
 

 

  
Abstract—A system of nonlinear differential equations is 

proposed here to describe the mechanism of bone formation and 
resorption based on the effects of parathyroid hormone and 
calcitonin. Singular perturbation technique is then applied to the 
model in order to obtain the conditions on the system parameters for 
which the various kinds of dynamics behavior can be occurred. 
Computer Simulations are also carried out to support our theoretical 
predictions. Both of theoretical result and numerical result show that 
a periodic solution of the model can be expected for a certain set of 
parametric values corresponding to the pulsatile secretions of 
parathyroid hormone and calcitonin reported in clinical evidences.  
 

Keywords—bone formation, bone resorption, calcitonin, 
mathematical model, parathyroid hormone.  

I. INTRODUCTION 

STEOPOROSIS is a major bone disease characterized by 
low bone mass, the structural deterioration of bone and an 

increased risk of fracture [1], [2]. It is a bone disease where 
bone mass decreases over time resulting from the net increase 
of bone resorption over bone formation after each remodeling 
cycle occur [1]-[3]. Bone remodeling is a process that occurs 
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by the team work of two types of cells which are osteoclastic 
cells and osteoblastic cells. The process starts with the 
activation of the remodeling site followed by the resorption of 
bone by osteoclastic cells and the formation of bone by 
osteoblastic cells [4]-[6]. There are several factors involve in 
the process such as parathyroid hormone (PTH), calcitonin 
(CT), vitamin D and estrogen. Therefore, the knowledge of the 
differentiation and proliferation of osteoblasts and osteoclasts 
including the regulation of hormones which have impact on the 
process of differentiation and proliferation of osteoblasts and 
osteoclasts is needed. 
 Even though there are many attempts to develop a 
mathematical model to describe the mechanism of bone 
formation and resorption [7]-[10], none of them incorporate 
the effects of both of PTH and CT. Therefore, we will develop 
a mathematical model to describe bone remodeling process 
based on the effects of PTH and CT by modifying the model 
that has been proposed by Rattanakul et al. [8].  

II. MODEL MODIFICATION 

 Let us denote the concentration of PTH above the basal 
level in blood at time t by X(t), the concentration of CT above 
the basal level in blood at time t by Y(t), the number of active 
osteoclasts at time t by Z(t), and the number of active 
osteoblasts at time t by W(t). Assuming that the high levels of 
osteoclast and osteoblast precursors lead to the high levels of 
active osteoclastic and osteoblastic cells, respectively, which 
result from the differentiation, and activation of their 
precursors, we then propose a mathematical model of bone 
formation and resorption as follows. 

 PTH is secreted from the parathyroid gland. It is directly 
controlled by the level of calcium in blood. The decrease of 
calcium level in blood results in an increase in the secretion of 
PTH from the parathyroid grand [11]. On the other hand, 
osteoclasts resorb bone and release calcium and hence the 
more osteoclasts mean the more elevation in the serum level of 
calcium. Therefore, there is an inverse relationship between 
the number of active osteoclasts and the secretion of PTH [11]. 
The equation for the rate of PTH secretion above the basal 
level is then assumed to take the form 
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where the first term on the right-hand side of (1) represents the 
secretion rate of PTH from the parathyroid gland, while 1a  

and 1k  are positive constants. The last term on the right-hand 

side is the removal rate of PTH from the system with the 
removal rate constant 1b . 

 CT is produced by the thyroid gland [12]. In opposite to 
PTH, the secretion of CT is stimulated by elevated serum 
calcium level. CT inhibits osteoclastic activity in bone 
resorption leading to the decrease in the serum level of 
calcium [12]. Therefore, the equation for the rate of calcitonin 
secretion is then assumed to have the form 

