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Abstract— This paper considers the problem of designing a non-
fragile H∞ fuzzy filter for uncertain Markovian jump nonlinear
systems that the guarantees theL2-gain from an exogenous input to
an estimate error output being less than or equal to a prescribed value.
Sufficient conditions for the existence of theH∞ fuzzy filter are given
in terms of a set of LMIs. In this paper, the premise variables of the
H∞ fuzzy filter are allowed to be different from the premise variables
of the TS fuzzy model of the plant such that the results are shown
into two cases which are the premise variable of the fuzzy model be
measurable and the premise variable assumed to be unmeasurable.
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I. I NTRODUCTION

I N the last few years, many researchers have studied the
H∞ filter design for a general class of linear systems

due to a great practical importance [1]-[9]. Solutions to the
nonlinearH∞ filtering are characterized in terms of the so-
called Hamilton-Jacobi equation (HJE) in [7]. Until now,
however, it is still very difficult to find a global solution
to the HJE either analytically or numerically. The filtering
problem can be stated as follows: given a dynamic system
with exogenous input and measured output, design a filter to
estimate an unmeasured output such that the mapping from the
exogenous input to the filter error is minimized or no larger
than some prescribed level in terms of theH∞ norm. In [4]
and [5], it has been shown that the existence of solution to
H∞ filtering problem is in fact related to the solvability of
an appropriate algebraic Riccati equation. This result is then
extended in [6] to a class of linear systems which are subject to
parametric uncertainty. A sufficient condition for the existence
of a solution is derived also via algebraic Riccati equations.

Recently, a great amount of effort has been made on the
design of fuzzyH∞ control and filter for a class of nonlinear
systems which can be represented by a Takagi-Sugeno (TS)
fuzzy model; see [10]-[25]. Fuzzy system theory enables us to
utilise qualitative, linguistic information about a highly com-
plex nonlinear system to construct a mathematical model for it.
Recent studies show that a fuzzy linear model can be used to
approximate global behaviours of a highly complex nonlinear
system; see for example, [10]-[25]. In this fuzzy linear model,
local dynamics in different state space regions are represented
by local linear systems. The overall model of the system is
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obtained by “blending” these linear models through nonlinear
fuzzy membership functions. Unlike conventional modelling
where a single model is used to describe the global behaviour
of a system, the fuzzy modelling is essentially a multi-model
approach in which simple sub-models (linear models) are
combined to describe the global behaviour of the system.
Based on this fuzzy model, a systematic model-based fuzzy
control design was developed.

Markovian jump systems, sometimes called hybrid systems
with a state vector, consists of two components; i.e., the state
(differential equation) and the mode (Markov process). The
Markovian jump system changes abruptly from one mode to
another mode caused by some phenomenon such as environ-
mental disturbances, changing subsystem interconnections and
fast variations in the operating point of the system plant. The
switching between modes is governed by a Markov process
with the discrete and finite state space. Over the past few
decades, the Markovian jump systems have been extensively
studied by many researchers; see [26]-[36]. This is due to the
fact that jumping systems have been a subject of the great
practical importance.

The aim in this paper is to study the problem of designing a
robust or non-fragile fuzzy filter for uncertain Markovian jump
nonlinear signal processing systems that guarantees theL2-
gain from an exogenous input to a filter error is less or equal
to a prescribed value. Based on an LMI approach, solutions
to the problem of theH∞ filtering are derived in terms of a
family of linear matrix inequalities. In this paper, the premise
variables of theH∞ fuzzy filter are allowed to be different
from the premise variables of the TS fuzzy model of the plant
such that the results are shown into two cases which are the
premise variable of the fuzzy model be measurable and the
premise variable assumed to be unmeasurable.

This paper is organized as follows. In Section II, system
descriptions and definition are presented. Based on an LMI
approach, we develop a technique in Section III for designing
a non-fragile fuzzyH∞ filter that guarantees theL2-gain of
the mapping from the exogenous input noise to the filter error
is less than a prescribed value. The validity of this approach
is demonstrated by an example from the literature in Section
IV. Finally, in Section IV, the conclusion is given.

II. SYSTEM DESCRIPTIONS ANDDEFINITIONS

In this section, we generalize the TS fuzzy system to
represent a TS fuzzy system with Markovian jumps. In this
paper, we examine a TS fuzzy system with Markovian jumps
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as follows:

ẋ(t) =
∑r

i=1 µi(ν(t))
[
[Ai(η(t)) + ∆Ai(η(t))]x(t)

+[B1i(η(t)) + ∆B1i(η(t))]w(t)
+[B2i(η(t)) + ∆B2i(η(t))]u(t)

]
, x(0) = 0,

z(t) =
∑r

i=1 µi(ν(t))
[
[C1i(η(t)) + ∆C1i(η(t))]x(t)

+[D12i(η(t)) + ∆D12i(η(t))]u(t)
]

y(t) =
∑r

i=1 µi(ν(t))
[
[C2i(η(t)) + ∆C2i(η(t))]x(t)

+[D21i(η(t)) + ∆D21i(η(t))]w(t)
]

(1)
whereν(t) = [ν1(t) · · · νϑ(t)] is the premise variable vector
that may depend on states in many cases,µi(ν(t)) denotes
the normalized time-varying fuzzy weighting functions for
each rule (i.e.,µi(ν(t)) ≥ 0 and

∑r
i=1 µi(ν(t)) = 1), ϑ

is the number of fuzzy sets,x(t) ∈ <n is the state vector,
u(t) ∈ <m is the input, w(t) ∈ <p is the disturbance
which belongs toL2[0,∞), y(t) ∈ <` is the measurement,
z(t) ∈ <s is the controlled output, and the matrix func-
tions Ai(η(t)), B1i(η(t)), B2i(η(t)), C1i(η(t)), C2i(η(t)),
D12i(η(t)), D21i(η(t)), ∆Ai(η(t)), ∆B1i(η(t)), ∆B2i(η(t)),
∆C1i(η(t)), ∆C2i(η(t)), ∆D12i(η(t)) and ∆D21i(η(t)) are
of appropriate dimensions.{η(t))} is a continuous-time
discrete-state Markov process taking values in a finite setS =
{1, 2, · · · , s} with transition probability matrixPr

∆= {Pık(t)}
given by

Pık(t) = Pr(η(t + ∆) = k|η(t) = ı)

=
{

λık∆ + O(∆) if ı 6= k
1 + λıı∆ + O(∆) if ı = k

}
(2)

where∆ > 0, and lim∆−→0
O(∆)

∆ = 0. Here λık ≥ 0 is the
transition rate from modeı (system operating mode) to mode
k (ı 6= k), and

λıı = −
s∑

k=1,k 6=ı

λık. (3)

For the convenience of notations, we letµi
∆= µi(ν(t)),

η = η(t), and any matrixM(µ, ı) ∆= M(µ, η = ı). The matrix
functions ∆Ai(η), ∆B1i(η), ∆B2i(η), ∆C1i(η), ∆C2i(η),
∆D12i

(η) and ∆D21i
(η) represent the time-varying uncer-

tainties in the system and satisfy the following assumption.

