
 

 

  

 

Abstract —It is very essential to detect the autocorrelation 

problem due to its responsibility for ruining the important properties 

of Ordinary Least Squares (OLS) estimates. The Breusch-Godfrey 

test is the most commonly used method for autocorrelation detection. 

However, not many statistics practitioners aware that this test is 

easily affected by high leverage points. In this paper, we proposed a 

new robust Breusch-Godfrey test which is resistant to the high 

leverage points. The results of the study signify that the robustified 

Breusch-Godfrey test is very powerful in the detection of 

autocorrelation problem with and without the presence of high 

leverage points. 

   

 

 Keywords — Autocorrelation, High Leverage Points, Robust 

Breusch-Godfrey Test. 

 

I. INTRODUCTION 

HE Ordinary Least Squares (OLS) method is often used 

to estimate the parameters of linear regression model 

because of tradition and ease of computation. The OLS 

estimates have an optimum properties if all the underlying 

model assumptions are met. In practice, practitioners do not 

check the underlying assumptions especially the assumptions 

of random and uncorrelated errors. When errors are correlated 

with the previous errors such that 0),( ≠ji uuE  for ji ≠ , we 

say that errors are autocorrelated.  

Autocorrelation violates the important properties of the 

OLS (see [25]). The OLS estimates become less efficient 

when the autocorrelation problems exist. Hence, the detection 

of autocorrelation is very important because the consequences 

of autocorrelation problem lead to misleading conclusion 

about the statistical significance of the estimated regression 

coefficients. (see [8], [18]). 

There are quite a number of written articles related to  

autocorrelation testing procedures (Breusch [2], Durbin and 

Watson [3], Geary [6], Godfrey [7], Hosking [11] and [12]). 

Among them, the Breusch-Godfrey (BG) is the most widely 

used test to detect the presence of autocorrelation. We suspect 
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that this test will be affected by high leverage point since this 

test is based on the OLS which is known to be easily affected 

by outliers. High leverage point which is an outlying 

observation in the X direction have an unduly effect on the 

OLS estimates (see [4], [5],[9],[15]-[17], [20]-[22]).  

In this paper, we propose a robust Breusch-Godfrey test 

which is not much affected by outliers for the detection of 

autocorrelation problem in multiple linear regression. The 

proposed test incorporates the high efficient and high 

breakdown point MM-estimator (Yohai [24]) in the Breusch-

Godfrey procedure. We call this new test as the Modified 

Breusch-Godfrey test (MBG). The performances of the MBG 

and BG tests are investigated by using numerical examples 

and simulation study.  

 

II. THE PROPOSED BREUSCH-GODFREY TEST 

Breusch-Godfrey Test was developed by Breusch [2] and 

Godfrey [7]. There are many practical points of this 

autocorrelation test. 

Firstly, it allows for nonstochastic regressors, such as the 

lagged values of regressand in the model. Secondly, it allows 

the lagged values of regressand 21, −− tt YY , etc to appear as 

explanatory variables in the model. The lagged values of the 

regressand can follow higher-order autoregressive scheme 

such as AR(1), AR(2), etc. Thirdly, it takes into account 

correlations among disturbances lagged more than once. This 

makes Breusch-Godfrey test a powerful test to detect 

autocorrelation problem in time series data if there is a 

seasonal autocorrelation in which ),( jtt uuE −  is significance 

for some j other than 1. Fourthly, it allows simple or higher-

order moving averages of white noise error terms tε  such as 

MA(1), MA(2), etc in the regression model. Lastly, this test is 

applicable for both time series and cross sectional data. Other 

existing tests do not have these practical features.  

Let consider multiple linear regression with autocorrelated 

errors   

                    ttt uXY +=
~

β                           (1) 

If the error term tu  follows the pth-order autoregressive, 

AR(p), then  

  tptpttt uuuu ερρρ ++++= −−− ....2211                  (2) 

where tε  is a white noise error term that satisfies all the 

classical assumptions. 
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The null hypothesis 0H to be tested, is  

       0...: 210 ==== pH ρρρ                            (3)                            

that is, there is no serial correlation of any order. 

