level of vitamin D observed in the clinical 
evidence.     
 

Keywords—bone formation, bone resorption, singular 
perturbation, mathematical model, vitamin D.  

I. INTRODUCTION 

ITAMIN D is a steroid vitamin, a group of fat-soluble 
prohormones which can be obtained from exposure to 

sunlight or vitamin D supplements. The active form of vitamin 
D is calcitriol. Calcitriol is synthesized in kidneys and 
circulates as a hormone. It plays an important role in 
regulating the concentration of calcium and phosphate in the 
bloodstream and promoting the healthy growth and remodeling 
of bone [1]. Calcitriol mediates its biological effects by 
binding to the vitamin D receptor (VDR), which is principally 
located in the nuclei of target cells [2]. In bone remodeling 
process, calcitriol interacts with its VDR in osteoblast (bone 
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forming cell) resulting in the expression of RANKL which 
recognized by its corresponding receptor RANK on the 
preosteoclast. The interaction of RANKL and RANK results in 
signal transduction inducing the preosteoclast to be come a 
mature osteoclast (bone resorbing cell) [3]-[5].  
 The purposes of bone remodeling process are to regulate 
calcium homeostasis, to repair micro-damaged bones and also 
to shape and sculpture the skeleton during growth [6]-[8]. The 
process begins with the appearance of osteoclasts on the 
surface of an inactive surface of bone after that osteoclasts 
resorb bone and liberates calcium into blood. The resorption 
cavity will then be refilled by osteoblasts. If the imbalance 
between the resorption and formation of bone occurs after 
each remodeling cycle the degree of bone loss will be 
increased and that leads to osteoporosis [7]-[8]. In this paper, 
we will propose a mathematical model to describe bone 
remodeling based on the effect of vitamin D.  

II. MODEL DEVELOPMENT 

 Let us denote the serum level of vitamin D at time t by X(t), 
the number of active osteoclasts at time t by Y(t), and the 
number of active osteoblasts at time t by Z(t). We also assume 
that the high levels of osteoclast and osteoblast precursors lead 
to the high levels of active osteoclastic and osteoblastic cells, 
respectively, which result from the differentiation, and 
activation of their precursors. 

 Firstly, vitamin D plays an important role in calcium 
homeostasis. The efficiency of intestinal calcium absorption 
increases as the serum level of vitamin D increases. Vitamin D 
enlarges the mobilization of stem cells to become osteoclasts 
resulting in the increase in the release of calcium from bone 
[9]-[12]. Hence, the equation for the rate of change in serum 
level of vitamin D is then assumed to have the form 

                 1
1

1

adX
b X

dt k Y
= -

+
                              (1) 

where the first term on the right-hand side of (1) represents the 
rate of change in serum level of vitamin D which decreases 
with the increase in the number of active osteoclasts in order to 
counter balance the high level of calcium in blood resulted 
from the large number of active osteoclasts. The last term is 
the removal rate constant 1b . 1a  and 1k  are positive constants.  
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Secondly, osteoclasts are derived from the hemopoietic 
cells. The hemopoietic stem cells proliferate osteoclast 
progenitors or preosteoclast precursor cells and then 
preosteoclasts precursors differentiate into preosteoclasts. 
After that, preosteoclasts differentiate into osteoclasts [13]. 
The works of Kong et al. [14], Takahashi et al. [15] and 
Burgess et al. [16] suggested that the differentiation of 
osteoclasts requires the presence of osteoblasts and their 
precursors which respond to hormones and paracrine 
messengers necessary for the differentiation of osteoclasts. The 
responsiveness of osteoblasts and their precursors to those 
necessary factors then regulates the responsiveness of 
preosteoclasts and osteoclasts. Therefore, the dynamics of the 
active osteoclastic population can be described by the 
following equation 

                           2 3
22

2

a a XdY
YZ b Y

dt k X

æ ö+
= -ç ÷ç ÷+è ø

                       (2)  

where the first term on the right-hand side of (2) represents the  
stimulating effect of vitamin D on the reproduction of active 
osteoclasts through the interaction of vitamin D and its 
receptors on osteoblasts resulting in the expression of 
RANKL. The interaction of RANKL on osteoblasts and 
RANK on preosteoclasts leads to the differentiation of 
preosteoclasts to osteoclasts [3]-[5]. The last term is the 
removal rate constant 2b . 2 3,a a  and 2k  are positive constants. 

