
 

 

 
    Abstract:- This paper  is concerned with an indirect adaptive 
stabilization scheme for first-order continuous-time systems under 
saturated input which is described by a sigmoidal function. The 
control singularities are avoided through a modification estimation 
scheme  for the estimated plant parameter vector so that its 
associated Sylvester matrix is guaranteed to be non-singular and then 
the estimated plant model is controllable. This strategy implies at the 
same time the controllability through time of the modified estimation 
scheme. The  estimation modification mechanism involves the use of 
a hysteresis switching function. An alternative hybrid scheme, whose 
estimated parameters are updated at sampling instants is also given to 
solve a similar adaptive stabilization problem. Such a scheme also 
uses hysteresis switching for modification of the parameter estimates 
so as to ensure the controllability of the estimated plant model.  
 
    Key-Words:- hybrid dynamic systems, discrete systems, saturated  
input,  control, stabilization 
 

I. INTRODUCTION 
 

    THE inputs to physical systems usually present saturation 
phenomena which limit the amplitudes which excite the linear 
dynamics, [1-2]. Also, the adaptive stabilization and control of 
linear continuous and discrete systems  has been successfully 
investigated in the last decades, [3-19]. Classically, the plant 
is  assumed to be inversely stable and its relative degree and 
its high-frequency gain sign are assumed to be known together 
with an absolute upper-bound for that gain in the discrete 
case. Attempts of relaxing such assumptions have been made 
for continuous systems, [5-7]. The assumption on the 
knowledge of the order can be relaxed by assuming a known 
nominal order  and considering the exceeding modes and 
unmodelled dynamics, [13-16], [19-20].Similar issues appear 
in different problems including control theory issues as sliding 
model designs, adaptive control, adaptive sampling and 
biological applications, [21-33] The assumption on the 
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knowledge of the high frequency gain has been removed in [ 
6] and [ 17] and the assumption  of the plant being inversely 
stable has been successfully removed in the discrete case and 
more recently in the continuous one, [ 10-16]. The problem  
has been solved by using either  excitation of the plant signals  
or by exploiting the properties of the standard least-squares 
covariance matrix combined with  an estimation modification 
rule based upon  the use of  a hysteresis switching function, 
[12-16], [ 18].  Such an estimates modification technique 
guarantees that the modified estimated plant model is 
controllable for all time provided that the plant is controllable.  
This  paper presents  an  adaptive  stabilization  algorithm  
for first -order  continuous - time  systems  with  a  zero  
which   can  be  either  stable  or unstable  under  saturated 
input. The saturating device is  modelled  by  a  sigmoidal   
function .  Such an approach is a very good approximation to 
the common saturations usually modelled as piecewise- 
continuous functions. Also, it is an exact model for saturations 
inherent to practical MOS-type amplifiers. The adaptive 
scheme uses a parameter  modification rule which guarantees 
that the absolute value of the determinant  of the Sylvester 
matrix  associated with the  modified  parameter  estimates is 
bounded from below  by a positive threshold and, thus, the 
estimated model is guaranteed to be controllable. That feature 
is the main contribution of this manuscript. A simple 
extension to an hybrid version of the system is also pointed 
out for the case that the dynamics involves previous samples 
of the output, input and its derivative at the previous sampling 
point ran by any predesigned sampling period.   The results 
are then extended to the case when an adaptive stabilizer, 
which re-updates at sampling instants the plant estimates, 
modified estimates and controller parameters, is used for the 
above continuous - time plant. The above strategy results  in a 
hybrid closed-loop system because of  the  discrete nature of 
the  updating procedure of the parametrical estimation/ 
modification algorithm.  
 