          ( )2 3 2

dY
a a Y YZ b Y

dt
= - -                                  (2) 

where the first term on the right-hand side of (2) represents the 
secretion rate of CT from the thyroid gland. The last term is 
the removal rate constant 2b . 2a  and 3a  are positive 

constants.  
Osteoclast is bone resorbing cell. It originates from from 

hemopoietic stem cells of the monocyte/macrophage lineage 
[1]. There are several factors that regulate osteoclast formation 
and differentiation such as osteoclast differentiation factor 
(ODF) which was found to be identical to osteoprotegerin 
ligand (OPGL), TNF-related activation induces cytokine 
(TRANCE), receptor activator NF-kB ligand (RANKL) [7], 
[13]-[15]. Moreover, osteoblast is necessary for the 
differentiation and activation of osteoclast since it possesses 
RANKL which requires for the differentiation of osteoclast 
[7], [13]. On the other hand, PTH also stimulates the 
differentiation of osteoclast indirectly which requires the 
presence of osteoblasts since osteoclasts and their precursors 
do not possess PTH receptors while osteoblasts and their 
precursors possess them [7], [13], [16]. However, it has been 
reported that when the level of PTH increases further, the 
production of osteoclasts will be decreased [7]. Therefore, the 
dynamics of the active osteoclastic population can be 
described by the following equation 

                    4 5
6 32

2

a a XdZ
a Y ZW b Z

dt k X

æ ö+
= - -ç ÷+è ø

                      (3)  

where the first term on the right-hand side of (3) represents the 
stimulating effect of PTH and the inhibiting effect of CT on 
active osteoclasts reproduction [17]-[19]. The last term on the 
right-hand side is the removal rate of active osteoclasts from 
the system with the removal rate constant 3b . 4 5 6, ,a a a  and 2k  

are positive constants. 
 Osteoblast is bone forming cell. It is derived from the 
mesenchymal stem cells. There are many factors involve in the 
proliferation and differentiation of osteoblasts such as FGF, 
IGF-I, TGF-beta, including PTH [1], [7].  Moreover, PTH 
stimulates the differentiation of osteoblasts and extends their 
working life by preventing their death through a suicidal 

process called apoptosis [21], [22]. However, it has also been 
reported that PTH exerts both stimulating and inhibiting 
effects on the osteoblastic differentiation process depending on 
the differentiation stages [1]. The dynamics of the osteoblastic 
population can be described by the following equation   

                           7 8
4

3 4

a X a XWdW
b W

dt k X k X
= - -

+ +
                     (4) 

where the first term on the right-hand side of (4) represents 
the reproduction of active osteoblasts through the stimulating 
effect of PTH on osteoblastic cells, while the second term on 
the right-hand side of (4) represents the inhibiting effect of 
PTH on osteoblastic differentiation [23]. The last term is the 
removal rate of osteoblasts from the system. 7 8 3 4, , ,a a k k  and 

4b  are positive constants.  

III. SINGULAR PERTURBATION ANALYSIS 

In order to apply the singular perturbation technique to our 
model, we then assume that PTH has the fastest dynamics, CT 
has the fast dynamics. The osteoclastic population has the slow 
dynamics and the osteoblastic population has the slowest 
dynamics. Consequently, we scale the dynamics of the four 
components and parameters of the system in term of small 
positive parameters 0 1< e << , 0 1< d <<  and  0 1< h <<  as 

follows.  

Letting 32
1 1 2 3, , , , , , ,

aa
x X y Y z Z w W c a c c= = = = = = =

e e
 

5 6 7 84 2
4 5 6 7 8 1 1 2, , , , , , ,

a a a aa b
c c c c c d b d= = = = = = =

ed ed ed edh edh e

 3 4
3 4,

b b
d d= =

ed edh
, we are led to the following model 

equations: 

( )1
1

1

, , ,
cdx

d x f x y z w
dt k z

= - º
+

                          (5) 

( )( ) ( )2 3 2 , , ,
dy

c c y yz d y g x y z w
dt

= - - ºe e                         (6)     

( )4 5
6 32

2

, , ,
c c xdz

a y zw d z h x y z w
dt k x

ed ed
æ öæ ö+
ç ÷= - - ºç ÷ç ÷ç ÷+è øè ø

         (7)  

( )7 8
4

3 4

, , ,
c x c xwdw

d w k x y z w
dt k x k x

edh edh
æ ö

= - - ºç ÷+ +è ø
      (8) 

The system of (5)-(8), with the small parameters e , d  and 
h  can then be analyzed by using the geometric singular 

perturbation method.   
 