Finally, osteoblasts are derived from mesenchymal cells. 
The stromal stem cells proliferate osteoprogenitors or 
preosteoblast precursors and then preosteoblasts precursors 
proliferate preosteoblasts. After that, preosteoblasts 
differentiate into osteoblats [13]. There are many factors 
involving in the proliferation and differentiation of osteoblasts 
such as FGF, IGF-I, TGF-beta including vitamin D [17], [18]. 
The dynamics of the osteoblastic population can then be 
described by the following equation   

                           5
4 3

3

a XZdZ
a b Z

dt k X
= + -

+
                             (3) 

where the first term on the right-hand side of (3) represents the 
stimulating effect of many factors such as FGF, IGF-I, TGF-
beta on the proliferation and differentiation of active 
osteoblasts. The second term on the right-hand side of (3) 
represents the stimulating effect of vitamin D on the 
reproduction of active osteoblastic cells. The last term is the 
removal rate constant 3b . 4 5,a a  and 3k  are positive constants. 

III. MODEL ANALYSIS 

We assume that the dynamics of the changes in serum level 
of vitamin D is the fastest one. The osteoclastic population 
possesses the intermediate dynamics and the osteoblastic 
population has the slow dynamics. We then scale the dynamics 
of the three components and parameters of the system in term 
of small positive parameters 0 1< e <<  and 0 1< d <<  as 
follows.  

Letting 32
1 1 2 3,   ,   ,   ,   ,   ,

aa
x X y Y z Z c a c c= = = = = =

e e
 

5 34 2
4 5 1 1 2 3, , , ,

a ba b
c c d b d d= = = = =

ed ed e ed
, we are led to the 

following model equations: 

        ( )1
1

1
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= - º
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                            (4) 

        ( )2 3
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which means that during transitions, when the right sides of 
equations (4)-(6) are finite but different from zero, y&  is of the 

order e  and z&  is of the order ed . The shapes and relative 

positions of the manifolds{ }0f = ,{ }0g =  and { }0h =  

determine the shapes, directions and speeds of the solution 
trajectories. We now analyze each of the equilibrium 
manifolds in detail. 
 
The manifold { }0=f  

This manifold is given by the equation                       

                             ( )1

1 1

1 c
x A y

d k y

æ ö
= ºç ÷+è ø

                           (7)   

which is independent of the variable z and thus parallels to the 
z-axis. It intersects the ( )x,z - plane along the line  

                      1
1

1 1

c
x x

d k
= º                          (8) 

Moreover, ( )A y  is a decreasing function of y and 

( ) 0  as  A y y® ® ¥ . 

 
The manifold { }0g =                

This manifold consists of two submanifolds. One is the 
trivial manifold 0y = . The nontrivial one given by the 

equation  

               
( )

( )
2

2 2

2 3

d k x
z B x

c c x

+
= º

+
                      (9) 

this nontrivial manifold is independent of the variable y and 
thus this submanifold is parallel to the y -axis.                                             

It attains the relative minimum at the point where 

                     
2 2

2 2 3 2

3
m

c c c k
x x

c

- + +
= º                            (10) 

and                
( )2

2 2

2 3

m
m

m

d k x
z z

c c x

+
= º

+
                                   (11) 

On the other hand, the nontrivial manifold intersects the (y,z)-
plane along the line  
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                             2 2
1

2

d k
z z

c
= º                                           (12) 

Moreover, the manifold { }0f =  intersects the trivial manifold 

{ }0g =  along the line 1x x=  on the (x,z)-plane and it 

intersects the nontrivial manifold { }0g =  along the curve  

      
( )( )
( )

2

2 2

2 3

d k A y
z

c c A y

+
=

+
             (13) 

which has a relative minimum point ( ), ,m m mN x y z  where 

       1
1

1
m

m

c
y k

d x
= -            (14) 

Also, the curve { }0f g= = intersects the (x,z)-plane at the 

point U where 10,y x x= =  and 

                           
( )2

2 2 1

2
2 3 1

d k x
z z

c c x

+
= º

+
         (15) 

 
The manifold { }0h =               

This manifold is given by the equation            

         
( ) ( )4 4 3

3 5 3 3

c x c k
z C x

d c x d k

+
= º

- +
                      (16)   

which is independent of the variable y, and thus parallels to the 
y-axis. It intersects the (y,z)-plane along the line  

         4
3

3

c
z z

d
= º            (17) 

and intersects the (x,z)-plane along a curve which is asymptotic 
to the line   

            3 3
2

5 3

d k
x x

c d
= º

-
          (18) 

We note that 2 0x >  if and only if  

              3 5d c<              (19) 

We also observe that ( )C x  is an increasing function of x.  