Assumption 1:

∆Ai(η) = F (x(t), η, t)H1i
(η),

∆B1i(η) = F (x(t), η, t)H2i(η),

∆B2i(η) = F (x(t), η, t)H3i(η),

∆C1i(η) = F (x(t), η, t)H4i(η),

∆C2i
(η) = F (x(t), η, t)H5i

(η),

∆D12i
(η) = F (x(t), η, t)H6i

(η),

and ∆D21i(η) = F (x(t), η, t)H7i(η)

where Hji(η), j = 1, 2, · · · , 7 are known matrices which
characterize the structure of the uncertainties. Furthermore,
there exists a positive functionρ(η) such that the following
inequality holds:

‖F (x(t), η, t)‖ ≤ ρ(η). (4)

III. N ON-FRAGILE FILTER DESIGN

This section presents a technique of designing a non-fragile
fuzzy filter for a TS fuzzy system with Markovian jumps and
parametric uncertainties. We develop a technique for designing
a non-fragile fuzzy filter such that theL2-gain of the mapping
from the exogenous input noise to the estimated error output
is less than the prescribed value. The proposed design is given
in terms of LMIs.

Without loss of generality, we assumeu(t) = 0. Let us
recall the system (1) withu(t) = 0 as follows:

ẋ(t) =
∑r

i=1 µi

[
[Ai(η) + ∆Ai(η)]x(t)

+[B1i(η) + ∆B1i(η)]w(t)
]
, x(0) = 0

z(t) =
∑r

i=1 µi

[
[C1i(η) + ∆C1i(η)

]
x(t)

y(t) =
∑r

i=1 µi

[
[C2i(η) + ∆C2i(η)]x(t)

+[D21i(η) + ∆D21i(η)]w(t)
]
.

(5)

The aim is to design a full order dynamicH∞ fuzzy filter of
the form

˙̂x(t) =
∑r

i=1

∑r
j=1 µ̂iµ̂j

[
Âij(ı)x̂(t) + B̂i(ı)y(t)

]

ẑ(t) =
∑r

i=1 µ̂iĈi(ı)x̂(t)
(6)

where x̂(t) ∈ <n is the filter’s state vector,̂z ∈ <s is the
estimate ofz(t), Âij(ı), B̂i(ı) and Ĉi(ı) are parameters of
the filter which are to be determined, and̂µi denotes the
normalized time-varying fuzzy weighting functions for each
rule (i.e., µ̂i ≥ 0 and

∑r
i=1 µ̂i = 1), such that the following

inequality holds

E
[ ∫ Tf

0

{(
z(t)− ẑ(t)

)T (
z(t)− ẑ(t)

)

−γ2wT (t)w(t)
}

dt
]
≤ 0, x(0) = 0

(7)

whereE[·] stands for the mathematical expectation and(z(t)−
ẑ(t)) is the estimated error output, for allTf ≥ 0 andw(t) ∈
[0, Tf ].

Figure 1 shows the block diagram of a non-fragile fuzzy
filtering problem associated with an uncertain fuzzy system.
The major implication of this approach is that the structure of
the filter has to take into a account the effect of uncertainty.
The problem addressed is the design of a filter such that the
induced operator norm of the mapping from the noisew(t) to
the filter errore(t) = z(t) − ẑ(t) is kept within a prescribed
bound for all admissible parameter uncertainties.

Clearly, in real control problems, all of the premise variables
are not necessarily measurable, thus two cases will be consid-
ered in this section. Subsection A considers the case where
the premise variable of the fuzzy modelµi is measurable,
while in Subsection B, the premise variable is assumed to be
unmeasurable.
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(5)

Uncertain Fuzzy System

Non−fragile Fuzzy Filter

(6)

w(t)

z(t)

z(t)

y(t)

e(t)=z(t)−z(t)+

−

Σ

Fig. 1. Block diagram of an uncertain fuzzy system with a non-fragileH∞
fuzzy filter.

A. Case I–ν(t) is available for feedback

The premise variable of the fuzzy modelν(t) is available
for feedback which implies thatµi is available for feedback.
Thus, we can select our filter that depends onµi as follows:

˙̂x(t) =
∑r

i=1

∑r
j=1 µiµj

[
Âij(ı)x̂(t) + B̂i(ı)y(t)

]

ẑ(t) =
∑r

i=1 µiĈi(ı)x̂(t).
(8)

Figure 2 shows the block diagram of the non-fragileH∞
filtering problem associated with uncertain fuzzy system in
case thatµi is available for feedback. Before presenting our

Uncertain Fuzzy System

(3)
y(t)

w(t)
z(t)

x(t) x(t)

Σ
r

i=1
µ Bii

Σ
i=1

r

µ iC i

Σ Σ
i=1

r r

j=1

µ iµ jA ij

e(t)=z(t)−z(t)

z(t)

.

Σ

Σ
+

+

+

−

Fuzzy Filter 
(4)

Fig. 2. Block diagram of an uncertain fuzzy system with a non-fragileH∞
fuzzy filter in Case A.

next results, the following lemma is recalled.

Lemma 1: Consider the system (5). Given a prescribedH∞
performanceγ > 0 and any positive constantsδ(ı), for ı =
1, 2, · · · , s, if there exist matricesP (ı) = PT (ı) such that the
following linear inequalities hold:

P (ı) > 0 (9)





P (ı)Aij
cl(ı)

+(Aij
cl(ı))

T P (ı)
+

∑s
k=1 λıkP (k)


 (∗)T (∗)T

(P (ı)Bij
cl (ı))

T −γ2I (∗)T

Cij
cl (ı) 0 −I




< 0(10)

wherei, j = 1, 2, · · · , r,

Aij
cl(ı) =

[
Ai(ı) 0

B̂i(ı)C2j (ı) Âij(ı)

]
,

Bij
cl (ı) =

[
B̃1i(ı)

B̂i(ı)D̃21j (ı)

]
,

Cij
cl (ı) = [C̃1i(ı) D̃12(ı)Ĉj(ı)]

with

B̃1i(ı) =
[
δ(ı)I I 0 B1i(ı) 0

]

C̃1i(ı) =
[γρ(ı)

δ(ı)
HT

1i
(ı)

γρ(ı)
δ(ı)

HT
5i

(ı)

√
2ℵ(ı)ρ(ı)HT

4i
(ı)

√
2ℵ(ı)CT

1i
(ı)

]T

D̃12(ı) =
[
0 0 0 −

√
2ℵ(ı)I

]T

D̃21i(ı) =
[
0 0 δ(ı)I D21i(ı) I

]

ℵ(ı) =


1 + ρ2(ı)

r∑

i=1

r∑

j=1

[
‖HT

2i
(ı)H2j (ı)‖

+‖HT
7i

(ı)H7j (ı)‖
]) 1

2
,

then the inequality (7) is guaranteed.

