
Multiplicable Discrete Operators In Finite Volume Solvers
DRAGAN VIDOVI Ć

Institute For The Development
Of Water Resources

“JaroslavČerni”
JaroslavaČernog 80,

11226 Pinosava, Belgrade
SERBIA

draganvid@gmail.com

MILENKO PUŠIĆ
Department For Hydrogeology

Faculty For Mining And Geology
-Dušina 7,

11000 Belgrade
SERBIA

mpusic@ptt.rs

MILAN DIMKI Ć
Institute For The Development

Of Water Resources
“JaroslavČerni”

JaroslavaČernog 80,
11226 Pinosava, Belgrade

SERBIA
jdjcerni@jcerni.co.rs

Abstract— This paper presents a technique for implicit PDE
solver implementation using multiplicable discrete analogues of
first-order differential operators and constitutive relations. The
technique is intended for mimetic discretizations, but may be
used for other methods as well. As a model problem, Laplace
equation is solved using this technique and the finite volume
method. Several mimetic methods to reconstruct the flux in mesh
faces have been proposed, as well as a method to reconstruct the
node velocity.

Keywords— Mimetic discretizations, Discrete operators, Fi-
nite volumes, Groundwater, Laplace equation

I. I NTRODUCTION

Most partial differential equations (PDEs) arising
from physics are combinations of first-order differential
operators and constitutive relations. Commonly used dif-
ferential operators are the divergence, the gradient, and the
curl, while examples of constitutive relations are Fick’s
law, Darcy’s law, or Hooke’s law.

Differential operators satisfy integral identities closely
related to conservation laws of continuum mechanics, such
as Gauss theorem. Support operator method (SOM) [12],
[13], [6], [5], [7] uses such an integral identity to derive a
discrete analog of a differential operator that satisfies the
same identity. Then an orthogonality relation is used to
obtain a dual operator.

Discrete difference operators constructed in this way
are sometimes calledmimetic because they mimic sym-
metry properties of their continuum counterparts. These
symmetry properties allow to prove exact discrete ana-
logues of conservation laws, and the convergence of the
resulting numerical schemes [3], [10], [17].

The requirement that discrete difference operators
result from integral identities leads to another requirement
that, instead of directly discretizing additive PDE terms,
which may be combinations of differential operators and
constitutive relations, first-order difference operators and
discrete versions of constitutive relations are combined
by means of operator multiplication to obtain discrete
versions of additive terms. Even discrete operators that
were not constructed using SOM are often presented as
multiples of simpler operators.

While this guideline is often followed when deriving
discretization schemes, software tools for solving PDEs
do not offer a possibility to combine basic difference
operators and constitutive relations by multiplying them.
Instead, they allow combining configurable additive terms.

Although this approach is flexible enough for most
engineering applications, researchers developing numer-
ical schemes could benefit from multiplicable discrete
operators. Assembling a sparse computational matrix of
an implicit PDE solver is a complicated task, and this
is the reason why explicit Euler method, which does
not use a computational matrix, is still used by many
researchers, even though it imposes a limit on the time step
which is often prohibitive. Writing a code that assembles a
computational matrix is simplified by using multiplicable
operators, and this way the time needed to develop a pilot
code can be decreased.

Discretization of a linear continuous operator leads to
a linear discrete operator, but it operates on a discrete field
a part of which is fixed by boundary conditions. Seen as
an operator on the unknown part of its operand field only,
the discrete linear operator becomes affine. Such affine
operators can still be combined by multiplication, and this
has been investigated in this paper.

While matrix-based multiplicable operators may add
some small overhead in the computational time, such
overhead is often acceptable in a pilot code, and it is not
comparable to the enormous overhead added by explicit
Euler time discretization.

In transient problems, assembling a computational
matrix typically takes time which is comparable to the
computation of one time step. In problems where the
matrix is computed only once because it does not change
in time, some overhead in the time needed to assemble
the matrix is often acceptable.