II. ADAPTIVE STABILIZATION 
 
    A)    Plant, Estimation / Estimated- Modification Scheme 
and Adaptive Stabilization Law 
   Consider the following continuous-time first-order  
controllable system under saturated input: 
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where the saturated input u ' to the plant (1.a) is modelled by a 
sigmoidal function (1.b), [2]. To simplify the writing , the 
argument (t) is omitted and all the constants are denoted by 
superscripts by  ' * '.  Eqn. 1.a can be rewritten as  
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    Note that the equivalence between (1.a) and (2) is an 
identity where positive and negative terms concerned with the 
unsaturated input and its time-derivative are cancelled in the 
right- hand-side of (2). Define filtered signals 
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for some scalar d * > 0  so that one gets  from (2) for the 
subsequent  filtered signals 
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where  0
*  = y f (0 )  u f

' ( 0 )  has been included  in  *
T

to 

obtain (4) without neglecting the exponentially decaying term 
due to initial  conditions of the filters  1/ ( s + d * ) used in (4) 
as proposed in [13], [15] and[16]. Also, the over-
parametrization of (5.a)-(5.b),  in the sense that the 
coefficients of the numerator polynomial are estimated twice 
with different regressors,  allows  describing (4.a) as driven by  
u f  and u f

'  - u f .  This idea will be then exploited for the 
stability analysis of the adaptive stabilizer. The parameter 

vector  *
T

can now be estimated by using the least-squares 

algorithm: 
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where e is the prediction error ,  = (  1  ,  2 ,  3 ,  4 ,   
5 ,  6 ) T  is the estimate of   * , defined in (5.a),  and P is 
the covariance matrix . The  use of (4.b) into (6) yields 
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   The following modification rule  of the parameter estimates 
is used to guarantee the controllability of the  estimated plant 
model 
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with    being a vector which can be chosen to be equal to one 
of the following vectors 
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 4 =  p 1 - p 4 + p 3   ;     5 = -  4   ;     6 =p 1- p 4 - p 3  
                                                                                    (11.b)  
 7 =- (p 1- p 4 ) + p 3 ;    v = (1 - 4 ) p 3 +  3 ( p 1- p 4) –  
 (p 2 - p 5 )                                                                   (11.c) 
 
and whose current value is selected from a hysteresis 
switching function which is defined by the following rule.  
Define   
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which is the absolute value of the Sylvester matrix of the 
modified  parameter estimates associated with the estimation 
of the plant numerator and denominator polynomials  obtained 
from (8)-(9) and (10)-(12) . Assume that   ( t  )   i ( t  )  

and c( j ( t )) c( m ( t )) for some j = 1 , 2 , ..., 7 with 

j    i  and all  m = 1 , 2 , ... , 7. Thus, for some  prefixed  
design  scalar  *   ( 0, 1] : 
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where p i  denotes the i-th column of P.  This modification 
strategy,  first proposed in [13] for the linear  continuous-time 
case and then  extended in [15-16] to  linear hybrid systems , 
guarantees that  the parametrical error lies in the image of the 
of P (see [13] ), while allowing that the diophantine equation , 
which will be then used for the synthesis of the adaptive 
stabilizer,  will have no  cancellations at any time.  It will be 
then shown  that  the two following conditions are satisfied: 
 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 4, 2010 10



 

 

C1)   converges 
C2)  c (  ) ≥   * > 0.  
 
which will be then  required in the proofs of convergence and  
stability. Eqn. 9 can be rewritten as dependent of the modified 
estimates (10)-(12) as follows : 
 

  Pee)uu()uu(yuuy Tt*d
6f

'
f5f

'
f4f3f2f1f 

           
  Pee)uu( Tt*d

6f
'
f5                      (13) 

 
   The filtered control input u f  to the saturating device and  its 
unfiltered version  u are generated as  follows:  
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with the parameters  r 0 and s 1  of the adaptive stabilizer 
being calculated  for all time from the diophantine polynomial  
equation:  
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with D = d / dt in (15) and C * ( D ) being a strictly Hurwitz 
polynomial that defines the suited  nominal closed-loop 
dynamics.  
  
   B)   Stability and Convergence  Results 
   They are summarized in the following main result: 
 
Theorem 1. Consider the plant (1) subject to the estimation 
scheme (6) -(8), the modification scheme (10)-(12) and the 
control law (14)-(15). Assume that either  a * 0 ( i. e. , the 

open- loop plant is stable)  or  *
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(i. e. , the initial condition is sufficiently small if the plant is 
unstable).                                                                         
       
   Thus, the resulting closed-loop scheme has the following 
properties: 
 
(i)   The modified estimated plant model is controllable for all 
time for the chosen   in such a way that  c (  ) ≥  * > 0 . 