 

   To formulate a modified Breusch-Godfrey test, we first 

identify the components of the BG test which are affected by 

high leverage points and then replace these by robust 

alternative. The BG test requires two times of minimizing sum 

of squares residuals in the development of the test statistic 
2

)( Rpn − . Firstly, it involves the original regression and 

secondly involves the auxiliary regression. Harter [10] 

confirmed that squaring of the residual causes the least square 

becomes extremely vulnerable to the presence of high 

leverage points. Hence, the BG test statistic is very sensitive 

and easily affected by high leverage points. To rectify this 

problem, the robust MM-estimators introduced by Yohai [24] 

is integrated into the BG test to formulate a new robust BG 

test. We call this test as Modified Breusch-Godfrey test 

denoted as MBG.  

 

The proposed MBG test is summarized as follows: 

Step 1: Estimate the coefficients of (1) by using MM-estimator 

and get the residuals, tû . 

Step 2: Regress tû  on the original tX  and its pth-order 

autoregressive by the MM-estimator. 

Step 3: Obtain the 2R  from the auxiliary regression in Step 2. 

The 2R  for MBG test is then formulated as: 

       
)(

2

SSRSSE

SSR
R

+
=        (4) 

where SSE is the sum of squared errors and SSR is the sum of 

squared regression of the auxiliary regression.  

 

When the sample size is large, the statistic 2)( Rpn −  is 

asymptotically following Chi-squared distribution with the 

degree of freedom of p, that is 22 ~)( pRpn χ− . The null 

hypothesis is rejected if the statistic 2)( Rpn − exceeds the 

Chi-square value at the selected value of α .  

This paper considers multiple linear regression with two 

independent variables and autocorrelated errors. 

 

           tttt XXY µβββ +++= 22110                              (5) 

 

The length of the lag residual cannot be specified a proiri. 

Alciaturi et al. [1] proposed the use of the autocorrelation 

function with lag 1 residual in univariate and multivariate for 

model selection. Following their idea, we set the error term to 

follow the first-order autoregressive AR(1) scheme such that  

                      11    ,1 <<−+= − ρερ ttt uu                      (6) 

 

The auxiliary regression to be examined is therefore 

translate to 

 tttt uXXu ερααα ++++= −122110
ˆˆˆˆˆˆ                 (7) 

 

III. NUMERICAL EXAMPLES 

In this section we consider three examples to assess the 

performance of our newly proposed method. 

 

A.    Churchill Downs Racetrack in  Louiville Data 

The first example is the Chruchill Downs Racetrack in 

Louiville data taken from Shiffler and Adams [23].  It 

monitors the attendance and handle (amount of money 

wagered) during racing season. This data contains 17 

observations which show that the average daily handle in 

millions of dollars (Y) is positively related to year of racing 

season ( 1X ) and average daily attendance in thousands of 

people ( 2X ). The data is shown in Table 1.  This data is 

known to have autocorrelation problem. The bold values in 

parenthesis are the high leverage points. 

 
Table 1: Original and Modified Indexes of Churchill Downs 

Racetrack in Louiville Data 

Index   Y  1X  2X  

1 0.734 1 9.623 

2 0.719 2 8.740 

3 0.736 3 8.358 

4 0.833 4 9.050 

5 0.728 5 8.067 

6 0.850 6 9.001 

7 0.850 7 8.887 

8 0.982 8 9.387 

9 1.107 9 9.975 

10 1.080 10 9.644 

11 1.095 11 9.532 

12 1.060 12 9.425 [12.20] 

13 0.861 13 {25} 7.105 

14 0.806 14  (26) 6.909 (12.50) 

15 1.077 15 8.950 

16 1.139 16 9.810 

17 1.240 17 10.385 

Source: Louisville Courier-Journal, June 30, 1987. 

  

Note: {  } = high leverage point in 1X   

           [  ] = high leverage point in 2X  

           (  ) = high leverage point in 1X  and 2X   

 

Fig. 1 shows the index plot of residuals for the original data 

based on OLS estimation. The figure reveals that there is a 

cyclical pattern among the residuals suggesting 

autocorrelation problem in the residuals. 
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Figure 1: Index plot of residuals for Churchill Downs 

Racetrack in Louiville data 

 

To see the effect of leverage points on the two tests, we 

purposely contaminate the data. Three types of contaminated 

data sets were considered in this study. The first type of the 

contaminated data is the data with one high leverage point in 

1X . We randomly replace an observation in 1X  with a high 

leverage point. The second type of contaminated data is the 

data with one high leverage point in 2X . We arbitrarily 

replace an observation in 2X  with a high leverage point. The 

third type of contaminated data is the data with a high leverage 

point in 1X  and 2X  directions. For this case, we deliberately 

replace a good paired observation in 1X  and 2X  directions 

with a high leverage point. There are many classifications of 

high leverage points. In this study, we consider high leverage 

points as the values beyond the 3-deviation scopes from its 

mean. The bold values in parenthesis in Table 1 are the high 

leverage points.  