Proof: The closed-loop state space form of the fuzzy system
model (5) with the filter (8) is given by

˙̌x(t) =
∑r

i=1

∑r
j=1 µiµj

(
Aij

cl(ı)x̌(t) + Bij
cl (ı)w̃(t)

)

ž(t) =
∑r

i=1

∑r
j=1 µiµjC

ij
cl (ı)x̌(t)

(11)
where x̌(t) =

[
xT (t) x̂T (t)

]T and the matrix functions
Aij

cl(ı), Bij
cl (ı) and Cij

cl (ı) are defined in Lemma 1 and the
disturbance is

w̃(t) =




1
δ(ı)F (x(t), ı, t)H1i(ı)x(t)
F (x(t), ı, t)H2i(ı)w(t)
1

δ(ı)F (x(t), ı, t)H5i
(ı)x(t)

F (x(t), ı, t)H7i
(ı)w(t)


 .

Let choose a stochastic Lyapunov function

V (x̌(t), ı) = x̌T (t)P (ı)x̌(t) ∀ ı ∈ S (12)

whereP (ı) is a constant positive definite matrix for eachı.
For this choice, we haveV (0, ı0) = 0 and V (x̌(t), ı) → ∞
only when‖x̌(t)‖ → ∞.

Consider the weak infinitesimal operator̃∆ of the joint
process{(x̌(t), ı), t ≥ 0}, which is the stochastic analog of
the deterministic derivative.{(x̌(t), ı), t ≥ 0} is a Markov
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process withinfinitesimaloperator given by [32],

∆̃V (x̌(t), ı) = ˙̌xT (t)P (ı)x̌(t) + x̌T (t)P (ı) ˙̌x(t)

+x̌T (t)
s∑

k=1

λıkP (k)x̌T (t)

=
r∑

i=1

r∑

j=1

µiµj

(
x̌T (t)(Aij

cl(ı))
T P (ı)x̌(t)

+x̌T (t)P (ı)Aij
cl(ı)x̌(t)

+w̃T (t)(Bij
cl (ı))

T P (ı)x̌(t)

+x̌T (t)P (ı)Bij
cl (ı)w̃(t)

+x̌T (t)
s∑

k=1

λıkP (k)x̌T (t)
)
. (13)

Adding and subtracting

−ℵ2(ı)zT (t)z(t)+γ2
r∑

i=1

r∑

j=1

r∑
m=1

r∑
n=1

µiµjµmµn[w̃T (t)w̃(t)]

to and from (13), we get

∆̃V (x(t), ı) = −ℵ2(ı)zT (t)z(t)

+γ2
r∑

i=1

r∑

j=1

r∑
m=1

r∑
n=1

µiµjµmµn[w̃T (t)w̃(t)]

+ℵ2(ı)zT (t)z(t)

+
r∑

i=1

r∑

j=1

r∑
m=1

r∑
n=1

µiµjµmµn

[
x̌(t)
w̃(t)

]T

×






(Aij
cl(ı))

T P (ı)
+P (ı)Aij

cl(ı)
+

∑s
k=1 λıkP (k)


 (∗)T

(Bij
cl (ı))

T P (ı) −γ2I




[
x̌(t)
w̃(t)

]
. (14)

Now let us consider the following terms:

γ2
r∑

i=1

r∑

j=1

r∑
m=1

r∑
n=1

µiµjµmµn[w̃T (t)w̃(t)]

= γ2
r∑

i=1

r∑

j=1

r∑
m=1

r∑
n=1

µiµjµmµn ×




1
δ(ı)F (x(t), ı, t)H1i

(ı)x(t)
F (x(t), ı, t)H2i

(ı)w(t)
1

δ(ı)F (x(t), ı, t)H5i
(ı)x(t)

F (x(t), ı, t)H7i
(ı)w(t)




T

×




1
δ(ı)F (x(t), ı, t)H1m(ı)x(t)
F (x(t), ı, t)H2m(ı)w(t)
1

δ(ı)F (x(t), ı, t)H5m(ı)x(t)
F (x(t), ı, t)H7m(ı)w(t)




≤ γ2ρ2(ı)
δ2(ı)

r∑

i=1

r∑

j=1

r∑
m=1

r∑
n=1

µiµjµmµnx̌T (t)×
[

HT
1i

(ı)H1m(ı) + HT
5i

(ı)H5m(ı)
]
x̌(t)

+ℵ2(ı)γ2wT (t)w(t) (15)

and

ℵ2(ı)zT (t)z(t)

= ℵ2(ı)
r∑

i=1

r∑

j=1

r∑
m=1

r∑
n=1

µiµjµmµnx̌T (t)×
[
C1i(ı) + F (x(t), ı, t)H4i(ı) − Ĉj(ı)

]T

×
[
C1m(ı) + F (x(t), ı, t)H4m(ı) − Ĉn(ı)

]
x̌(t)

≤
r∑

i=1

r∑

j=1

r∑
m=1

r∑
n=1

µiµjµmµn ×
(
2ℵ2(ı)x̌T (t)

[
C1i(ı) − Ĉj(ı)

]T

×
[
C1m(ı) − Ĉn(ı)

]
x̌(t) + 2ℵ2(ı)ρ2(ı)x̃T (t)×

HT
4i

(ı)H4m(ı)x̌(t)
)

(16)

where ℵ(ı) ≥
(
1 + ρ2(ı)

[
‖HT

2i
(ı)H2j (ı)‖ +

‖HT
7i

(ı)H7j (ı)‖
]) 1

2
. Hence,

γ2
r∑

i=1

r∑

j=1

r∑
m=1

r∑
n=1

µiµjµmµn[w̃T (t)w̃(t)]

+ℵ2(ı)zT (t)z(t)

≤
r∑

i=1

r∑

j=1

r∑
m=1

r∑
n=1

µiµjµmµn ×
(
x̌T (t)

[
C̃1i(ı) D̃12i(ı)Ĉj(ı)

]T

×
[
C̃1m(ı) D̃12m(ı)Ĉn(ı)

]
x̌(t)

)
+ ℵ2(ı)γ2wT (t)w(t) (17)

where

C̃1i(ı) =
[γρ(ı)

δ(ı)
HT

1i
(ı)

γρ(ı)
δ(ı)

HT
5i

(ı)