Memory overhead added by this technique can be
significant. In our program, assembling the linear system
takes approximately 10% more memory then solving
it. Memory requirements can be reduced if matrix-free
implementation is used for some of the multiplicable
operators.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 3, 2009 125

The SOM method was briefly presented in Section II.
Section III analyses the requirements of the assembling
process on a model problem. Section IV presents some
implementation details, as well as the key parts of the
code. Section V presents numerical results. A method
to reconstruct the nodal velocity vectors for visualization
purposes was presented in Section VI. Accuracy of the
scheme was discussed in Section VII. Sections VIII and
IX present methods for piecewise constant and piecewise
linear flux reconstruction respectively, leading to improved
accuracy. A method to solve the reconstruction systems
was presented in Section X. Conclusion was made in
Section XI.

II. SUPPORT OPERATOR METHOD

The following integral identity
∫

Ω

udivwdΩ+

∫

Ω

w·gradudΩ =

∮

∂Ω

u(w·n)dΓ, (1)

whereu is a scalar field,w is a vector field, andn is the
outer normal on the domain boundary∂Ω, implies that
the gradient is the negative adjoint of the divergence if
the boundary contribution vanishes:

grad = −div∗ (2)

The definition of the divergence operator is extended to
∂Ω in SOM [5] , and the usual scalar product is replaced
with the one that includes a boundary integral. As a result,
equation (2) holds even if the boundary integral does not
vanish.

In this way, operatorgrad may be defined in terms
of operatordiv, or vice versa.

Similar approach can be applied to the curl operator.
For details, see [5].

III. M ODEL PROBLEM

As an illustration, a boundary value problem describ-
ing stationary flow in a porous medium is considered:

div(Kgradh) = 0 on Ω,
h = hb on Γ1,

−(Kgradh) · n = un on Γ2,
(3)

where K is the conductivity matrix,h is the hydraulic
potential,hb and un prescribe respectively the potential
and the outflow rate at the boundary, and∂Ω is an
exclusive union ofΓ1 andΓ2. Mathematical representation
of many other physical processes takes the same form,
including heat transfer through a solid medium. More
information on numerical simulation of flow in porous
medium can be found in [4].

Problem (3) was discretized using one of the standard
variants of the finite volume method. Unknown hydraulic
potential is represented by it point values in cells centers.
The discrete gradient operatorGRAD computes the
differences of these point values in neighboring cells,

subtracting the potential in the cell with the lower cell
number from the potential in the cell with the higher cell
number. At∂Ω, gradient operator computes the difference
between the potential at the boundary face center and
at the boundary cell center. More information on finite
volume methods can be found in [16].

The discrete divergence operatorDIV is defined
using the divergence theorem:

DIVuV =

∫

V

div udV =

∮

∂V

u ·ndΓ =
∑

i

δiui, (4)

whereV is a computational cell,ui is the flux through
facei from the cell with the lower cell number to the cell
with the higher cell number, andδi = 1 if the outer cell
has a lower cell number thanV or if i is a boundary face,
otherwiseδi = −1.

Following the SOM approach, operatorDIV is ex-
tended to the boundary:

DIVu =

{

DIVu insideΩ
−

∫

A
undΓ at ∂Ω

, (5)

whereA is a boundary face.
The divergence and the gradient defined in this way

satisfy an equivalent of (2):

GRAD = −DIV
∗

(6)

This method does not fully follow the SOM approach
becauseDIV andGRAD do not approximate the con-
tinuousdiv andgrad operators. IfDIV is scaled by the
volume of the computational cell, and ifGRAD is scaled
by the distance between the neighboring cell centers, then
these two operators approximate their continuous counter-
parts. However, (6) allows to use the adjoint operation to
construct the discrete gradient operator, like this is done
in SOM.

Written in the matrix form, operatorDIV has the
following structure:

DIV =

[

D1 D2

D3 D4

]

. (7)

If U is the vector of fluxes through the mesh faces, then

DIVU = D1U + D2UN , (8)

where UN contains the prescribed fluxes through the
Γ2 faces, whileU contains all other (unknown) fluxes.
Equation (8) defines an affine operator acting onU that
will be denoted byDiv:

DivU ≡ D1U + D2UN , (9)

OperatorsD3 and D4 compute the divergence at the
boundary as defined by the extension in (5).