 

The performances of BG and MBG tests are evaluated 

based on the p-values and the results are presented in Table 2. 

 

Table 2: Autocorrelation Diagnostics for Average Daily 

Attendance Data 

Test BG 

(p-value) 

MBG 

(p-value) 

No High Leverage 

Point 

1.242e-02 1.244e-02 

One High Leverage 

Point in  1X  

1.764e-01 1.782e-03 

One High Leverage 

Point in 2X  

3.383e-01 4.979e-02 

One  High Leverage 

Point in 1X  and 2X  

5.875e-02 4.783e-02 

 

We observe from this table that at 05.0=α , the classical 

BG test is able to detect the autocorrelation if there is no high 

leverage point in the data. However, it fails to detect the 

autocorrelation problem when high leverage points occur in 

the data set. We now look at the results of the MBG test on the 

original and modified data. Unlike the BG test, the MBG test 

successfully detects the autocorrelation in the presence of high 

leverage point and consistently gives the lower significant p-

value. 

B.    Boat Production Data 

Our next example is the boat production data given by 

Newbold, Carlson and Thorne [19]. This data contains 24 

observations and it shows the relationship between the number 

of boats produced data each year (Y), number of production 

stations ( 1X ) and number of workers used each year ( 2X ). 

Similar to Churchill data, we randomly replace a good 

observation with a high leverage point into the data set in 

order to get a modified data in 1X , 2X and both 1X  and 2X  

directions. The original and contaminated data are presented in 

Table 3. 

 

Table 3: Original and Modified Indexes of Boat Production 

Data 

Index   Y  1X  2X  

1 40   1.0   2.0 

2 45   1.2   2.1 

3 52   1.2   2.7 

4 57   1.1   3.0 

5 65   2.0   3.1 

6 75   3.0   3.6 

7 86   4.0   4.0 

8 95   4.5   6.0 

9 100   4.5   7.1 

10 130   4.5   8.5 

11 161   4.1   8.9 

12 215   6.0  10.0 

13 260   8.1  13.9  [34.5] 

14 265   7.9  16.1 

15 275  11.0  14.0 

16 282  12.0  14.0 

17 300  13.2  15.6 

18 340  14.0  17.0 

19 370  14.8  18.0 

20 405  15.0  20.9 

21 430  16.0  21.0 

22 440  16.0 (26)  21.4 (33.5) 

23 460  17.0   21.8 

24 472  17.0 {37}  22.1 

 

Note: {  } = high leverage point in 1X   

           [  ] = high leverage point in 2X  

           (  ) = high leverage point in 1X  and 2X  

 

Fig. 2 shows the scatter plot of the current residuals (Res1) 

versus lagged residuals (Res(-1)) for the original data based on 

OLS estimation. The plot shows that only a few residuals are 

clustered in the second and fourth quadrants, suggesting a 

positive autocorrelation in the residuals. 
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Figure 2: Current residuals (Res1) versus lagged residuals 

(Res(-1))  for boat production data 

 

The results of the newly proposed MBG test and the 

classical BG test in detection of autocorrelation for the boat 

production are presented in Table 4. Similar results as for 

Churchill data were obtained. The results of the table 3 clearly 

show that the classical BG test can only correctly identify the 

autocorrelation problem when the data is free from 

contamination but it provides false indication in the presence 

of high leverage points in any respect. It is interesting to see 

that the MBG test still successfully detects the presence of 

autocorrelation problem with and without the presence of high 

leverage points in all respects. 

 

Table 4: Autocorrelation Diagnostics for Boat Production Data 

Test BG 

(p-value) 

MBG 

(p-value) 

No High Leverage 

Point 

3.252e-03 6.682e-04 

One High Leverage 

Point in  1X  

1.053e-01 2.644e-05 

One High Leverage 

Point in 2X  

5.399e-02 1.667e-02 

One  High Leverage 

Point in 1X and 2X  

4.664e-01 3.450e-02 

 

 

C. Apple Market Data 

The following example is apple market data. This data is 

provided by Kohler [13]. It contains 15 observations. From the 

OLS estimation, it is found that the quantity traded in millions 

of bushels (Y) has a reverse relationship with the disposable 

income in trillions of dollars ( 1X ), but it has a direct 

relationship with the rainfall in inches per year ( 2X ). The 

original and the contaminated data are presented in Table 5.  