The manifold { }0=f  

This manifold is given by the equation                       

                         
( ) ( )1

1 1

c
x

d k
A z

z
=

+
º                                (9)   
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We see that this manifold is independent of y  and w . Hence,  

it is parallel to the y-axis and w-axis. It intersects the x-axis at 
the point where   

                    1
1

1 1

c
x x

d k
= º                        (10) 

Moreover, ( )A z  is an decreasing function of z and 

( ) 0  as  A z z® ® ¥ . 

 
The manifold { }0g =                

This manifold consists of two submanifolds. One is the 
trivial manifold 0y = . The nontrivial one given by the 

equation  

                  ( )2 2

3

c z d
y B z

c z

-
= º                         (11) 

This nontrivial manifold is independent of the variable x and 
w. Hence, this submanifold is parallel to the x -axis and w-
axis. It intersects the z-axis at the point where   

                         2
1

2

d
z z

c
= º                    (12) 

Moreover, ( )B z  is an increasing function of z and ( )B z  is 

asymptotic to the line   

                                      
3

1
2c

y y
c

= º                                   (13)                                              

as z ® ¥ .  
On the other hand, the manifold { }0f =  intersects the 

manifold { }0g =  along the curve  

       
( )

1

1 1

, 0
c

x y
d k z

ì üï ï= =í ý
+ï ïî þ

 

and the curve 

      
( )

1 2 2

1 1 3

,
c c z d

x y
d k z c z

ì ü-ï ï= =í ý
+ï ïî þ

 

 
The manifold { }0h =   

 This manifold consists of two sub-manifolds. One is the 
trivial manifold 0z =  while the other one is the nontrivial 
manifold 

  ( )4 5 3
2

6 2

1 c c x d
y C x,w

c wk x

æ ö+
= - ºç ÷+è ø

     (14) 

which is independent of z and hence, it is parallel to the z-axis.  
( )C x,w  attains its maximum at the points where   

2 2
4 4 5 2

5
M

c c c k
x x

c

- + +
= º          (15) 

and        ( ) ( )4 5 2 3
2

6 2 2

1
M

c c x d
y w y w

c wk x

æ ö+
= - ºç ÷+è ø

           (16) 

Note that ( ) 0My w >  if and only if  

         
( )2

3 2 2

4 5 2

d k x
w

c c x

+
>

+
            (18) 

For a fixed value of w, the nontrivial manifold ( )y C x,w=  

intersects the y-axis at the point where 0x =  and     

         ( )34
2

6 2

1 dc
y y w

c k w

æ ö
= - ºç ÷

è ø
                 (17) 

 Note that ( )2 0y w >  if and only if  

         3 2

4

d k
w

c
>               (18) 

On the other hand, for a fixed value of w, the nontrivial 
manifold ( )y C x,w=  intersects the x-axis at the point where 

0y =  and     

     
( ) ( )

( )
2

5 5 3 4 3 2
2

3

4

2

c w c w d c w d k
x x w

d

+ + -
= º       (19) 

 Note that if ( )2 0y w >  then ( )2 0x w > .  

 
Moreover, ( )y C x,w=  is an increasing function of w and for 

a fixed value of x, 4 5
2

6 2

1 c c x
y

c k x

æ ö+
® ç ÷+è ø

 as w ® ¥ . 

In addition, the manifold { }0f =  intersects the manifold 

{ }0h =  along the line  

         { }1, 0x x z= =  

and the curve 

    
( )

4 5 31
2

1 1 6 2

1
,

c c x dc
x y

d k z c wk x

ì üé ùæ ö+ï ï= = -ê úí ç ÷ ý
+ +ê úè øï ïë ûî þ

 

which attains its relative maximum at the points where  

  , ,M Mx x y y= =  and  1
1 1

1

1
M

M

c
z d k z

d x

æ ö
= - ºç ÷

è ø
 

Note that 0Mz >  if and only if 1

1 1
M

c
x

d k
< . 

