
 

 

  
Abstract—We modify a mathematical model of bone 

remodeling process to study the effect of time delay 
observed clinically in the process. We then utilize the Hopf 
bifurcation theorem to investigate the possibility of the 
occurrence of periodic behavior exhibited by our model. 
Numerical simulation is also carried out to support our 
theoretical results. Theoretical and numerical results 
indicate that the periodic behavior observed clinically in the 
pulsatile secretion of parathyroid hormone can be expected 
in our model.  
 

Keywords—bone remodeling process, osteoblast, osteoclast, 
parathyroid hormone, time delay.  

I. INTRODUCTION 

 
STEOPOROSIS is known as a major health disorder of 

bone remodeling [1]. It can be occurred in both men and 
women especially in postmenopausal women [1], [2]. It is a 
bone disease resulted from the net increase of bone 
resorption over bone formation in bone remodeling process 
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[1], [2]. In osteoporosis, the overall density of the skeleton 
decreases with thinning of the trabeculae and a loss of 
interconnections, as a result bones become brittle and 
fracture easily [3]. Bone remodeling is a continuous cycle of 
destruction and renewal of bone carried out by teams of 
bone resorbing cells called osteoclasts and bone forming 
cells called osteoblasts [1]. The process starts with the 
appearance of osteoclasts on a previously inactive surface of 
bone and then, they excavate a lacuna on the surface of 
cancellous bone or resorption tunnel in cortical bone. After 
that osteoclasts are then replaced by osteoblasts and finally, 
osteoblasts refill the resorption cavity. After osteoblasts 
have laid down their protein-based matrix, known as 
osteoid, they bury themselves in bony matrix and become 
osteocytes or resting osteoblasts [4]. Hence, the rate of bone 
resorption can be determined by the number of osteoclasts 
while the rate of bone deposition can be determined by the 
number of osteoblasts, the balance between the number and 
activity of osteoblasts and of osteoclasts determines whether 
net bone deposition or net bone resorption occurs.  

Many researchers proposed mathematical models to 
describe bone remodeling process [5]-[8] but only one of 
them [6] incorporates the effect of time delay observed 
clinically in [1], [6]. However, the model that proposed in 
[6] did not incorporate the effects of parathyroid and 
osteoblasts on the osteoclastic differentiation. Therefore, in 
this paper, we then investigate the effect of time delay in 
bone remodeling process by modifying the model that has 
been proposed by Rattanakul et al. [5].  

II. MODEL MODIFICATION 

 We now modify the model proposed by Rattanakul et al. 
[5] to incorporate the effect of time delay in bone 
remodeling process as follows. Let us denote the level of 
PTH above the basal level in blood at time t by X(t), the 
number of active osteoclasts at time t by Y(t), and the 
number of active osteoblasts at time t by Z(t). At first, we 
assume that the high levels of osteoclast and osteoblast 
precursors lead to the high levels of active osteoclastic and 
osteoblastic cells, respectively, which result from the 
differentiation, and activation of their precursors. 
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 PTH is secreted from the parathyroid gland. It is 
principally controlled by the level of calcium in blood. 
Since the more osteoclasts means the more calcium releases 
from bone into blood, therefore, in order to counter balance 
the high level of calcium in blood, the secretion rate of PTH 
from the parathyroid gland will be decreased [10], [11]. 
However, the secretion rate of PTH was observed to be 
always above the basal level. They also observed that there 
is a linear relationship between the rate of PTH elimination 
from the blood plasma and the rate of cellular 
production/secretion. The equation for the rate of PTH 
secretion above the basal level is then assumed to take the 
form 

        1
1

1 2

udX
v X

dT w w Y
= -

+
          (1) 

where the first term on the right-hand side of (1) represents 
the secretion rate of PTH from the parathyroid gland which 
decreases with the increase in the number of active 
osteoclastic cells, while 1 1,u w  and 2w  are positive 

constants. The last term on the right-hand side is the 
removal rate of PTH from the system at the rate, which is 
proportional to its current level with the removal rate 
constant 1v . 