Equations (6) and (7) define the structure of the
GRAD operator in matrix form:

GRAD =

[

−D∗

1 −D∗

3

−D∗

2 −D∗

4

]

. (10)

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 3, 2009 126

If H denotes the vector of potential values in cell centers,
HB denotes the vector of potential values at boundary
faces, andH denotes the concatenation of these two
vectors, then

GRADH = −D∗

1H − D∗

3HB . (11)

Equation (11) defines an affine operator acting onH that
will be denoted byGrad:

GradH ≡ −D∗

1H − D∗

3HB . (12)

Even thoughHB also contains the unknown potentials at
Γ2, their corresponding entries inD∗

3 are zero, soD∗

3HB

is known.
Operators−D∗

2 and−D2
4 compute the potential dif-

ferences alongΓ2. Since the flux was prescribed here,
these potential differences are not needed.

OperatorGrad computes the potential differences
between cell centers, whileDiv takes the fluxes as its
argument. It is the task of the constitutive relation, Darcy’s
law, to map one onto another.

The simplest discretization of the constitutive relation
was used. It was assumed that the conductivity is isotropic,
in which caseK reduces to a scalar. OperatorDarcy

mapping GradH to U is represented by a diagonal
matrix with diagonal entries

dii = −
AiKi

li
, (13)

where Ai is the area of facei, Ki is the conductivity
over facei, and li is the distance between the centers of
cells sharing facei, or between the cell center and face
i center for boundary faces. This mapping assumes that
the line connecting the neighboring cell centers is normal
to the face in between. Therefore it is not very accurate
on distorted meshes. However, it leads to a symmetric
discrete Laplacian operator.

A discrete version of (3) is

(Div ∗Darcy ∗Grad)(H) = 0, (14)

where ∗ denotes the operator multiplication defined as
(A ∗ B)(x) = A(B(x)). This relation includes the
boundary conditions.

IV. I MPLEMENTATION ASPECTS

We have used MTL4 library [2] for sparse matrix
and vector operations because most other sparse matrix
libraries do not implement matrix-matrix multiplication.
Distributed and Unified Numerics Environment (DUNE)
[1] was used as a grid interface.

To compute the gradient operator using formula (6),
the adjoint function must knowD∗

3HB , and this infor-
mation is not contained inDiv operator. Therefore, the
implementation of the divergence operator must contain
matrix D1 as well as vectorsD2UN and D∗

3HB . Then

the adjoint function computes the adjoint ofD1 and swaps
the vectors.

The following listing shows how the C++ class rep-
resenting multiplicable operators:

1 template<c l a s s mat r i x t ype ,
2 c l a s s v e c t o r t y p e>
3 c l a s s mulop / / C l a s s o f m u l t i p l i c a b l e
4 / / o p e r a t o r s
5 {
6 p u b l i c :
7
8 / / C o n s t r u c t o r s
9

10 mulop () {}
11 mulop (c o n s t m a t r i x t y p e& A) : A (A) {}
12 mulop (c o n s t m a t r i x t y p e& A,
13 c o n s t v e c t o r t y p e& cons) : A (A) ,
14 cons (cons) {}
15 mulop (c o n s t m a t r i x t y p e& A,
16 c o n s t v e c t o r t y p e& cons ,
17 c o n s t v e c t o r t y p e& cons1) :A (A) ,
18 cons (cons) , cons1 (cons1){}
19
20 / / Other member f u n c t i o n s
21
22 m a t r i x t y p e& m a t r i x ()
23 {
24 re turn A ;
25 }
26 v e c t o r t y p e& v e c t o r ()
27 {
28 re turn cons ;
29 }
30 v e c t o r t y p e& v e c t o r 1 ()
31 {
32 re turn cons1 ;
33 }
34 c o n s t mulop<
35 mt l : : m a t r i x : : s ca l edv i ew<i n t ,
36 ma t r i x t ype>,
37 mt l : : v e c t o r : : s ca l edv i ew<i n t ,
38 v e c t o r t y p e>> operator −() c o n s t
39 {
40 mulop<mtl : : m a t r i x : : s c a l e d v i e w
41 <i n t , ma t r i x t ype>,
42 mt l : : v e c t o r : : s c a l e dv i e w
43 <i n t , v e c t o r t y p e>>