(ii)   L
~ *  and  e  and P   are  in L   L 2 . 

(iii)  , P,   , s 1 and r 0  are uniformly bounded and 
converge  asymptotically to finite limits. Also,  the number of 

switches in  is finite. Also,   LL 2
 . 

(iv) The signals u , u '  and y  and their corresponding filtered 
signals are in L  L2. The signals  u , u ', u f  ,  u f

'  , y and 

y f  converge to zero and their time-derivatives  are in L  
L 2 so that they converge to zero asymptotically.                                                                                                                                               
   

An outline proof of Theorem 1 is given in Appendix A. Note 
that the requirement of the initial conditions being sufficiently 
small  when the plant is unstable is a usual requirement for 
stabilization in the presence of input saturation since it is 
impossible to globally stabilize an open-loop unstable system 
with saturated input. This avoids the closed- loop system 
trajectory to explode. Such a phenomenon occurs when the 
initial time- derivative of the state vector is positive and 
continues to be positive for all time because its sign cannot be 
modified for any input value within the allowable  input 
range. Note also  that  Theorem 1 (i) -(iii)  imply that 
Conditions C1-C2  for the  - functions of the modification 
scheme are fulfilled. Finally, note that the controllability of 
the modified estimation scheme allows  to keep coprime the 
modified estimates of the polynomials for zeros and poles. 
Thus, the diophantine equation (15) associated with the 
controller synthesis is solvable for all time without any 
singularities. The mechanism which is used to ensure local 
stability for unstable plants and global one for stable ones is to 
guarantee the boundedness of all the unsaturated filtered and 
unfiltered signals from the regressor bondedness while the 
saturated ones are bounded by construction. This also ensures 
the identification (or adaptation) error to be bounded for all 
sampling time since the unmodified and modified plant 
parameter estimates as well as those of the adaptive controller 
are all bounded. The fact that the control signal is bounded is 
ensured  since it is saturated. In  the unsaturated control case, 
the control boundedness  has to be proven explicitly (see, for 
instance,  [21-24]) irrespective of the particular theoretical 
design or application. On the other hand, it turns  out the main 
future interest of appliying saturating controls to otherwise 
positive systems  in the presence of delays or under hybrid 
controls (see, [25-27] ). Related research would be an 
interesting  future investigation field. 
 

III. ADAPTIVE STABILIZATION AND 
CONTROLLABILITY OF THE ESTIMATED-MODIFIED 

MODEL 
 

    Now, the continuous-time plant (1) is subject to the control 
law (14)-(15) under the saturating sigmoidal function  (1.b) 
but the estimation algorithm (6)-(8) only updates parameters 

at the sampling instants  h   1)k ( h     t  t k1k   of 

the sampling  period h while the regressor is evaluated at all 
time for re-updating the various estimates at sampling instants 
only. The estimation modification and calculation of the 
controller parameters is also updated at sampling instants. The 
discrete-time parameter estimation and inverse of the 
covariance matrix adaptation laws are: 
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with  P (0)=P T (0) > 0 and ˜ k   k  

*  for all integer k 
≥ 0 .The main result of this section is stated as  follows: 
 
Theorem 2. Consider the plant (1) subject to the estimation 
scheme (6) and (16), i.e., the parameter estimates are only 
updated at sampling instants, the modification scheme (10)-
(12), with (12) being updated only at  t =k h, and the 
stabilizing control law (14)-(15). Thus, the resulting closed-
loop scheme fulfils the same properties of Theorem 1 under 
the same assumptions.                                                               
 
The proof of Theorem 2 is outlined in Appendix B.   
 