Moreover, the trivial manifold { }0g =  intersects the manifold 

{ }0h =  along the curve  

       
( )2

2 2

2 3

d k x
z

c c x

+
=

+
  

on the (x,y)-plane and the nontrivial manifold { }0g =  

intersects the manifold { }0h =  along the line 

     
( )

4 3 4 3
3 4

3 5 3 3 3

,
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which is parallel to the y-axis, 3x  being the real solution of  

( ) ( )
( )( ) ( )

3 2
2 3 5 2 3 3 3 4

2 2 3 5 2 4 3 4 3 2 3 2 3 2 4 3 0

d d c x d d k c c x

d k d c c c c c k x d d k k c c k

- + -

+ - - - + - =
 

which exists in the positive octant and is unique provided that 

       3 42 4
2 3

2 3

c cc c
d d

k k
< <           (20) 

On the other hand, the manifold { }0h =  intersects the (x,z)-

plane along the curve ( )z C x=  which intersects the line 

1x x=  at the point ( )1 1 5,0,S x z  where  

       
( )

4 1 3 3
5

3 5 1 3 3

c x c k
z

d c x d k

+
=

- +
       (21) 

The curve { }0f g= =  intersects the curve { }0g h= =  at the 

point ( )2 3 1 5, ,S x y z  where 

        1
1 1

1 3

c
y k

d x
= -            (22) 

  
 We now identify and analyze each of the three possible 
cases as shown in Fig. 1 through Fig. 3 as follows. 
 
Case I: If e  and d  are sufficiently small and the inequalities 
(19) and (20) hold and  

     3 1mx x x< <                       (23) 

and                               3 2 5 1mz z z z z< < < <                            (24) 
where all the parametric values are given as above, then the 
manifolds are positioned as in Fig. 1 and the system of (4)-(6) 
will have a periodic solution. Here, the transitions of slow, 
intermediate and high speeds are indicated by one, two and 
three arrows, respectively. 
 In Fig. 1, without loss of generality, we start from point I 
and we assume that the position of I is as in Fig. 1 with 

{ }0f ¹ . A fast transition will bring the solution trajectory to 

point J on the manifold { }0 .f = Here, { }0g <  and a 

transition at intermediate speed will be made in the direction 
of decreasing y  until point K on the curve { }0f g= =  is 

reached. A slow transition then follows along this curve to 
some point L where the stability of submanifold will be lost. A 
jump to point M on the other stable part of { }0f g= =  

followed by a slow transition in the direction of decreasing z 
until the point N is reached since { }0h <  here. Once the point 

N is reached the stability of submanifold will be lost. A jump 
to point O on the other stable part of { }0f g= =  followed by 

a slow transition in the direction of increasing z since { }0h >  

here. Consequently, a slow transition will bring the system 
back to the point L, followed by flows along the same path 
repeatedly, resulting in the closed orbit LMNOL. Thus, limit 
cycle in the system for e  and d are sufficiently small exists. 
 The above analysis can be summarized as in the following 
theorem. 
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Fig. 1 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in the Case 1. Segments of the trajectories with 

one, two, and three arrows represent slow, intermediate, and fast transitions, respectively. 
 
Case II: In this case, the inequality (20) is violated. If e  and 
d  are sufficiently small and the inequalities (19) holds and  

         1mx x<                           (25) 

and                                           3 mz z<                                    (26) 
where all the parametric values are given as above, then the 
manifolds are positioned as in Fig. 2 and the system of (4)-(6) 
will have a stable equilibrium point.  
 In Fig. 2, without loss of generality, we start from point I 
and we assume that the position of I is as in Fig. 2 with 

{ }0f ¹ . A fast transition will bring the solution trajectory to 

point J on the manifold { }0 .f = Here, { }0g <  and a 

transition at intermediate speed will be made in the direction 
of decreasing y  until point K on the curve { }0f g= =  is 

reached followed by a slow transition in the direction of 
increasing z until the steady state 1S  where 0f g h= = =  is 

reached since { }0h >  here. Thus, the solution trajectory is 

expected in this case to tend toward this stable equilibrium 
point 1S  as time passes. 
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Case III: If e  and d  are sufficiently small and the 
inequalities (19) and (20) hold and  

     3 1mx x x< <                       (27) 

and                                      3 1mz z z< <                                    (28) 
where all the parametric values are given as above, then the 
manifolds are positioned as in Fig. 3 and the system of (4)-(6) 
will have a stable equilibrium point. 
 In Fig. 3, without loss of generality, we start from point I 
and we assume that the position of I is as in Fig. 3 with 

{ }0f ¹ . A fast transition will bring the solution trajectory to 

point J on the manifold { }0 .f = Here, { }0g <  and a 

transition at intermediate speed will be made in the direction 

of decreasing y  until point K on the curve { }0f g= =  is 

reached. A slow transition then follows along this curve to 
some point L where the stability of submanifold will be lost. A 
jump to point M on the other stable part of { }0f g= =  

followed by a slow transition in the direction of decreasing z 
until steady state 2S  where 0f g h= = =  is reached since 

{ }0h <  here. Thus, the solution trajectory is expected in this 

case to tend toward this stable equilibrium point 2S  as time 

passes. 
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Fig. 2 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in the Case 2. Segments of the 

trajectories with one, two, and three arrows represent slow, intermediate, and fast transitions, respectively. 
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Fig. 3 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in the Case 3. Segments of the 

trajectories with one, two, and three arrows represent slow, intermediate, and fast transitions, respectively. 
 