√
2ℵ(ı)ρ(ı)HT

4i
(ı)

√
2ℵ(ı)CT

1i
(ı)

]T

D̃12(ı) =
[
0 0 0 −

√
2ℵ(ı)I

]T

Substituting(17) into (14), we have

∆̃V (x(t), ı) ≤ −ℵ2(ı)zT (t)z(t) + γ2ℵ2(ı)wT (t)w(t)

+
r∑

i=1

r∑

j=1

r∑
m=1

r∑
n=1

µiµjµmµn ×
[

x(t)
w̃(t)

]T

Ωijmn(ı)
[

x(t)
w̃(t)

]
(18)

where

Ωijmn(ı) =







(Aij
cl(ı))

T P (ı)
+P (ı)Aij

cl(ı)
+(Cij

cl (ı))
T Cmn

cl (ı)
+

∑s
k=1 λıkP (k)


 (∗)T

(Bij
cl (ı))

T P (ı) −γ2I




. (19)
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Using thefact
r∑

i=1

r∑

j=1

r∑
m=1

r∑
n=1

µiµjµmµnMT
ij (ı)Nmn(ı)

≤ 1
2

r∑

i=1

r∑

j=1

µiµj [MT
ij (ı)Mij(ı) + Nij(ı)NT

ij (ı)],

we can rewrite (19) as follows:

∆̃V (x(t), ı) ≤ −ℵ2(ı)zT (t)z(t) + γ2ℵ2(ı)wT (t)w(t)

+
r∑

i=1

r∑

j=1

µiµj

[
x(t)
w̃(t)

]T

Ωij(ı)
[

x(t)
w̃(t)

]
(20)

where

Ωij(ı) =







(Aij
cl(ı))

T P (ı)
+P (ı)Aij

cl(ı)
+(Cij

cl (ı))
T Cij

cl (ı)
+

∑s
k=1 λıkP (k)


 (∗)T

(Bij
cl (ı))

T P (ı) −γ2I




. (21)

Note that (21) is the Schur complement of (10). Using the
inequality (10), we have

∆̃V (x(t), ı) < −ℵ2(ı)zT (t)z(t) + γ2ℵ2(ı)wT (t)w(t). (22)

Applying the operatorE[
∫ Tf

0
(·)dt] on both sides of (22), we

obtain

E

[∫ Tf

0

∆̃V (x(t), ı)dt

]

< E

[∫ Tf

0

(−ℵ2(ı)zT (t)z(t) + γ2ℵ2(ı)wT (t)w(t))dt

]
.(23)

From the Dynkin’s formula [27], it follows that

E

[∫ Tf

0

∆̃V (x(t), ı)dt

]

= E[V (x(Tf ), ı(Tf ))]−E[V (x(0), ı(0))]. (24)

Substitute (24) into (23) yields

0 < E

[∫ Tf

0

(−ℵ2(ı)zT (t)z(t) + γ2ℵ2(ı)wT (t)w(t))dt

]

−E[V (x(Tf ), ı(Tf ))] + E[V (x(0), ı(0))].

Using (22) and the fact thatV (x(0) = 0, ı(0)) = 0 and
V (x(Tf ), ı(Tf )) > 0, we have

E

[∫ Tf

0

{
zT (t)z(t)− γ2wT (t)w(t)

}
dt

]
< 0. (25)

Hence the inequality (7) holds. This completes the proof of
Lemma 1.

Knowing that the filter’s premise variable is the same as
the plant’s premise variable, the left hand side of (10) can be
re-expressed as follows:

P (ı)Aij
cl(ı) + (Aij

cl(ı))
T P (ı)

+γ−2P (ı)Bij
cl (ı)(B

ij
cl (ı))

T P (ı)
+

∑s
k=1 λıkP (k) + (Cij

cl (ı))
T Cij

cl (ı).
(26)

Before providing LMI-based sufficient conditions for the sys-
tem (1) with u(t) = 0 to have anH∞ performance, let us
partition the matrixP (ı) given by Lemma 1 as follows:

P (ı) =
[

X(ı) Y −1(ı)−X(ı)
Y −1(ı)−X(ı) X(ı)− Y −1(ı)

]
(27)

whereX(ı) = XT (ı) ∈ <n×n and Y (ı) = Y T (ı) ∈ <n×n.
Utilizing the partition above, we define the new filter’s input
and output matrices as

Bi(ı)
∆=

[
Y −1(ı)−X(ı)

]
B̂i(ı)

Ci(ı)
∆= Ĉi(ı)Y (ı).

(28)

Using these changes of variable, we have the following theo-
rem.

Theorem 1: Consider the system (5). Given a prescribed
H∞ performanceγ > 0 and any positive constantsδ(ı),
for ı = 1, 2, · · · , s, if there exist matricesX(ı) = XT (ı),
Y (ı) = Y T (ı), Bi(ı) and Ci(ı), i = 1, 2, · · · , r, satisfying the
following linear matrix inequalities:

[
X(ı) I
I Y (ı)

]
> 0 (29)

X(ı) > 0 (30)
Y (ı) > 0 (31)

Ψ11ii(ı) < 0, i = 1, 2, · · · , r (32)
Ψ22ii(ı) < 0, i = 1, 2, · · · , r (33)

Ψ11ij (ı) + Ψ11ji(ı) < 0, i < j ≤ r (34)
Ψ22ij (ı) + Ψ22ji(ı) < 0, i < j ≤ r (35)

where

Ψ11ij (ı)=







Ai(ı)Y (ı)
+Y (ı)AT

i (ı)
+λııY (ı)

+γ−2B̃1i(ı)B̃
T
1j

(ı)


 (∗)T (∗)T

(
C̃1i(ı)Y (ı)

+D̃12(ı)Cj(ı)

)
−I (∗)T

J T (ı) 0 −Y(ı)




(36)

Ψ22ij (ı) =







AT
i (ı)X(ı)

+X(ı)Ai(ı)
+Bi(ı)C2j

(ı)
+ CT

2i
(ı)BT

j (ı)
+C̃T

1i
(ı)C̃1j

(ı)
+

∑s
k=1 λıkX(k)




(∗)T

(
B̃T

1i
(ı)X(ı)

+D̃T
21i

(ı)BT
j (ı)

)
−γ2I




(37)

with

J (ı) =
[√

λ1ıY (ı) · · ·
√

λ(i−1)ıY (ı)

√
λ(i+1)ıY (ı) · · ·

√
λsıY (ı)

]

Y(ı) = diag
{

Y (1), · · · , Y (ı− 1), Y (ı + 1), · · · , Y (s)
}
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B̃1i(ı) = [δ(ı)I I 0 B1i(ı) 0]

C̃1i(ı) =
[γρ(ı)

δ(ı)
HT

1i
(ı)

γρ(ı)
δ(ı)