 

 

 

 

 

 

 

 

 

 

Table 5: Original and Modified Indexes of Apple Market Data 

Index Y  1X    2X  

1 7.00 2.50  12.1 

2 3.17  2.60  37.9 

3 6.55  2.73  16.2 

4 5.44  2.80 {6.50} 1 29.7 

5 2.41  2.92  45.6 

6 3.12  3.03  55.6 

7 2.04  3.19  65.0 

8 5.10  3.39  27.3 

9 6.01  3.91 (6.10)  28.8 (120) 

10 5.53  3.80  32.6 

11 4.88  3.71  47.2 

12 3.26  3.96  47.0 

13 4.73  4.02  52.1 [135] 

14 5.44  4.20  29.3 

15 7.44  4.35  20.2 

    Note: {  } = high leverage point in 1X   

           [  ] = high leverage point in 2X  

           (  ) = high leverage point in 1X  and 2X  

 

Fig. 3 shows the scatter plot of the current residuals (Res1) 

versus the lagged residuals (Res(-1)) for the original data. The 

residuals plot shows that there is no residual found in the third 

quadrant, indicating that there is a strong negative 

autocorrelation problem in the data set. 

 

 
Figure 3: Current residuals versus lagged residuals for apple 

market data 

 

The results of the newly proposed MBG test and the 

classical BG test in detection of autocorrelation for the apple 

market are shown in Table 6. The power of detection for BG 

and MBG tests are almost the same when there is no high 

leverage point in the data set. Again, the classical BG test can 

only identify the negative autocorrelation problem when the 

data is free from high leverage point but it gives a misleading 

indication in the presence of high leverage points. The MBG 

test is very reliable in identifying the negative autocorrelation 

problem in the occasions with and without the presence of 

high leverage points. 
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Table 6: Autocorrelation Diagnostics for Apple Market Data 

Test BG 

(p-value) 

MBG 

(p-value) 

No High Leverage 

Point 

5.999e-03 5.534e-03 

One High Leverage 

Point in  1X  

3.260e-01 1.163e-02 

One High Leverage 

Point in 2X  

2.284e-01 1.933e-02 

One  High Leverage 

Point in 1X and 2X  

4.167e-01 1.851e-02 

 

 

D. Quality Data 

We have seen MBG test outperformed BG test in real time 

series data. As such, we would like to reaffirm the finding 

with a cross sectional data. The cross sectional data that we 

consider is quality data which is taken from McClave and 

James [14]. It shows the relationship between quality of 

finished product (Y), temperature in Fahrenheit ( F0 ) ( 1X ) 

and pressure in psi ( 2X ).  Again, we randomly replace a good 

observation with a high leverage point into the data set in 

order to get a modified data in 1X , 2X and both 1X  and 

2X directions. The original and modified data are exhibited in 

Table 7.  

 

Table 7 : Original and Contaminated Indexes of Quality Data 

Index Y  1X  2X  

1 50.8 80 50 

2 50.7 80 (140) 50 (100) 

3 49.4 80 50 

4 93.7 80 55 

5 90.9 80 55 

6 90.9 80 55 

7 74.5 80 60 

8 73.0 80 60 

9 71.2 80 60 

10 63.4 90 50 

11 61.6 90 50 

12 63.4 90 50 

13 93.8 90 55 

14 92.1 90 55 

15 97.4 90 55 

16 70.9 90 60 

17 68.8 90 60 

18 71.3 90 60 

19 46.6 100 50 

20 49.1 100 50 

21 46.4 100 50 

22 69.8 100 55 

23 72.5 100 55 [135] 

24 73.2 100 55 

25 38.7 100 60 

26 42.5 100{160} 60 

27 41.4 100 60 

Note: {  } = high leverage point in 1X   

           [  ] = high leverage point in 2X  

           (  ) = high leverage point in 1X  and 2X  

 

Fig. 4 shows the index plot of residuals for the original data 

based on OLS estimation. The residuals are forming some 

clusters among themselves and they are not randomly 

distributed. This indicates that there is an autocorrelation 

problem in the residuals. 