44 n(−1∗ A , −1∗ cons , −1∗ cons1) ;
45 re turn n ;
46 }
47 p r i v a t e :
48 m a t r i x t y p e A ;
49 v e c t o r t y p e cons , cons1 ;
50 } ;

To provide maximum flexibility without compromising
performance, the class was implemented as a template.
Lines 10–18 show various constructors. The private sec-
tion (lines 48–49) contains the matrix and the two vectors
necessary to represent an affine operator and its adjoint.
The access to these private members is provided by
functions shown in lines 22–33. Lines 34–46 show the
unary minus operator. Instead of multiplying each member
of a matrix or a vector with -1, the MTL4 library provides
the scaled_view templates which represent the result

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 3, 2009 127

of such multiplication, and vector elements are multiplied
with the factor when accessing an element of the view.

The following listing shows the adjoint function:

1 template<c l a s s mat r i x t ype ,
2 c l a s s v e c t o r t y p e>
3 mulop<mtl : : m a t r i x : : t r a n s p o s e dv i e w
4 <mat r i x t ype>, v e c t o r t y p e>
5 a d j (mulop<mat r i x t ype , v e c t o r t y p e>& m)
6 {
7 mt l : : m a t r i x : : t r a n s p o s e dv i e w
8 <mat r i x t ype> t r (m. m a t r i x ()) ;
9 mulop<mtl : : m a t r i x : : t r a n s p o s e dv i e w

10 <mat r i x t ype>, v e c t o r t y p e>
11 n (t r ,m. v e c t o r 1 ()) ;
12 / / To c o n s e r v e t h e memory , do
13 / / n o t copy Neumann c o n d i t i o n
14 re turn n ;
15 }

Multiplication of two operators is provided below:

1 template<c l a s s mat r i x t ype ,
2 c l a s s mat r i x t ype1 , c l a s s v e c t o r t y p e ,
3 c l a s s v e c t o r t y p e 1>
4 mulop<mat r i x t ype , v e c t o r t y p e>
5 operator ∗ (c o n s t mulop<mat r i x t ype ,
6 v e c t o r t y p e>& m1, c o n s t mulop
7 <mat r i x t ype1 , v e c t o r t y p e 1>& m2)
8 {
9 mulop<mat r i x t ype , v e c t o r t y p e> m;

10 m. m a t r i x () = m1 . m a t r i x ()∗m2 . m a t r i x () ;
11 i f (m2 . v e c t o r () . s i z e () != 0)
12 {
13 m. v e c t o r () =
14 m1 . m a t r i x ()∗m2 . v e c t o r () ;
15 }
16 i f (m1 . v e c t o r () . s i z e () != 0)
17 {
18 m. v e c t o r () += m1 . v e c t o r () ;
19 }
20 re turn m;
21 }

Multiplication of an operator and a vector is provided
below:

1 template<c l a s s mat r i x t ype ,
2 c l a s s v e c t o r t y p e , c l a s s v e c t o r t y p e 1>
3 v e c t o r t y p e 1 operator ∗
4 (c o n s t mulop<mat r i x t ype ,
5 v e c t o r t y p e>& m, c o n s t v e c t o r t y p e 1& v)
6 {
7 v e c t o r t y p e 1 w;
8 w = m. m a t r i x ()∗ v ;
9 i f (m. v e c t o r () . s i z e ()) != 0)

10 {
11 w += m. v e c t o r () ;
12 }
13 re turn w;
14 }

Linear system (14) is assembled in C++ using the
following notation:

1 l i n s y s = d iv∗ darcy∗(− a d j (d i v)) ;

Variables div, darcy, and linsys are instances of
the samemulop class. The code looping trough mesh

elements in order to initialize operatorsdiv anddarcy
was not shown.

To reduce memory requirements, it is possible to
implement an affine operator that does not store a matrix.
Instead, it computes the non-zero matrix entries on the
fly. In this case a specializedoperator* that multiplies
such affine operator with other affine operators must be
provided.

A method to optimize the performance of a C++ finite
volume code was presented in [18].

V. EXAMPLE

For the computational domain we take the unit cube
(Fig. 1). Outflow rateun ≡ 1 was prescribed on the
right hand boundary face, while the potentialh = 1 − x

was prescribed on all other boundaries. We takeK ≡ 1.
The resulting linear system was solved using BiCGStab
method with ILU preconditioner, provided by MTL4
library. Fig. 1 shows the distribution of the calculated
potential over a symmetry intersection plane.