HT
5i

(ı)

√
2ℵ(ı)ρ(ı)HT

4i
(ı)

√
2ℵ(ı)CT

1i
(ı)

]T

D̃12(ı) =
[

0 0 0 −√2ℵ(ı)I
]T

D̃21i(ı) = [0 0 δ(ı)I D21i(ı) I]

ℵ(ı) =


1 + ρ2(ı)

r∑

i=1

r∑

j=1

[
‖HT

2i
(ı)H2j (ı)‖

+‖HT
7i

(ı)H7j (ı)‖
]) 1

2
,

then the prescribedH∞ performanceγ > 0 is guaranteed.
Furthermore, a suitable filter is of the form (8) with

Âij(ı) =
[
Y −1(ı)−X(ı)

]−1Mij(ı)Y −1(ı)
B̂i(ı) =

[
Y −1(ı)−X(ı)

]−1Bi(ı)
Ĉi(ı) = Ci(ı)Y −1(ı)

(38)

where

Mij(ı) = −AT
i (ı)−X(ı)Ai(ı)Y (ı)

−[
Y −1(ı)−X(ı)

]
B̂i(ı)C2j (ı)Y (ı)

−∑s
k=1 λıkY −1(k)Y (ı)

−C̃T
1i

(ı)
[
C̃1j (ı)Y (ı) + D̃12(ı)Ĉj(ı)Y (ı)

]

−γ−2
{

X(ı)B̃1i(ı) +
[
Y −1(ı)−X(ı)

]
B̂i(ı)D̃21i(ı)

}
B̃T

1j
(ı).
(39)

Proof: Suppose there existX(ı) and Y (ı) such that the
inequalities (29) and (30)-(31) hold. The inequality (29)
implies that the matrixP (ı) defined in (26) is a positive
definite matrix. Using the partition (27), the filter (28) and

multiplying (26) to the left by
[

Y (ı) I
Y (ı) 0

]
and to the right

by
[

Y (ı) Y (ı)
I 0

]
, we have

[
Φ11ij

(ı) 0
0 Φ22ij (ı)

]
(40)

where

Φ11ij (ı) = Ai(ı)Y (ı) + Y (ı)AT
i (ı) + λııY (ı)

+[Y (ı)C̃T
1i

(ı) + CT
i (ı)D̃T

12(ı)]×
[Y (ı)C̃T

1i
(ı) + CT

i (ı)D̃T
12(ı)]

T

+γ−2B̃1i
(ı)B̃T

1j
(ı) + J (ı)Y−1(ı)J T (ı)(41)

Φ22ij (ı) = AT
i (ı)X(ı) + X(ı)Ai(ı)

+Bi(ı)C2j (ı) + CT
2i

(ı)BT
j (ı)

+γ−2
[
X(ı)B̃1i

(ı) + Bi(ı)D̃21j
(ı)

]
×

[
B̃T

1i
(ı)X(ı) + D̃T

21i
(ı)BT

i (ı)
]

+C̃T
1i

(ı)C̃1j (ı) +
s∑

k=1

λıkX(k). (42)

Note that Φ11ij
and Φ22ij

are the Schur complements of
Ψ11ij andΨ22ij . Using (32)-(35), we have (40) less than zero.

Hence, by Theorem 1, we learn that the inequality (7) holds.

B. CaseII–ν(t) is unavailable for feedback

Now, the premise variable of the fuzzy modelν(t) is
unavailable for feedback which impliesµi is unavailable for
feedback. Hence, we cannot select our filter which depends
on µi. Thus, we select our filter as follows.

˙̂x(t) =
∑r

i=1

∑r
j=1 µ̂iµ̂j

[
Âij(ı)x̂(t) + B̂i(ı)y(t)

]

ẑ(t) =
∑r

i=1 µ̂iĈi(ı)x̂(t)
(43)

whereµ̂i depends on the premise variable of the filter which
is different fromµi.

By applying the same technique used in Case A, we have the
following theorem.

Uncertain Fuzzy System

(3)
y(t)

w(t)
z(t)

x(t) x(t)

Σ
r

i=1
µ Bii

Σ
i=1

r

µ iC i

Σ Σ
i=1

r r

j=1

µ iµ jA ij

e(t)=z(t)−z(t)

z(t)

.

Σ

Σ
+

+

+

−

Fuzzy Filter 
(23)

Fig. 3. Block diagram of an uncertain fuzzy system with a non-fragileH∞
fuzzy filter in Case B.

Theorem 2: Consider the system (5). Given a prescribed
H∞ performanceγ > 0 and any positive constantsδ(ı),
for ı = 1, 2, · · · , s, if there exist matricesX(ı) = XT (ı),
Y (ı) = Y T (ı), Bi(ı) and Ci(ı), i = 1, 2, · · · , r, satisfying the
following linear matrix inequalities:

[
X(ı) I
I Y (ı)

]
> 0 (44)

X(ı) > 0 (45)
Y (ı) > 0 (46)

Ψ11ii(ı) < 0, i = 1, 2, · · · , r (47)
Ψ22ii(ı) < 0, i = 1, 2, · · · , r (48)

Ψ11ij
(ı) + Ψ11ji

(ı) < 0, i < j ≤ r (49)
Ψ22ij (ı) + Ψ22ji(ı) < 0, i < j ≤ r (50)
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where

Ψ11ij (ı)=







Ai(ı)Y (ı)
+Y (ı)AT

i (ı)
+λııY (ı)

+γ−2 ˜̄B1i(ı)
˜̄BT
1j

(ı)


 (∗)T (∗)T

(
˜̄C1i(ı)Y (ı)

+ ˜̄D12(ı)Cj(ı)

)
−I (∗)T

J T (ı) 0 −Y(ı)




(51)

Ψ22ij (ı) =







AT
i (ı)X(ı)

+X(ı)Ai(ı)
+Bi(ı)C2j (ı)
+CT

2i
(ı)BT

j (ı)
+ ˜̄CT

1i
(ı) ˜̄C1j (ı)

+
∑s

k=1 λıkX(k)




(∗)T

(
˜̄BT
1i

(ı)X(ı)
+ ˜̄DT

21i
(ı)BT

j (ı)

)
−γ2I




(52)

with

J (ı) =
[√

λ1ıY (ı) · · ·
√

λ(i−1)ıY (ı)
√

λ(i+1)ıY (ı) · · ·
√

λsıY (ı)
]

Y(ı) = diag
{

Y (1), · · · , Y (ı− 1), Y (ı + 1), · · · , Y (s)
}

˜̄B1i(ı) = [δ(ı)I I 0 B1i(ı) 0]

˜̄C1i(ı) =
[γρ̄(ı)

δ(ı)
H̄T

1i
(ı)

γρ̄(ı)
δ(ı)