Osteoclasts are derived from the hemopoietic cells. The 
hemopoietic stem cells proliferate osteoclast progenitors or 
preosteoclast precursor cells and then preosteoclasts 
precursors differentiate into preosteoclasts. After that, 
preosteoclasts differentiate into osteoclasts [9]. The works 
of Kong et al. [12], Takahashi et al. [13] and Burgess et al. 
[14] suggested that the differentiation of osteoclasts requires 
the presence of osteoblasts and their precursors which 
respond to hormones and paracrine messengers necessary 
for the differentiation of osteoclasts. The responsiveness of 
osteoblasts and their precursors to those necessary factors 
then regulates the responsiveness of preosteoclasts and 
osteoclasts. It has been observed clinically that there is a 
time delay in the differentiation of osteoclasts [6], [15]. The 
proliferation and differentiation of osteoclasts are stimulated 
indirectly by PTH through the activation of osteoblasts 
since osteoclasts and their precursors do not possess PTH 
receptors while osteoblasts and their precursors possess 
those [6], [16], [17]. However, it has been observed that 
when the level of PTH increases further, the production of 
osteoclasts will be decreased [6]. Therefore, the dynamics 
of the active osteoclastic population can be described by the 
following equation 

               ( ) ( )2

2
2

3 4

u XdY
Y t Z t v Y

dT w w X
t t

æ ö
= - - -ç ÷ç ÷+è ø

       (2)  

where the first term on the right-hand side of (2) represents 
the stimulating effect of PTH on the reproduction of active 
osteoclasts through the osteoclastic differentiation process 
which requires the presence of osteoblasts and bone marrow 

stromal cells [12]-[14]. The last term on the right-hand side 
is the removal rate of active osteoclasts from the system 
with the removal rate constant 2v . 2 3,u w  and 4w  are 

positive constants. 
 Osteoblasts are derived from the mesenchymal stem cells. 
The stromal stem cells proliferate osteoprogenitors or 
preosteoblast precursors and then preosteoblasts precursors 
proliferate preosteoblasts. After that, preosteoblasts 
differentiate into osteoblats and then osteoblasts become 
osteocytes [9]. There are several factors involve in the 
proliferation and differentiation of osteoblasts such as FGF, 
IGF-I, TGF-beta and PTH [18]. In addition, it has been 
observed clinically that there is a time delay in the 
differentiation of osteoblasts [6], [15]. On the other hand, 
PTH works by increasing the number of osteoblasts and by 
extending their working life by preventing their death 
through a suicidal process called apoptosis [19], [20]. 
However, it has been clinically observed that PTH has both 
stimulating and inhibiting effects on the osteoblastic 
differentiation process [1]. The dynamics of the osteoblastic 
population can be described by the following equation   

                ( )4
3 3

5 6

u XdZ
u X Z t v Z

dT w w X
t

æ ö
= - - -ç ÷+è ø

             (3) 

where the first term on the right-hand side of (3) represents 
the reproduction of active osteoblasts through the 
stimulating effect of PTH on osteoblastic cells, while the 
second term on the right-hand side of (3) accounts for the 
inhibition of osteoblastic differentiation due to PTH as 
observed clinically in [21]. The last term is the removal rate 
of osteoblasts from the system with the removal rate 
constant 3.v  3 4 5, ,u u w  and 6w  are positive constants. 

III. MODEL ANALYSIS 

In order to investigate the possibility of periodic 

dynamics in our system of (1)-(3), we let 
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the system (1)-(3) can then be written as follows 
 

                1
1

1

adP
d P

dt k C
= -

+
                                             (4) 

                 ( ) ( )2

2
2

2

a PdC
B t C t d C

dt k P
t t

æ ö
= - - -ç ÷ç ÷+è ø

           (5) 

                 ( )4
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              (6) 
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We now assume that ( ), ,S S SP C B  is a non washout steady 

state of the system (4)-(6). Letting Sx P P= - , Sy C C= - , 

Sz B B= - , we will be led to the following linearized 

system of (4)-(6)  
 