IV. NUMERICAL RESULT  

 A computer simulation of the system (4)-(6) with parametric 
values chosen to satisfy the condition in Case 1 is presented in 
Fig. 4. The solution trajectory, shown in Fig. 4a project onto 
the ( ),x y -plane, tends to a periodic solution as theoretically 

predicted. The corresponding time courses of the level of 
serum vitamin D, the number of active osteoclasts and the 
number of active osteoblasts are as shown in Fig. 4b, 4c and 
4d, respectively. 
 A computer simulation of the system (4)-(6) with parametric 
values chosen to satisfy the condition in Case 2 is presented in 
Fig. 5. The solution trajectory, shown in Fig. 5a project onto 
the ( ),x y -plane, tends to a stable equilibrium as theoretically 

predicted. The corresponding time courses of the level of 
serum vitamin D, the number of active osteoclasts and the 
number of active osteoblasts are as shown in Fig. 5b, 5c and 
5d, respectively. 
 A computer simulation of the system (4)-(6) with parametric 
values chosen to satisfy the condition in Case 3 is presented in 
Fig. 6. The solution trajectory, shown in Fig. 6a project onto 
the ( ),x y -plane, tends to a stable equilibrium as theoretically 

predicted. The corresponding time courses of the level of 
serum vitamin D, the number of active osteoclasts and the 
number of active osteoblasts are as shown in Fig. 6b, 6c and 
6d, respectively. 
 
 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 494



 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 
Fig. 4 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 1 2 30.8, 0.01, 0.9, 0.3, 0.71,  2,  2,  1,c c c c c k k k= = = = = = = =  

1 2 30.15,  0.35,  0.7,  0.9,  0.02,  (0) 0.1, (0) 2,d d d x ye d= = = = = = =  and (0) 1.z =  (a) The solution trajectory projected onto the (x,y)-plane. 

(b) The corresponding time courses of the level of serum vitamin D (x), (c) number of active osteoclastic cells (y), and (d) number of active 
osteoblastic cells (z). 
 
 
 
 
 
 
 
 
 

a) 

c) d) 

b) 
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Fig. 5 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 1 2 30.5, 0.01, 0.6, 0.3, 0.4,  2,  2,  1,c c c c c k k k= = = = = = = =  

1 2 30.1,  0.3,  0.3,  0.5,  0.02,  (0) 5, (0) 2,d d d x ye d= = = = = = =  and (0) 1.z =  (a) The solution trajectory projected onto the (x,y)-plane. (b) 

The corresponding time courses of the level of serum vitamin D (x), (c) number of active osteoclastic cells (y), and (d) number of active 
osteoblastic cells (z). 
 
 
 
 
 
 
 
 
 

a) 

c) d) 

b) 
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Fig. 6 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 1 2 30.5, 0.01, 0.6, 0.8, 0.4,  2,  2,  1,c c c c c k k k= = = = = = = =  

1 2 30.1,  0.3,  0.3,  0.5,  0.02,  (0) 5, (0) 2,d d d x ye d= = = = = = =  and (0) 1.z =  (a) The solution trajectory projected onto the (x,y)-plane. (b) 

The corresponding time courses of the level of serum vitamin D (x), (c) number of active osteoclastic cells (y), and (d) number of active 
osteoblastic cells (z). 
 
 
 
 
 
 
 
 
 

a) 

c) d) 

b) 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 497



 

 

V. CONCLUSION 

In this paper, bone remodeling process is investigated 
mathematically. We have proposed and analyzed a system 
of nonlinear differential equations accounting for the level 
of vitamin D, the number of active osteoclasts, and the 
number of active osteoblasts as in (1)-(3). The singular 
perturbation technique [19], [20] has been used to obtain the 
conditions on the system parameters for which the various 
kinds of dynamics behavior can be occurred including a 
periodic behavior in the solution of the system. Numerical 
simulations of the model are then carried out by using 
Runge-Kutta method which has been widely use to find the 
approximate solution of the differential equations [21]-[24].   
The result shows that our model can deduce the nonlinear 
dynamic behavior which closely resembles to the serum 
level of vitamin D that has been observed clinically [25], 
[26], even though the model is kept relatively simple. 
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