H̄T
5i

(ı)

√
2ℵ̄(ı)ρ̄(ı)H̄T

4i
(ı)

√
2ℵ̄(ı)CT

1i
(ı)

]T

˜̄D12(ı) =
[

0 0 0 −√2ℵ̄(ı)I
]T

˜̄D21i(ı) = [0 0 δ(ı)I D21i(ı) I]

ℵ̄(ı) =


1 + ρ̄2(ı)

r∑

i=1

r∑

j=1

[
‖H̄T

2i
(ı)H̄2j (ı)‖

+‖H̄T
7i

(ı)H̄7j (ı)‖
]) 1

2
,

then the prescribedH∞ performanceγ > 0 is guaranteed.
Furthermore, a suitable filter is of the form (43) with

Âij(ı) =
[
Y −1(ı)−X(ı)

]−1Mij(ı)Y −1(ı)
B̂i(ı) =

[
Y −1(ı)−X(ı)

]−1Bi(ı)
Ĉi(ı) = Ci(ı)Y −1(ı)

(53)

where
Mij(ı) = −AT

i (ı)−X(ı)Ai(ı)Y (ı)
−[

Y −1(ı)−X(ı)
]
B̂i(ı)C2j

(ı)Y (ı)
−∑s

k=1 λıkY −1(k)Y (ı)
− ˜̄CT

1i
(ı)

[
˜̄C1j (ı)Y (ı) + ˜̄D12(ı)Ĉj(ı)Y (ı)

]

−γ−2
{

X(ı) ˜̄B1i(ı) +
[
Y −1(ı)−X(ı)

]
B̂i(ı) ˜̄D21i(ı)

}
˜̄BT
1j

(ı).
(54)

Proof: It can be shown by employing the same technique used
in the proof for Theorem 1.

IV. ILLUSTRATIVE EXAMPLES

Example 1: Consider the tunnel diode circuit shown in
Figure 4 where the tunnel diode is characterized by

vv
c

C

i

R

i icL

+

−

L
D

D

Fig. 4. Tunnel diode circuit.

iD(t) = 0.002vD(t) + αv3
D(t)

whereα is the characteristic parameter. The circuit is governed
by the following state equations:

Cẋ1(t) = −0.002x1(t)− αx3
1(t) + x2(t)

Lẋ2(t) = −x1(t)−Rx2(t) + 0.1w2(t)
y(t) = Jx(t) + 0.1w1(t)

z(t) =
[

x1(t)
x2(t)

] (55)

where w(t) is the disturbance noise input,y(t) is the mea-
surement output,z(t) is the state to be estimated andJ is
the sensor matrix. Note that the variablesx1(t) and x2(t)
are the deviation variables (variables deviate from the desired
trajectories). The parameters in the circuit are given as follows:
C = 20 mF , L = 1000 mH and R = 10 Ω. Suppose that
this system is aggregated into 3 modes as shown in Table 6.1:

TABLE I
SYSTEM TERMINOLOGY.

Mode ı α(ı)±∆α(ı)

1 0.01±10%
2 0.02±10%
3 0.03±10%

with the nominal transition probability matrix that relates the
three operation modes

Pık =




0.67 0.17 0.16
0.30 0.47 0.23
0.26 0.10 0.64


 .

With these parameters, (55) can be rewritten as

ẋ1(t) = −0.1x1(t)−
(

[α(ı)+∆α(ı)]
C x2

1(t)
)
· x1(t)

+50x2(t)
ẋ2(t) = −x1(t)− 10x2(t) + 0.1w2(t)
y(t) = Jx(t) + 0.1w1(t)

z(t) =
[

x1(t)
x2(t)

]
.

(56)
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For the sake of simplicity, we will use as few rules as
possible. Assuming that|x1(t)| ≤ 3, the nonlinear network
system (56) can be approximated by the following TS fuzzy
model:

Plant Rule 1: IF x1(t) is M1(x1(t)) THEN

ẋ(t) = [A1(ı) + ∆A1(ı)]x(t) + B11(ı)w(t), x(0) = 0,

z(t) = C11(ı)x(t),
y(t) = C21(ı)x(t) + D211(ı)w(t).

Plant Rule 2: IF x1(t) is M2(x1(t)) THEN

ẋ(t) = [A2(ı) + ∆A2(ı)]x(t) + B12(ı)w(t), x(0) = 0,

z(t) = C12(ı)x(t),
y(t) = C22(ı)x(t) + D212(ı)w(t)

where

A1(1) =
[ −0.1 50

−1 −10

]
, A2(1) =

[ −4.6 50
−1 −10

]
,

A1(2) =
[ −0.1 50

−1 −10

]
, A2(2) =

[ −9.1 50
−1 −10

]
,

A1(3) =
[ −0.1 50

−1 −10

]
, A2(3) =

[ −13.6 50
−1 −10

]
,

B11(ı) = B12(ı) =
[

0 0
0 0.1

]
,

C11(ı) = C12(ı) =
[

1 0
0 1

]
,

C21(ı) = C22(ı) = J, D211(ı) = D212(ı) =
[

0.1 0
]
,

∆A1(ı) = F (x(t), ı, t)H11(ı)

and A2(ı) = F (x(t), ı, t)H12(ı).

Now, by assuming that‖F (x(t), ı, t)‖ ≤ ρ(ı) = 1, we have

H11(1) =
[

0 0
0 0

]
, H12(1) =

[ −0.45 0
0 0

]
,

H11(2) =
[

0 0
0 0

]
, H12(2) =

[ −0.9 0
0 0

]
,

H11(3) =
[

0 0
0 0

]
andH12(3) =

[ −1.35 0
0 0

]
.

Note that the plot of the membership function Rules 1 and 2
is the same as in Figure 5.
Case I-ν(t) is available for feedback

In this case,x1(t) = ν(t) is assumed to be available for
feedback; for instance,J = [1 0]. This implies thatµi is
available for feedback. Using the LMI optimization algorithm
and Theorem 1 withγ = 1 and δ(1) = δ(2) = δ(3) = 1, we
obtain

X(1) =
[

1.3527 4.1536
4.1536 23.7154

]
,

Y (1) =
[

15.9976 −0.2409
−0.2409 0.5000

]
,

1

0

1

2 

M  (x  )

M  (x  )

x 

1

1

1
 −3  3

Fig. 5. Membershipfunctions for the two fuzzy set.