Fig. 1. The potential.

VI. V ELOCITY RECONSTRUCTION

For the sake of visualization, it is necessary to com-
pute the velocity vectors in mesh nodes. Once the potential
is computed, the fluxes trough mesh faces can be obtained
as (see (14))

F = (Darcy ∗Grad)(H). (15)

This part requires no additional programming because all
operators are already available.

Obtained flux can be seen as a staggered velocity
field. Reconstruction of staggered vector fields has been
studied in [11], [14], and [15]. For visualization purposes,
a simple first order accurate reconstruction method suf-
fices. The velocity vectoruj is reconstructed in each
vertex j of each volumei by solving the linear system

uj · nk = Fk/Ak, k ∈ {1, 2, 3}, (16)

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 3, 2009 128

wherenk is the normal to facek of volumei sharing node
j pointing in the direction of the cell with the higher cell
number, andFk and Ak are the corresponding flux and
the face area, respectively.

On faces where Neumann boundary condition was
prescribed, equation (16) is replaced by

uj · nk = uk, (17)

whereuk is the prescribed normal velocity in facek.
The velocity vectors obtained in this way for each

cell meeting in a node are averaged.

VII. A CCURACY OF THE SCHEME

While the potential field shown in 1 looks reasonable,
the velocity field obtained from this potential by the recon-
struction procedure described in Section VI is way off, as
shown in Fig. 2. The reason is the inaccurate discretization
of the constitutive relation. The exact potential in the
model problem takes values between zero and one, so
this inaccuracy can also be seen in the legend of Fig.
1, which shows values below zero. This does not mean
that the scheme is unbounded: due to the presence of
the Neumann boundary condition, the maximum principle
cannot be applied to this case.

Fig. 2. Reconstructed velocity field.

In practical applications, the flux obtained from (3)
is often needed to compute some sort of transport. Fluxes
leading to the velocity field shown in Fig. 2 are clearly
not accurate enough for such applications.

A method to improve the accuracy has been presented
in [8]. Vector normal to a face is represented as a linear
combination of vector connecting the centers of the two
cells sharing that face, and a vector parallel to that face.
Accordingly, the flux is split into two components. The

parallel component is computed by interpolating cell-
centered gradients to the face in between, while the other
component is computed as in (13). However, the formula
used to compute the cell-centered gradients does not
comply with the orthogonality relation (2) and may cause
the unboundness reported in [8].

VIII. P IECEWISE CONSTANT RECONSTRUCTION

To obtain a more accurate discretization of the con-
stitutive relation, we deploy a reconstruction procedure
similar to the ones presented in [11], [14], [15], and in
Section VI: we are looking for vectoru such that

u · l = −Kl∆h, (18)

for some set of faces, wherel is the vector connecting
the cell centers on the two sides of such a face, directed
towards the cell with the higher cell number,Kl is the
conductivity in the direction ofl, and∆h is the difference
in the potential between these two cells. Equation (18) is
the Darcy law applied between the two cell centers.

In boundary faces where Dirichlet condition was
prescribed, forl we take vectors connecting the boundary
cell center with the boundary face center pointing outside,
and∆h is the difference between the potential prescribed
in the boundary face and the potential in the boundary cell
center.

If Neumann boundary condition was prescribed in
some face, it is imposed instead of (18), like in (17).

Methods presented in [11], [14], [15], and in Section
VI reconstruct the velocity field from its face normal
components. The fact that in (18) we want to reconstruct
the velocity vector from components which are not in the
direction of face normals has an important consequence:
it is not guaranteed that a 3x3 system (17,18) made of
equations corresponding to three faces meeting in one
node is not singular. For example, Fig. 3 shows three
neighboring tetrahedral cells with a common horizontal
base plane and a common top. We assume that the front
face of the middle cell (face ABD) is a boundary face
in which Neumann boundary condition was prescribed.
In order to reconstruct the velocity vector in vertex D
of cell ABCD, we form a linear system containing two
equations of type (18) corresponding to cell pairs ABCD-
ACDE and ABCD-BCDF, and one equation of type (17)
corresponding to face ABD. However, lines connecting the
centers of the presented cells are parallel to the base plane,
which is also true for the normal vector in face ABD if
this face is normal to the base plane, and therefore our
reconstruction system is singular.