 

 
Figure 4: Index plot of residuals for quality data 

 

Both tests were then applied to the data and the results are 

presented in Table 8. Similar results are obtained as in the 

previous examples. The BG test once again failed to detect the 

autocorrelation problem when there is high leverage point in 

the data set. However, the MBG maintain its autocorrelation 

detection power with the presence of high leverage points. The 

MBG test is also reliable in detecting the autocorrelation 

problem in cross sectional data.    

 

Table 8: Autocorrelation Diagnostics for Quality Data 

Test BG 

(p-value) 

MBG 

(p-value) 

No High Leverage 

Point 

3.351e-03 2.643e-04 

One High Leverage 

Point in  1X  

7.488e-02 2.924e-03 

One High Leverage 

Point in 2X  

5.737e-02 2.097e-03 

One  High Leverage 

Point in 1X and 2X  

5.585e-02 9.772e-04 
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IV. SIMULATION STUDY 

We have seen the performance of the MBG test in real 

data. Now we want to reiterate the results by checking a 

Monte Carlo simulation experiment. In this study, we 

consider six different sample sizes n = 20, 40, 60, 80, 100 

and 200, represent small (20 and 40) , medium (60 and 80) 

and large sample size (100 and 200) respectively. We 

consider the two possibilities of the directions for 1β  and 

2β , either both parameters towards same direction or 

different directions.  

 

A. Both Positive Directions for 1β  and 2β  

For each sample size n = 20, 40, 60, 80, 100 and 200, n 

“good” data are generated according to the following 

relation: 

  uXXY +++= 21 321                           (6) 

where all the values of 1X  and 2X  are generated from 

Uniform Distribution, U(0,10). The error terms tu  are 

generated by the first-order autoregressive scheme as 

follow: 

   ttt uu ε+= −19.0                      (7) 

with an initial value of 1u  equals to 8. The White noise, tε  

is generated from Normal Distribution with mean 0 and 

standard deviation 0.1. This autoregressive scheme is 

repeated for every 10 observations to ensure the existence 

of autocorrelation problem. 

 

We would like to compare the performance of BG and 

MBG tests with 5% and 10% high leverage point in 1X , 

2X  and both 1X  and 2X . For each sample size, we 

generate high leverage points by deleting randomly the 

‘good’ observations and replacing it with ‘bad’ data points.  

The BG test high leverage points in 1X , 2X  and both 1X  

and 2X  are represented by a uniform distributed variate ix  

from Uniform Distribution U(15,20). The significance level 

is set to 0.05 and in each simulation run, there were 10,000 

simulations.  

 

The ‘p-values’ of both BG and MBG tests are presented 

in Table 9. Again, the BG test performs miserably in the 

simulation. It can only detect autocorrelation problem in the 

normal data. However, when there are some high leverage 

points in the data, the BG test fails to diagnose the 

autocorrelation problem.  On the other hand, the MBG test 

did a credible job.  The results of Table 9 show that the 

MBG test has smaller and significant p-values for all 

contamination scenarios.  Moreover, we can see that the 

detection power of the MBG test is higher with the 

increased in sample sizes.  

 

Table 9: Simulation Results of Both Positive Parameters with Autocorrelation Problem 

p-value 

No HLP 5% of HLP  10% of HLP  

 
1X  2X  1X  and 2X  1X  2X  1X  and 2X  

n = 20 BG 1.501e-02 4.063e-01 4.323e-01   4.239e-01 4.150e-01 4.150e-01 4.187e-01 

MBG 4.836e-03 4.195e-02 4.518e-02 4.864e-02 3.989e-02 3.788e-02 3.788e-02 

n = 40 
BG 1.803e-03 4.504e-01 4.700e-01 4.602e-01 4.571e-01 4.567e-01 4.616e-01 

MBG 3.437e-05 9.977e-04   1.054e-03 1.007e-03 1.310e-03 1.178e-03 1.089e-03 

n = 60 BG 2.230e-04 4.572e-01 4.799e-01 4.714e-01 4.565e-01 4.700e-01 4.751e-01   

MBG 1.514e-07 2.753e-05 3.307e-05 3.146e-05 3.446e-05 3.499e-05 3.335e-05 

n = 80 BG 2.779e-05 4.521e-01   4.845e-01 4.824e-01 4.563e-01 4.757e-01 4.737e-01 