Â11(1) =
[ −50.5324 −1.7600
−9.7924 −0.5462

]
,

Â12(1) =
[ −50.5324 −1.7600
−9.7924 −0.5462

]
,

Â21(1) =
[ −53.3639 −1.8542
−19.4469 −0.3911

]
,

Â22(1) =
[ −53.3639 −1.8542
−19.4469 −0.3911

]
,

B̂1(1) =
[

0.2743
−0.9846

]
, B̂2(1) =

[
0.3067
−1.2423

]
,

Ĉ1(1) =
[ −35.3553 −1.1213

]
,

Ĉ2(1) =
[ −35.3553 0.1110

]
,

X(2) =
[

1.1422 3.3069
3.3069 19.7273

]
,

Y (2) =
[

8.8351 −0.1880
−0.1880 0.3363

]
,

Â11(2) =
[ −52.3064 −2.3475
−3.8388 −0.5670

]
,

Â12(2) =
[ −52.3064 −2.3475
−3.8388 −0.5670

]
,

Â21(2) =
[ −58.4742 −2.4526
−25.9706 −0.1006

]
,

Â22(2) =
[ −58.4742 −2.4526
−25.9706 −0.1006

]
,

B̂1(2) =
[

0.4488
−1.6417

]
, B̂2(2) =

[
0.0851
−0.5918

]
,

Ĉ1(2) =
[ −35.3553 −0.1998

]
,

Ĉ2(2) =
[ −35.3553 −0.2554

]
,
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X(3) =
[

0.9146 2.5472
2.5472 16.0807

]
,

Y (3) =
[

5.8540 −0.1805
−0.1805 0.2579

]
,

Â11(3) =
[ −53.3336 −2.8124
−0.7319 −0.7547

]
,

Â12(3) =
[ −53.3336 −2.8124
−0.7319 −0.7547

]
,

Â21(3) =
[ −63.4126 −3.1736
−22.7881 −0.0209

]
,

Â22(3) =
[ −63.4126 −3.1736
−22.7881 −0.0209

]
,

B̂1(3) =
[

0.7630
−2.9262

]
, B̂2(3) =

[
0.0795
−0.7686

]
,

Ĉ1(3) =
[ −35.3553 −1.6653

]
,

Ĉ2(3) =
[ −35.3553 0.2665

]
.

The resulting fuzzy filter is

˙̂x(t) =
∑2

i=1

∑2
j=1 µiµjÂij(ı)x̂(t)

+
∑2

i=1 µiB̂i(ı)y(t)
ẑ(t) =

∑2
i=1 µiĈi(ı)x̂(t)

(57)

where
µ1 = M1(x1(t)) and µ2 = M2(x1(t)).

Case II-ν(t) is unavailable for feedback
In this case,x1(t) = ν(t) is assumed to be unavailable

for feedback; for instance,J = [0 1]. This implies that
µi is unavailable for feedback. Using the LMI optimization
algorithm and Theorem 2 withγ = 1 and δ(1) = δ(2) =
δ(3) = 1 , we obtain

X(1) =
[

1.3721 4.2243
4.2243 24.1080

]
,

Y (1) =
[

14.7533 −0.2063
−0.2063 0.4399

]
,

Â11(1) =
[ −50.7139 −1.7308
−22.5449 −0.0146

]
,

Â12(1) =
[ −50.7139 −1.7308
−22.5449 −0.0146

]
,

Â21(1) =
[ −53.6150 −1.7741
−24.4667 −0.8441

]
,

Â22(1) =
[ −53.6150 −1.7741
−24.4667 −0.8441

]
,

B̂1(1) =
[

0.1802
−0.7387

]
, B̂2(1) =

[
0.5358
−1.8729

]
,

Ĉ1(1) =
[ −35.3553 1.0222

]
,

Ĉ2(1) =
[ −35.3553 0.1221

]
,

X(2) =
[

1.1564 3.3632
3.3632 20.0687

]
,

Y (2) =
[

8.1386 −0.1553
−0.1553 0.2925

]
,

Â11(2) =
[ −52.9363 −2.1627
−15.3598 0.3097

]
,

Â12(2) =
[ −52.9363 −2.1627
−15.3598 0.3097

]
,

Â21(2) =
[ −59.2867 −2.2823
−28.1564 −0.9187

]
,

Â22(2) =
[ −59.2867 −2.2823
−28.1564 −0.9187

]
,

B̂1(2) =
[

0.5723
−1.6360

]
, B̂2(2) =

[
1.0338
−1.7367

]
,

Ĉ1(2) =
[ −35.3553 −1.4211

]
,

Ĉ2(2) =
[ −35.3553 0

]
,

X(3) =
[

0.9254 2.5969
2.5969 16.4096

]
,

Y (3) =
[

5.4341 −0.1491
−0.1491 0.2228

]
,

Â11(3) =
[ −54.8946 −2.9091
−12.0349 0.4766

]
,

Â12(3) =
[ −54.8946 −2.9091
−12.0349 0.4766

]
,

Â21(3) =
[ −64.5265 −2.7580
−24.0698 −1.2716

]
,

Â22(3) =
[ −64.5265 −2.7580
−24.0698 −1.2716

]
,

B̂1(3) =
[

1.0373
−1.1620

]
, B̂2(3) =

[
1.1281
−1.5550

]
,

Ĉ1(3) =
[ −35.3553 1.4877

]
,

Ĉ2(3) =
[ −35.3553 −0.3775

]
.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 4, 2010 29



The resultingfuzzy filter is

˙̂x(t) =
∑2

i=1

∑2
j=1 µ̂iµ̂jÂij(ı)x̂(t)

+
∑2

i=1 µ̂iB̂i(ı)y(t)
ẑ(t) =

∑2
i=1 µ̂iĈi(ı)x̂(t)

(58)

where
µ̂1 = M1(x̂1(t)) and µ̂2 = M2(x̂1(t)).

Remark 1: Figures 6(a)-6(b), respectively, show the re-
sponses ofx1(t) and x2(t) in Cases I and II. Figure 7
shows the result of the changing between modes during the
simulation with the initial mode 2. The disturbance input
signal, w(t), which was used during the simulation is given
in Figure 8. The simulation results for the ratio of the filter
error energy to the disturbance input noise energy obtained by
using the non-fragileH∞ fuzzy filter are depicted in Figure
9. After 15 seconds, the ratio of the filter error energy to
the disturbance input noise energy tends to a constant value
which is about0.33 in Case I and0.38 in Case II. Thus,
in Case I whereγ =

√
0.33 = 0.574 and in Case II where

γ =
√

0.38 = 0.616, both are less than the prescribed value
1.

Example2: Considerthe following nonlinear system.

[
ẋ1(t)
ẋ2(t)

]
=

[ − 0.05
J(ı)

0.005
J(ı) x2(t)

−0.005x2(t) −10

] [
x1(t)
x2(t)

]

+
[

0 0
0.1 0

]
w(t)

+
[ − 0.05

∆J(ı)
0.005
∆J(ı)x2(t)

0 0

] [
x1(t)
x2(t)

]

z(t) =
[

1 0
0 1

] [
x1(t)
x2(t)

]

y(t) = Sx(t) +
[

0 0.1
]
w(t)

(59)
wherex(t) = [xT

1 (t) xT
2 (t)]T is the state variables,w(t) =

[wT
1 (t) wT

2 (t)]T is the disturbance input,z(t) is the controlled
output,y(t) is the measured output andS is the sensor matrix.