                                   S

x x

y J y

z z

æ ö æ ö
ç ÷ ç ÷=ç ÷ ç ÷
ç ÷ ç ÷
è ø è ø

&
&
&

            (7) 

 

where  SJ  is the corresponding Jacobian matrix evaluated 

at ( ), ,S S SP C B , namely  
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    (8) 

 
For simplicity, we introduce new parameters by letting 
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d GH GI GJ

e EF

= - -

=

= -

= - + -

=

 

 
 
where 

      

( )
( )

( )

1

3

2
2 21

22
1 2

1 2

1

3

3 3

3

3 3

3

S

S

S S SS

S S

S S

S S

S

S

S S

D d

a P
E

B

a k P B Cd P
F

k C k P

d P d C
G

k C B

H a

a k
I

k P

d k B
J

k P P

= -

-
=

æ ö-æ ö- ç ÷= ç ÷ç ÷+è ø +è ø

æ öæ ö-
= ç ÷ç ÷+è øè ø

=

=
+

=
+

 

 

Then, the characteristic equation of  SJ  can be written as 

 

           ( ) ( ) ( )3 2 2 0F a b d c e e ltl l l l l -º + + + + + =      (9) 

 
According to the Hopf bifurcation theory, for a periodic 

solution to exist, it is necessary that (9) has a pair of purely 
imaginary complex roots il w= ±  for some value of t . In 
order that such a pair can be found, one must have 

( ) 0F iw = , that is, 

    

 ( ) ( ) ( ) ( )( ) ( )3 2 2 0ii a i b i d c i e e w tw w w w -+ + + + + =     (10) 

 
Equating real and imaginary parts on the left of (10) to 

zero, we obtain the following equations: 
 
                  ( ) ( )2 cos 2 sin 2a d e cw wt w wt- = +          (11) 

                  ( ) ( )3 cos 2 sin 2b c ew w w wt wt- = -           (12) 

 
By squaring both sides of (11) and (12), and then adding, 

we obtain 
 

( ) ( ) ( ) ( )6 2 4 2 2 2 2 22 2 0a b b ad c d ef w w w wº + - + - - + - =

            (13) 
Letting  2b w= , (13) can be written as 

 
                    ( ) 3 2 0U V Ws b b b bº + + + =            (14) 

 
where 2 2 2 2 22 , 2 ,U a b V b ad c W d e= - = - - = - . 

Hence, (9) will have a pair of complex solutions, 
il w= ±  provided that (14) has a positive real solution 
2 0b w= > . 

According to the work of Ruan and Wei [22], for a 
polynomial in the form of (14), the following lemmas are 
obtained and so we state them without proofs. 

 
Lemma 1 If 0W < , then (14) has at least one positive root. 
 
Lemma 2 If 0W ³ , then the necessary condition for (14)  

to have a positive real root is that 2 3 0.U VQ º - >  
 
Lemma 3 If  
                             0W ³   and    0Q ³           (15) 
 
then (14) has a positive root if and only if 
  
                             1 0b >   and    ( )1 0s b £                    (16) 

 

where  1 3
U

b
- + Q

º . 
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Therefore, by the above lemmas, we assume that either  
0W <  or (15) and (16) hold so that (14) has positive roots. 

Without loss of generality, we assume that it has three 
positive roots denoted 1b , 2b  and 3b . Then, (13) has three 

positive roots 
 

                                   ,    1,2,3.k k kw b= =  

 
Now, let 0 0t >  be the smallest of such t  for which¸ 

.il w= ±  Substituting kw  into (11)-(12) and solving for t , 

one obtains 
 

( ) ( ) ( ) ( )3

2 2 2

1 21
arcsin

2
j k k

k
k kk

ac e be cd j

c e

w w p
t

w ww
æ ö- + - -

= +ç ÷ç ÷+è ø
 

         (17) 
where 1, 2,3,k =  and 1,2,...j =    

 
Theorem 1 Suppose that 
 
        0,  0a d e> + >       and      ( ) ( )a b c d e+ > +          (18) 