MBG 1.462e-09 1.072e-06 1.259e-06 1.267e-06 3.342e-06 1.287e-06 1.558e-06 

n = 100 BG 3.220e-06 4.513e-01 4.880e-01 4.812e-01 4.592e-01 4.768e-01 4.861e-01 

MBG 1.424e-11 4.271e-08 5.177e-08 5.498e-08 3.151e-07 6.141e-08   5.926e-08 

n=200 
BG 1.242e-10 4.148e-01 4.769e-01 4.840e-01 4.402e-01 4.806e-01 4.870e-01 

MBG 2.200e-16 5.996e-15 8.500e-15 1.037e-14 9.842e-15 1.164e-14 1.249e-14 
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B.  One Positive and One Negative Direction for 

              1β   and 2β   

Similar to both positive directions for 1β  and 2β , we 

generate 1X  and 2X  from Uniform Distribution, U(0,10) 

for samples sizes size n = 20, 40, 60, 80, 100 and 200. The 

n ‘good” data are now simulated according to the following 

relation: 

  uXXY ++−= 21 521                            (8) 

 

The error terms tu  is again generated following the first-

order autoregressive scheme stated in (7).  

 

Once again, we compare the performance of BG and 

MBG tests with 5% and 10% high leverage point in 1X , 

2X  and both 1X  and 2X  by repeating the same procedures 

of contamination for both positive parameters 1β  and 2β  

stated above.  

 

Table 10 exhibits the ‘p-values’ of the BG and MBG 

tests. The classical BG tests only perform well when there 

is no high leverage point. This test fails to detect 

autocorrelation when there is high leverage point in any 

respect of data for all three sample sizes being studied. 

Similar to the previous results, the MBG test performs 

consistently throughout the whole simulation process. This 

test is reliable when data are contaminated with high 

leverage points.  We can see from Table 10 that the 

autocorrelation detection power for MBG tests increases 

with the increased in sample sizes. Therefore, we can 

conclude that the MBG test performs more outstanding as 

compared to classical BG where both parameters 1β  and 

2β  are in different directions. 

 

V. CONCLUSION 

In this paper, we show that the widely used BG test fails 

to identify autocorrelation problem when high leverage 

points are present in the data.  To remedy this problem, we 

propose a robust modified Breusch-Godfrey test. The 

results of the numerical examples and simulations study 

show that the performance of the BG test are fairly closed 

to the MBG test when outliers are not present in the data. 

However, the BG test performs poorly in the presence of 

outliers. On the other hand, the MBG test is high leverage 

resistant. Hence, we recommend using the MBG test 

instead of using the classical Breusch-Godfrey test which is 

not reliable test in the presence of high leverage point. 

 

 

Table 10: Simulation Results of One Positive and One  Negative  Parameters with Autocorrelation Problem 

p-value 

No HLP 5% of HLP  10% of HLP  

 
1X  2X  1X  and 2X  1X  2X  1X  and 2X  

n = 20 BG 1.498e-02 4.196e-01 4.391e-01 3.855e-01 4.075e-01 4.148e-01 4.276e-01 

MBG 4.854e-03 3.402e-02 4.748e-02 4.418e-02 3.527e-02 3.749e-02 4.931e-02 

n = 40 
BG 1.903e-03 4.505e-01 4.675e-01 4.629e-01 4.466e-01 4.546e-01 4.713e-01 

MBG 3.332e-05 8.463e-04 1.070e-03 1.545e-03 1.078e-03 1.102e-03 2.817e-03   

n = 60 BG 2.221e-04 4.582e-01 4.797e-01 4.862e-01 4.518e-01 4.740e-01 4.822e-01 

MBG 1.610e-07 2.513e-05 3.258e-05 6.220e-05 3.440e-05 3.338e-05 2.756e-04 

n = 80 BG 2.961e-05 4.552e-01 4.865e-01 4.914e-01 4.548e-01 4.778e-01 4.880e-01 

MBG 1.466e-09 9.376e-07   1.314e-06 4.160e-06   2.182e-06    1.451e-06 2.243e-05   

n = 100 BG 3.160e-06 4.526e-01 4.986e-01 4.925e-01 4.579e-01 4.757e-01 4.835e-01 

MBG 1.409e-11 3.954e-08 5.698e-08 2.081e-07 4.814e-08 5.816e-08   3.058e-06 

n=200 
BG 1.237e-10 4.119e-01 4.894e-01 4.831e-01 4.397e-01 4.806e-01 4.839e-01 

MBG 2.200e-16 5.191e-15 1.013e-14 1.149e-14 1.015e-14 1.164e-14 1.239e-14 
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