To avoid this situation, the linear system is made up
of equations (17,18) corresponding to all faces of a cell.
This system is overdetermined because it has at least four
equations (for tetrahedral cells, otherwise more), and we
use the least squares method to solve it. This gives a
velocity vectoruc for each cellc.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 3, 2009 129

C

F
BA

E

D

Fig. 3. An example reconstruction stencil giving a singular reconstruc-
tion system.

This reconstruction technique is exact for any linear
potential field leading to a constant velocity field, such as
the one presented in Section V. It leads to the same stencil
as the unbounded technique presented in [8], but, since
it does not violate (2), it does not cause unboundness.
The obtained potential field shown in Fig. 4 and the
corresponding velocity field shown in Fig. 5 are exact.

Fig. 4. Potential field - improved accuracy.

IX. PIECEWISE LINEAR RECONSTRUCTION

To obtain a reconstruction technique exact for any
linear velocity field following from a quadratic potential,
the velocity vectoru is represented by a linear function

u(x) = Ax + b, (19)

whereA is a 3 × 3 matrix, x is a position vector, andb
is a constant vector. To determineA andb, it is required
that for some set of facesf

∫

l

u(x) · dl =

∫

l

−K∇h · dl, (20)

where the integrals are taken over adual edge of facef ,
i.e. over the line connecting the centers of cells sharing

Fig. 5. Reconstructed velocity field - improved accuracy.

face f , in the direction of the cell with the higher cell
number. Sinceu is linear, assuming thatK is constant
along l reduces (20) to

u(xf) = −Kl(∆h)f , (21)

wherexf is the coordinate vector of facef center, and
(∆h)f is the change in the potential along the dual edge.

In analogy with (17), equation

u(xf) · nf = uf (22)

is used instead of (21) for faces where Neumann boundary
condition was prescribed.

Expression (19) has 12 degrees of freedom. There-
fore, linear system (21), (22) needs to include at least
12 equations in order to determine a linear velocity field.
It has been shown in [15] that, in the case when dual
edges are normal to the faces, due to the divergence over-
determination the rank of this system is at mostnf−nc+1,
wherenf andnc are respectively the number of faces and
the number of cells entering the reconstruction stencil. It
is said that a cell enters the reconstruction stencil if all its
faces enter the reconstruction stencil. In addition, it has
been shown in Section VIII that the rank can be lost due to
the linear dependence of dual edge vectors. It is therefore
difficult to determine the sufficient reconstruction stencils
in advance. To reconstruct the velocity in a face center,
one can start with a stencil containing the faces of two
neighboring cells and of their neighboring cells, and ex-
tend it dynamically if the obtained linear system becomes
singular or ill-conditioned.

X. SOLVING THE RECONSTRUCTION SYSTEM

In the similar manner piecewise quadratic or piece-
wise cubic reconstruction methods can be constructed,

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 3, 2009 130

requiring larger stencils. As the reconstruction stencil
grows, in order to preserve the diagonal dominance of
the resulting computational matrix it is necessary to give
more importance to the faces near the center of the
reconstruction stencil than to the faces at the edge of it.
The classical least squares with constraints [9] cannot be
used because the equations corresponding to the central
faces may be linearly dependent and contradictory.

One way to solve this problem is to introduce weights.
The equations that should be most closely matched are
multiplied with weights which may be 100 or 1000 times
larger than the weights used to multiply other equations.

However, as the reconstruction stencil grows this
technique becomes inadequate. An alternative is to use
the hierarchical least squares method.

Linear systemAy = b is decomposed into a set of
linear subsystems:

Aiy = bi, i = 1, . . . , s, (23)

wherey ∈ Rn, bi ∈ Rmi and rank(A) ≥ n. We want
to find a family of setsY1 ⊇ Y2 ⊇ · · · ⊇ Ys such that
Yi = {y ∈ Yi−1|‖Aiy−bi‖ is minimal } andY0 = Rn.