Moreover, the manifold { }0f =  intersects the manifold 

{ }0g =  and the manifold { }0h =  at the point where 

     { }1, 0, 0x x y z= = = , 

     ( ) ( ){ }
1 1

, 0,S Sx x w y z z w= = = , 

and     ( ) ( ) ( ){ }
2 2 2

, ,S S Sx x w y y w z z w= = =  

where  ( )
( ) ( )

1

2

5 5 3 4 3 2

3

4

2S

c w c w d c w d k
x w

d

± + -
= ,           

             ( )
1

1

1
1 1

1

1
S

S

c
z w d k

d x

æ ö
= -ç ÷ç ÷

è ø
.  

( )
2Sy w  is a positive solution of  

  ( ) ( ) ( ) ( )3 2
1 2 3 4 0A w y A w y A w y A w+ + + =    

where    
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and ( )
2

2

2

2 3

,S
S

d
z w

c c y
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-
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S

S

c
x w

d k z
=

+
. 

 
The manifold { k = 0 }    

This manifold is given by the equation 

( ) ( ) ( )
2

7 7 4
2

8 4 8 3 4 3 4 4 4 3 4

c x c k x
w x

c d x c k d k d k x d k k

+
= º Y

+ + + + +
  (20) 

This manifold is independent of y  and z . It intersects the x-

axis at the point where 0w =  and 0x =  or 4x k= - , while it 
intersects the w-axis at the point where 0x =  and 0w = . 

Moreover, 7

8 4

c
w

c d
®

+
 as x ® ¥ . On the other hand, 

w ® ¥  as 4x x®  where 

( )
( )

( ) ( )
( )

8 3 4 3 4 4
3

8 4

2

8 3 4 3 4 4 4 3 4 8 4

8 4

2

4
      0

2

c k d k d k
x

c d

c k d k d k d k k c d

c d

- + +
º

+

+ + - +
± <

+

          (21)  

 
 We now identify and analyze each of the three possible 
cases as shown in Fig. 1 through Fig. 3 as follows. 
 
Case I: If e  and d  are sufficiently small and the inequalities 

  ( )1 20 Mx x x w< < <           (22) 

  ( )
2

0 S Mz w z< <         (23) 

    ( )2 0y w >             (24) 

      ( ) ( ) ( )
2 2 2

0 0 0S S Sx w , y w ,z w> > >     (25) 

are satisfied where all parametric values are defined as above, 
then the manifolds are positioned as in Fig. 1 and the system of 
(5)-(8) will have a periodic solution. Here, the transitions of 
slow, fast and fastest speeds are indicated by one, two and 
three arrows, respectively. 

 In Fig. 1, without loss of generality we start from point A 
and we assume that the position of A is as in Fig. 1 with 

{ }0f ¹ . A fastest transition will tend to point B on the 

manifold { }0 .f = Here, { }0g <  and a transition at fast speed 

will be made in the direction of decreasing y  until point C on 

the curve { }0f h= =  is reached. A fast transition then 

follows along this curve to some point D on the other stable 
part of { }0f h= =  followed by a fast transition in the 

direction of decreasing y until the point E is reached since 

{ }0g <  here. Once the point E is reached the stability of 

submanifold will be lost. A jump to point F on the other stable 
part of { }0f h= =  followed by a fast transition in the 

direction of increasing y since { }0g >  here. Once the point G 

is reached the stability of submanifold will be lost. A jump to 
point H on the other stable part of { }0f h= = . Consequently, 

a fast transition will bring the system back to the point E, 
followed by flows along the same path repeatedly, resulting in 
the closed orbit EFGHE. Thus, limit cycle in the system for 

,e d  and h  are sufficiently small exists.  