Assume that, the system is aggregated into 3 modes as
shown in Table II:

TABLE II
SYSTEM TERMINOLOGY.

Mode ı J(ı)±∆J(ı)

1 0.0005±10%
2 0.005±10%
3 0.05±10%

The transitionprobability matrix that relates the three op-
eration modes is given as follows:

Pık =




0.67 0.17 0.16
0.30 0.47 0.23
0.26 0.10 0.64
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Fig. 6. The histories ofx1(t) andx2(t) in Cases I and II.
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Fig. 7. The result of the changing between modes during the simulation
with the initial mode 2.
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Fig. 8. The disturbance input noise,w(t).

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec)

R
at

io
 o

f t
he

 fi
lte

r 
er

ro
r 

en
er

gy
 to

 th
e 

di
st

ur
ba

nc
e 

en
er

gy

Case I
Case II

Fig. 9. The ratio of the filter error energy to the disturbance noise energy:( ∫ Tf
0 (z(t)−ẑ(t))T (z(t)−ẑ(t))dt

∫ Tf
0 wT (t)w(t)dt

)
.

NotethatFigure10 shows the plot of the membership function
represented by

M1(x2(t)) =
−x2(t) + N2

N2 −N1
and M2(x2(t)) =

x2(t)−N1

N2 −N1
.

Knowing that x2(t) ∈ [N1 N2], the nonlinear system (59)
can be approximated by the following two rules TS model:
Plant Rule 1:

IF x2(t) is M1(x2(t)) THEN

ẋ(t) = [A1(ı) + ∆A1(ı)]x(t) + B11(ı)w(t), x(0) = 0,

z(t) = C11(ı)x(t),
y(t) = C21(ı)x(t) + D211(ı)w(t),

Plant Rule 2:

IF x2(t) is M2(x2(t)) THEN

1 21

0

M  (x  ) M  (x  )

N21N x  (t)
2

2 2

−3 30

Fig. 10. Membershipfunctions for the two fuzzy set.

ẋ(t) = [A2(ı) + ∆A2(ı)]x(t) + B12(ı)w(t), x(0) = 0,

z(t) = C12(ı)x(t),
y(t) = C22(ı)x(t) + D212(ı)w(t)

wherex(t) =
[

x1(t)
x2(t)

]
,

A1(1) =
[ −100 10N1

−0.005N1 −10

]
,

A2(1) =
[ −100 10N2

−0.005N2 −10

]
,

A1(2) =
[ −10 N1

−0.005N1 −10

]
,

A2(2) =
[ −10 N2

−0.005N2 −10

]
,

A1(3) =
[ −1 0.1N1

−0.005N1 −10

]
,

A2(3) =
[ −1 0.1N2

−0.005N2 −10

]
,

B11(1) = B11(2) = B11(3) =
[

0 0
0.1 0

]
,

C11(1) = C11(2) = C11(3) =
[

1 0
0 1

]
,

C21(1) = C21(2) = C21(3) = S,

D211(1) = D211(2) = D211(3) =
[

0 0.1
]
,

B12(1) = B12(2) = B12(3) =
[

0 0
0.1 0

]
,

C12(1) = C12(2) = C12(3) =
[

1 0
0 1

]
,

C22(1) = C22(2) = C22(3) = S,

D212(1) = D212(2) = D212(3) =
[

0 0.1
]
,

∆A1(ı) = F (x(t), ı, t)H11(ı)

and ∆A2(ı) = F (x(t), ı, t)H12(ı)
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with ‖F (x(t), ı, t)‖ ≤ 1. Then we define

H11(ı) =
[ − 0.05

J(ı)
0.05
J(ı)N1

0 0

]

and H12(ı) =
[ − 0.05

J(ı)
0.05
J(ı)N2

0 0

]
.

Applying Theorem1 and 2, we obtain the results as shown
in Figure 11-13. The resulting fuzzy filter is

˙̂x(t) =
∑2

i=1

∑2
j=1 µ̂iµ̂jÂij(ı)x̂(t)

+
∑2

i=1 µ̂iB̂i(ı)y(t)
ẑ(t) =

∑2
i=1 µ̂iĈi(ı)x̂(t)

(60)

where
µ̂1 = M1(x̂1(t)) and µ̂2 = M2(x̂1(t)).
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Fig. 11. The histories ofx1(t) andx2(t) in Cases I and II.

Remark 2: Figures 11(a)-11(b), respectively, show the re-
sponses ofx1(t) and x2(t) in Cases I and II. Figure 7 shows
the result of the changing between modes during the simulation
with the initial mode 2. The disturbance input signal,w(t),
which was used during the simulation is given in Figure
12. The simulation results for the ratio of the filter error
energy to the disturbance input noise energy obtained by
using the non-fragileH∞ fuzzy filter are depicted in Figure
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Fig. 12. The disturbance input noise,w(t).

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

Time (sec)

R
at

io
 o

f t
he

 fi
lte

r 
er

ro
r 

en
er

gy
 to

 th
e 

di
st

ur
ba

nc
e 

en
er

gy

Case I
Case II

Fig. 13. The ratio of the filter error energy to the disturbance noise energy:∫ t
0 (z(t)−ẑ(t))T (z(t)−ẑ(t))dt∫ t

0 wT (t)w(t)dt
.

13. After 50 seconds,the ratio of the filter error energy to
the disturbance input noise energy tends to a constant value
which is about0.02 in Case I and0.08 in Case II. Thus,
in Case I whereγ =

√
0.02 = 0.141 and in Case II where

γ =
√

0.08 = 0.283, both are less than the prescribed value
1.

V. CONCLUSION

The aim of a filter is to estimate the values of internal
system variables that are not measured from the available
output. Estimation problems arise in diverse fields such as
communication, control and signal processing. This paper
addresses the problem of designing a non-fragileH∞ filter for
a class of robust uncertain Markovian jump nonlinear systems
that guarantees theL2-gain from an exogenous input to a
filter error is less or equal to a prescribed value. Based on
an LMI approach, solutions to the problem of the non-fragile
H∞ fuzzy filtering are derived in terms of a family of linear
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matrix inequalities.In this article, the premise variables of
the non-fragileH∞ fuzzy filter are allowed to be different
from the premise variables of the TS fuzzy model of the plant
such that the results are shown into two cases which are the
premise variable of the fuzzy model be measurable and the
premise variable assumed to be unmeasurable.
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