We calculate the SVD of matrixA1 and getA1 =

U1S1V
T
1 , whereU1 andV1 are unitary matrices andS1 is

a diagonal matrix containing singular values of matrixA1.
We replace elements ofS1 by their inverses if they are
larger than some tolerance, set others to zero, and denote
the obtained matrix byS−1

1 .
The singular values below the tolerance are indicators

that some of the linear equations are close to being linearly
dependent. By setting these singular values to zero we
treat these equations as if they were linearly dependent,
excluding their weak independence which may lead to
computational instabilities.

Solutiony1
pr ∈ Y1 such that‖y1

pr‖ is minimal is given
by

y1
pr = V1S

−1
1 UT

1 b1. (24)

Strictly speaking, if some of the non-zero singular values
were set to zero, theny1

pr does not really belong to
Y1 because it does not minimize‖Aiy − bi‖. It is
possible to make this norm even smaller by taking into
account these small singular values. This would, however,
lead to instabilities. Therefore we should understand the
minimum in the definition ofYi as the minimum over all
solutions that do not lead to trouble.

Columns of V1 related to the zero (or below the
tolerance) singular values form the basis of the null space
null(A1) = {y|A1y = 0}. We shall denote the matrix
consisting only of these columns byV null

1 . Now

Y1 = {y1
pr + V null

1 y1|y1 ∈ Rn1}, (25)

wheren1 = n−rank(A1). This is because{V null
1 y1|y1 ∈

Rn1} = null(A1) and so{y1
pr + V null

1 y1|y1 ∈ Rn1} =
{y ∈ Rn|A1y = A1y

1
pr}.

We proceed by induction. Suppose that we found
someyi

0 ∈ Yi

yi
0 = Ei







b1

...
bi






, (26)

and thatYi is represented by

Yi = {yi
0 + Fiy

i|yi ∈ Rni}, (27)

whereni > 0. By substitutingy = yi
0+Fiy

i into equation
Ai+1y = bi+1 we obtain

Ai+1Fiy
i = bi+1 − Ai+1y

i
0. (28)

We calculate the SVD ofAi+1Fi = Ui+1Si+1V
T
i+1 and

find
yi+1
pr = Vi+1S

−1
i+1U

T
i+1

(

bi+1 − Ai+1y
i
0

)

(29)

If Ai+1Fi has a nontrivial null space then columns
of Vi+1 related to the zero singular values form the basis
of this null space. We shall denote the matrix consisting
only of these columns byV null

i+1 .
If yi = yi+1

pr + V null
i+1 yi+1 whereyi+1 ∈ Rni+1 , then

Ai+1Fiy
i = Ai+1Fiy

i+1
pr and so

Yi+1 = {yi
0+Fi(y

i+1
pr +V null

i+1 yi+1)|yi+1 ∈ Rni+1} (30)

or

Yi+1 = {yi+1
0 + Fi+1y

i+1|yi+1 ∈ Rni+1}, (31)

where

yi+1
0 = Ei+1







b1

...
bi+1






, Fi+1 = FiV

null
i+1 ,

Ei+1 = (32)
[

Ei − FiVi+1S
−1
i+1U

t
i+1Ai+1Ei FiVi+1S

−1
i+1U

T
i+1

]

.

If Ai+1Fi does not have a nontrivial null space, then
Yi+1 contains onlyyi+1

0 , which is the final solution
to the set of systems (23). In this case it should be
i + 1 = n, otherwise the subsystemsi + 2, . . . , n do
not influence the solution. Ifi + 1 = n and Ai+1Fi has
a nontrivial null space, this means thatrank(A) < n.
In this case we can add an additional subsystem and
continue without restarting the algorithm. Therefore the
reconstruction stencil does not have to be determined a
priori.

XI. CONCLUSION

A technique for implicit PDE solver implementa-
tion using multiplicable operators was presented. Due
to boundary conditions which are incorporated in the
discretization, a discrete version of a linear operator is
not always linear in the unknown part of its operand, but
it may be affine. Such affine operators are combined by
matrix-matrix and matrix-vector multiplication.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 3, 2009 131

This technique has been applied to several variants
of the finite volume method. The first variant is accurate
only if the lines connecting the cell centers are orthogonal
or almost orthogonal to the corresponding face. Instead
of applying the unbounded non-orthogonality correction
found in the literature, we presented a piecewise constant
mimetic discretization of the constitutive relation which
does not suffer from unboundness and does not lead to a
larger stencil, while being exact for piecewise constant
velocity. We also presented a similar piecewise linear
reconstruction of the velocity field, together with a robust
method to solve the resulting reconstruction systems.