 
(a) If  0W ³  and 0Q < , then all roots of (9) have nonzero 
real parts for all 0.t ³  
 
(b) If either 
                                0W <           (19) 

or      10,  0, 0W b³ Q ³ >    and    ( )1 0s b £          (20) 

then all roots of (9) have negative real parts when 

[ )00, ,t tÎ  where 

                            ( ) ( ){ }0 1 3, 1
min , 0j j

k kk j
t t t

£ £ ³
= >           (21) 

with ( )j
kt  defined in (17). 

 
Proof 
(a) By contradiction, if (9) has a root with zero real part for 
some 0t ³  which implies that (14) has a positive real root. 
By Lemma 2, the necessary condition of this is that 0Q ³  
which contradicts the fact that 0Q < . Therefore, all roots of 
(9) have nonzero real parts for all 0t ³ . 
 
(b) For 0t = , equation (9) is reduced to 
 
                     ( ) ( )3 2 0a b c d el l l+ + + + + =          (22) 

 
Since the conditions in (18) hold, the Routh-Hurwitz 
criterion then implies that all roots of (9) have negative real 
parts and hence, all roots¸ ( )l t  of (9) have negative real 

parts at the point 0t = . From the continuity of  ( )l t , all 

roots of (9) will have negative real parts for values of t  in 
some open interval containing 0t = . Therefore, all roots of 

(9) have negative real parts for positive values of [ )0, ct tÎ  

for some 0.ct >  

However, ct  is defined by (21) to be the minimum of all 

the positive ( )j
kt t=  where ( )j

kt  is defined as in (17). Hence, 

0t  is the minimum of such positive t 's for which the real 

parts of some roots of (9) vanish, provided that (19) or (20) 
holds. Thus, 0ct t= , which completes the proof. 

Theorem 1 implies that if either (19) or (20) are satisfied 
and (18) holds, the steady state ( ), ,S S SP C B  of our system 

of (4)-(6) is stable for some values of [ )00,t tÎ . At 0t t= , 

( )( )Re 0l t =  by the definition of  0t  and hence the 

stability of the steady state ( ), ,S S SP C B  is lost at 0t t= . In 

order for a Hopf bifurcation to occur, and hence a periodic 
solution of our system of (4)-(6) may be expected, we still 
need to show that  

                              
( )( )

( )
0

Re
0

d

d
t t

l t

t
=

¹  

which is done in the next theorem. 
 
Theorem 2 Suppose that conditions (19) or (20) in 
Theorem 1 hold, then il w= ±  is a pair of purely imaginary 
roots of (9). Moreover, 
 

                              
( )( )

( )
0

Re
0

d

d
t t

l t

t
=

¹          (23) 

provided that 
                                      ( )0 0s b¢ ¹           (24) 

where  
0

2
0 0 0,  .k t tb w w w == =  

 
Proof 
The first part of this theorem is an immediate consequence 
of Theorem 1 and the definition of 0t . In order to prove that 

( )( )
( )

0

Re
0

d

d
t t

l t

t
=

¹ , let us consider (9), 

  
          ( ) ( )3 2 2 0F a b d c e e ltl l l l l -= + + + + + =  

 
Then, 
 

        

( ) ( )( )

( )

2 2

2

3 2 2

              2

          0

dF d
a b c e e

d d

c e e
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l l
l l l t

t t

l l

-

-

= + + - +

- +
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and hence,  
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3 2
22
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+ +æ ö = - +ç ÷ ++è ø
 

Since ( ) ( )2 3 2c e e a b dltl l l l-+ = - + + + , then 
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At 0 0,  =it t l w=  and thus, 
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Therefore, 
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4 2 2 21
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(13) implies that 
 

           ( ) ( )6 2 4 2 2 2 2 2 2
0 0 0 02 2a b b ad d c ew w w w+ - + - + = +

 
then, 
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Hence, 
0

1

Re 0
d
d

t t

l
t

-

=

æ ö ¹ç ÷
è ø

 and the proof is complete. We 

thus have the following result. 
 