 
Case II: If e  and d  are sufficiently small and the inequalities  

  ( )1 20 Mx x x w< < <           (26) 

  ( )
2

0 M Sz z w< <         (27) 

    ( )2 0y w >             (28) 

      ( ) ( ) ( )
2 2 2

0 0 0S S Sx w , y w ,z w> > >     (29) 

are satisfied where all the parametric values are given as 
above, then the manifolds are positioned as in Fig. 2 and the 
system of (5)-(8) will have a stable equilibrium point.  

 In Fig. 2, without loss of generality we start from point A 
and we assume that the position of A is as in Fig. 2 with 

{ }0f ¹ . A fastest transition will tend to point B on the 

manifold { }0 .f = Here, { }0g <  and a transition at fast speed 

will be made in the direction of decreasing y  until point C on 

the curve { }0f h= =  is reached. A fast transition then 

follows along this curve to some point D on the other stable 
part of { }0f h= =  followed by a fast transition in the 

direction of decreasing y until the point E is reached since 

{ }0g <  here. Once the point E is reached the stability of 

submanifold will be lost. A jump to point F on the other stable 
part of { }0f h= =  followed by a fast transition in the 

direction of increasing y until the steady state 2S  where 

0f g h= = =  is reached since { }0g >  here. Thus, the 

solution trajectory is expected in this case to tend toward this 
stable equilibrium point 2S  as time passes. 

 
Case III: If e  and d  are sufficiently small and the 
inequalities  

  ( )2 10 Mx x w x< < <           (30) 

  ( )
2

0 M Sz z w< <         (31) 

    ( )2 0y w >             (32) 

      ( ) ( ) ( )
2 2 2

0 0 0S S Sx w , y w ,z w> > >     (33) 
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are satisfied where all the parametric values are given as 
above, then the manifolds are positioned as in Fig. 3 and the 
system of (5)-(8) will have a stable equilibrium point.  

 In Fig. 3, without loss of generality we start from point A 
and we assume that the position of A is as in Fig. 3 with 

{ }0f ¹ . A fastest transition will tend to point B on the 

manifold { }0 .f = Here, { }0g <  and a transition at fast speed 

will be made in the direction of decreasing y  until point C on 

the curve { }0f g= =  is reached. A slow transition then 

follows along this curve in the direction of increasing z until 
the steady state 1S  where 0f g h= = =  is reached since 

{ }0h >  here. Thus, the solution trajectory is expected in this 

case to tend toward this stable equilibrium point 1S  as time 

passes. 
 

0f =

0h =

0f h= =

0f g= =

0f g= =

0f h= =

1x

Mx

( )2x w

0

( )2y w

( )My w

( ), ,M M Mx y z

 
 
 
Fig. 1 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in the case 1. Segments of the trajectories with 

one, two, and three arrows represent slow, fast, and fastest transitions, respectively. 
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0h =

0f h= =

0f g= =
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0f h= =

1x

Mx

( )2x w
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( )2y w

( )My w

( ), ,M M Mx y z
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Fig. 2 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in the case 2. Segments of the trajectories with 

one, two, and three arrows represent slow, intermediate, and fast transitions, respectively. 
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0h =

0f h= =

0f g= =

0f g= =

0f h= =

1x

Mx

( )2x w

0

( )2y w

( )My w

( ), ,M M Mx y z

2S

1S

 
 
Fig. 3 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in the case 3. Segments of the trajectories with 

one, two, and three arrows represent slow, intermediate, and fast transitions, respectively. 
 

IV. NUMERICAL RESULTS 

 A computer simulation of the system (5)-(8) is presented 
in Fig. 4, with parametric values chosen to satisfy the 
condition in Case 1. The solution trajectory, shown in Fig. 
4(a) project onto the ( ),x y -plane, tends to a limit cycle as 

theoretically predicted. The corresponding time courses of 

the concentration of parathyroid hormone and calcitonin 
above the basal levels are as shown in Fig. 4(b) and 4(c), 
respectively. 
 A computer simulation of the system (5)-(8) is presented 
in Fig. 5, with parametric values chosen to satisfy the 
condition in Case 2. The solution trajectory, shown in Fig. 
5(a) project onto the ( ),x y -plane, tends to a limit cycle as 
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theoretically predicted. The corresponding time courses of 
the concentration of parathyroid hormone and calcitonin 
above the basal levels are as shown in Fig. 5(b) and 5(c), 
respectively. 
 A computer simulation of the system (5)-(8) is presented 
in Fig. 6, with parametric values chosen to satisfy the 
condition in Case 3. The solution trajectory, shown in Fig. 
6(a) project onto the ( ),x y -plane, tends to a limit cycle as 