Multiplicable operators allow programmers to write
solvers in an intuitive manner which resembles mathe-
matical notation. As this technique is based on the dis-
cretization of individual operators, it facilitates the design
of schemes with favorable properties, such as mimetic
methods.

REFERENCES

[1] Distributed and unified numerics environment. http://www.dune-
project.org/.

[2] The matrix template library 4.
http://www.osl.iu.edu/research/mtl/mtl4/.

[3] N.V. Ardelyan. Method of investigating the convergence of
nonlinear finite-difference schemes.Diff. Eqns., 23(7):737–745,
1987.

[4] Aurel Chirita, Horia Ene, Bogdan Nicolescu, and Ion Carstea.
Numerical simulation of flow in porous medium. InProceedings
of the 1st WSEAS International Conference on Finite Differences
- Finite Elements - Finite Volumes - Boundary Elements, pages
34–38, Malta, 2008.

[5] James M. Hyman and Mikhail Shashkov. Adjoint operators for
the natural discretizations of the divergence gradient and curl
on logically rectangular grids.Applied numerical mathematics,
25(4):413–442, 1997.

[6] James M. Hyman and Mikhail Shashkov. Natural discretizations
for the divergence, gradient, and curl on logically rectangular
grids. International journal of computers & mathematics with
applications, 33:81–104, 1997.

[7] James M. Hyman and Mikhail Shashkov. Approximation of bound-
ary conditions for mimetic finite-difference methods.International
Journal of Computers & Mathematics with Applications, 36:79–99,
1998.

[8] Hrvoje Jasak.Error Analysis and Estimation for the Finite Volume
Method with Applications to Fluid Flows. PhD thesis, Imperial
College, UK, June 1996.

[9] T. Liszka, C. Duarte, and W. Tworzydlo. hp-Meshless cloud
method. Computer Methods in Applied Mechanics and Engineer-
ing, 139:263–288, 1996.

[10] J.B. Perot. Conservation properties of unstructured staggered mesh
schemes.J. Comp. Phys., 159:58–89, 2000.

[11] J.B. Perot, D. Vidovíc, and P. Wesseling. Mimetic reconstruction
of vectors. InCompatible Spatial Discretizations, New York, 2006.
Springer.

[12] A.A. Samarskii, V.F. Tishkin, A.P. Favorskii, and M.Yu Shashkov.
Operational finite-difference schemes.Diff. Eqns., 17:854–862,
1981.

[13] A.A. Samarskii, V.F. Tishkin, A.P. Favorskii, and M.Yu Shashkov.
Employment of the reference-operator method in the construction
of finite difference analogs of tensor operations.Diff. Eqns.,
18:881–885, 1982.

[14] M. Shashkov, B. Swartz, and B. Wendroff. Local reconstruction
of a vector field from its normal components on the faces of grid
cells. J. Comp. Phys., 139:406–409, 1998.

[15] D. Vidović, A. Segal, and P. Wesseling. A superlinearly convergent
finite volume method for the incompressible Navier-Stokes equa-
tions on staggered unstructured grids.Journal of Computational
Physics, 198:159–177, 2004.

[16] B. A. Youssef and E.H. Atta. Digital image inpainting using finite
volume approach and the navier- stokes equations. InProc. of
the 9th WSEAS Int. Conf. on Mathematical and Computational
Methods in Science and Engineering, pages 305–311, Trinidad and
Tobago, 2007.

[17] X. Zhang, D. Schmidt, and J.B. Perot. Accuracy and conservation
properties of a three-dimensional unstructured staggered mesh
scheme for fluid dynamics.Journal of Computational Physics,
175:764–791, 2002.

[18] H. Zindlere and R. Leithner. Optimization of the finite volume
method source code by using polymorphism. InProceedings of
the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal
Engineering and Environment, pages 243–248, Athens, 2007.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 3, 2009 132