Theorem 3 If either (19) or (20) holds, then a periodic 
solution occurs in our model equations (4)-(6) for a positive 
time delay 0t t=  given by (21) provided that (19) and (24) 

are satisfied.  

IV. NUMERICAL INVESTIGATIONS 

 A computer simulation of the system (4)-(6) is presented 
in Fig. 1, with parametric values chosen to satisfy the 
condition in Theorem 3. The corresponding time courses of 
the PTH concentration, the number of active osteoclasts and 

the number of active osteoblasts are as shown in Fig. 1a, 
Fig. 1b and 1c, respectively, showing a periodic behavior as 
theoretically predicted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 A computer simulation of the model systems (4)-(6) with 

1 2 3 4 1 20.05,    0.675,    0.01,   0.005,   0.1,   0.5,a a a a k k= = = = = =

3 1 2 30.025,  0.1,   0.2,  0.2,  10,   (0) 2,  (0) 1,k d d d x yt= = = = = = =

(0) 1z = . (a) The corresponding time courses of PTH (x) (b) the  
number of active osteoclastic cells (y), and (c)  the number of 
active osteoblastic cells (z), showing a periodic behavior exhibited 
by our model. 
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b) 
c) 

a) 

 A computer simulation of the system (4)-(6) is presented 
in Fig. 2. The corresponding time courses of the PTH 
concentration, the number of active osteoclasts and the 
number of active osteoblasts are as shown in Fig. 2a, Fig. 2b 

and 2c, respectively, showing that the solution tends to a 
stable equilibrium. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 A computer simulation of the model systems (4)-(6) with 1 2 3 4 1 2 30.05,  0.8,   0.01,  0.007,  0.01,  0.05,  0.01,a a a a k k k= = = = = = =   

1 2 30.1,   0.3,   0.01,  10,   (0) 2,  (0) 1,d d d x yt= = = = = = (0) 1z = . (a) The corresponding time courses of PTH (x) (b) the  number of active 

osteoclastic cells (y), and (c)  the number of active osteoblastic cells (z), showing that the solution tends toward a stable equilibrium. 
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a) 

b) 

 A computer simulation of the system (4)-(6) is presented 
in Fig. 3. The corresponding time courses of the PTH 
concentration, the number of active osteoclasts and the 

number of active osteoblasts are as shown in Fig. 3a and 
Fig. 3b, respectively, showing the irregular patterns 
exhibited by our model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 A computer simulation of the model systems (4)-(6) with 1 2 3 4 1 20.09,  0.08375,  0.01125,  0.125, 0.087, 1.5,a a a a k k= = = = = =  

3 1 2 30.025,   0.15,   0.034375,   0.0125,  1,  (0) 2,k d d d xt= = = = = = (0) 1,  (0) 1y z= = . (a) The corresponding time courses of PTH (x) and (b) 

the  number of active osteoclastic cells (y), showing the irregular patterns exhibited by our model. 
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V. CONCLUSION 

In this paper, we modified the model proposed by 
Rattanakul et al. [5] to incorporate the time delay which has 
been observed in the clinical evidences [6], [15]. Hopf 
bifurcation theorem [23]-[28] is then utilized to obtain the 
conditions on the system parameters for which a periodic 
behavior observed in the pulsatile secretion of PTH [29] 
exists.  Computer simulations of the model are then carried 
out by using Runge-Kutta method [30]-[33]. Both of 
theoretical and numerical results show that the periodic 
behavior can be exhibited by our model which closely 
resembles to the serum level of PTH that has been observed 
clinically in [29]. Moreover, we also carried out a numerical 
simulation of the model to investigate the possibility that the 
irregular pattern observed in the pulsatile secretion of PTH 
can be occurred. The result shows that our model can 
exhibit an irregular pattern corresponding to the pulsatile 
secretion of PTH observed clinically in [34], [35], even 
though the model is kept relatively simple. 
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