theoretically predicted. The corresponding time courses of 
the concentration of parathyroid hormone and calcitonin 
above the basal levels are as shown in Fig. 6(b) and 6(c), 
respectively. 
 
     (a) 
 
 
 
 
 
                                               
 
 
 
 
 
 
     (b) 
 
 
 
 
 
 
         
 
 
 
 
 
 
    (c)                     
 
 
 
 
 
 
 

 
 
 
 

Fig. 4 A computer simulation of the model systems (5)-(8) with  

2 3 4 = 0.9,   = 0.5,   = 0.3,   = 0.3,   = 0.3,   = 0.1,   = 0.4,1c c c ce d h  

5 6 7 8 1 2 3 = 0.9,  = 0.3,  = 0.5,  = 0.2,  = 0.5,  = 0.03,  = 0.25,c c c c d d d

( ) ( )4 1 2 3 40.2, 0.4, 0.6, 0.5, 0.03, 0 0.5, 0 0.01,d k k k k x y= = = = = = =

(0)=0.05z and (0)=3.5.w (a) The solution trajectory projected onto 
the (x,y)-plane. (b) The corresponding time courses of PTH (x), 
and (c)  CT level (y). 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 A computer simulation of the model systems (5)-(8) with  

2 3 4 = 0.4,   = 0.5,   = 0.3,   = 0.1,   = 0.5,   = 0.1,   = 0.2,1c c c ce d h  

5 6 7 8 1 2 3 = 0.9,  = 0.5,  = 0.7,  = 0.5,  = 0.15,  = 0.8,  = 0.4,c c c c d d d

( ) ( )4 1 2 3 40.3, 0.4, 0.4, 0.1, 0.1, 0 0.5, 0 1.5,d k k k k x y= = = = = = =

(0)=0.05z and (0)=0.5.w (a) The solution trajectory projected onto 
the (x,y)-plane. (b) The corresponding time courses of PTH (x), 
and (c)  CT level (y). 
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Fig. 6 A computer simulation of the model systems (5)-(8) with  

2 3 4 = 0.7,   = 0.7,   = 0.3,   = 0.1,   = 0.05,   = 0.1,   = 0.1,1c c c ce d h

5 6 7 8 1 2 3 = 0.03,  = 0.2,  = 0.2,  = 0.1,  = 0.3,  = 0.5,  = 0.1,c c c c d d d

( ) ( )4 1 2 3 40.3, 0.9, 0.1, 0.5, 0.1, 0 0.5, 0 0.01,d k k k k x y= = = = = = =

(0)=0.05z and (0)=0.5.w (a) The solution trajectory projected onto 
the (x,y)-plane. (b) The corresponding time courses of PTH (x), 
and (c)  CT level (y). 

V. CONCLUSION 

In this paper, bone formation and resorption process is 
investigated mathematically. We have modified and 
analyzed a system of nonlinear differential equations 
accounting for the concentration of PTH above the basal 
level, the concentration of CT above the basal level, the 
number of active osteoclasts, and the number of active 
osteoblasts as in (1)-(4). Singular perturbation technique 
[24], [25] is then applied to our model to obtain the 
conditions on the system parameters for which the various 
kinds of dynamics behavior can be occurred including a 
periodic behavior in the solution of the system. Numerical 
simulations of the model are then carried out by using 
Runge-Kutta method which has been widely used to find the 
approximate solution of the differential equations [26]-[29].   
The result shows that our model can deduce the nonlinear 
dynamic behavior which closely resembles to the pulsatile 
secretion patterns of PTH and CT observed in the clinical 
data [30], even though the model is kept relatively simple. 
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