IV. AN ELEMENTARY EXTENSION TO A CLASS OF 
HTBRID DYNAMICS 

    Assume that the system (1.a) is an hybrid one where 
discrete sample measures  influence the dynamics  as follows: 
 

)t(u´uh´uhyh)t('ub)t('ub)t(ya)t(y hk
*
3k

*
2k

*
1

*
1

*
0

* 




  

 
 
where any signal kf  denotes the sampled value  kTf  of f(t) 

where  tzT:zegerintmaxk   at  any time t  with 0T   

being the sampling period and  tu h  is the compensating 

control of the hybrid dynamics. The fact that the discrete-time 
argument k is related to the continuous one k by 

 tzT:zegerintmaxk   is not reflected directly in the 

notation but interpretable directly from the fact that both 
arguments appear simultaneously in the same equation. Now, 
define the output error with respect to its previously sampled 
value as     kytyty~   and generate the compensating 

control as: 
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then the output error evolves through time subject to 
  00y~  according to the similar equation  to (1.a), with the 

replacement    ty~ty  , which follows below: 
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    This error equation may be dealt with exactly in the same 
manner as (1.a) is treated with the saturating control (1.b). 
Then, the ouput of this class of hybrid system satisfies  
 
   ty~yty k   

 
    Further extensions to the case of hybrid schemes from the 
point of view of estimation/modification of Section III are 
direct by combining the results of Sections III and IV. Further 
extensions to the case that  the hybrid part of the dynamics 
involves sampled output derivatives is also direct by 
considering extra terms in the whole hybrid dynamics.  
 

V. CONTROL OF A CLASS OF  STURATION – FREE 
HYBRID SYSTEMS WITH INDEPRNDENT 

CONTINUOUS-TIME AND DISCRETE- TIME 
OBJECTIVES  

 
 Hybrid systems have received important attention in the 
last years In particular , the  optimization  of inputs and the 
fundamental properties of such systems have received 
attention and the multirate sampling of such systems has been 
studied. The importance of those systems arises from the fact 
that continuous and digital subsystems usually operate in a 
combined and integrated fashion. Another important reason to 
deal with such systems  is that it becomes sometimes suitable 
the use  of either discrete-time or digital controllers  for 
continuous plants by  technological implementability reasons.  
A wide class of linear hybrid systems consists of the couplings 
between purely continuous- time systems and digital ones. An 
important issue is the controller synthesis for model matching 
design with separate or combined continuous-time and 
discrete time goals.. Such  a class of hybrid systems is 
characterized by the continuous substate being forced by both 
the current input in continuous time and its sampled value at 
the last preceding sampling instant as well. The objective  of  
this  paper  is  the  design of an hybrid controller that allows 
the hybrid  plant to achieve ,  in  genera  l, separate continuous 
- time and  discrete -time  model- following objectives  in the  
perfectly  modelled  situation . In  this way,  the continuous-
time and discrete-time closed-loop dynamics can be separately 
designed through the synthesis of two subcontrollers  which  
give together the overall , in general, hybrid controller.  The 
subcontroller designed for accomplishing with the discrete-
time control objective has a discrete-time nature while that 
designed to accomplish with the continuous-time objective is 
of a mixed continuous-time and discrete-time nature.  Several 
particular cases which are included in the general  framework 
are for instance: 

 The choice of only a continuous-time reference  model . 
Thus , its digital transfer function is used as discrete 
model  for controller synthesis at sampling instants 

 The use of only a discrete-time reference model under a 
piecewise constant plant input  in-between sampling 
instants.  In such a case, the overall scheme becomes a  
discrete-time one.  

    The use of  the discrete-time reference model for periodic 
testing of the current closed-loop performance designed for a 
continuous-time reference dynamics . If the test fails then the 
continuous-time objective can be  on - line modified  in terms 
of re-adjustment of the input to the (continuous-time) 
reference model or  high-frequency gain re-adjustment to 
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modify either  the transient reference signal or the  steady-
state reference  set point.  
  Each subcontroller is designed  for  the achievement of  the 
corresponding model-following objective in the absence of 
plant unmodelled dynamics. Also, as a part of the design , each 
subcontroller generates a compensating signal to annihilate the 
coupling signals generated from the continuous  signals to the 
discretized output , for the discrete-time control objective , or 
viceversa. when dealing with the continuous control objective.  
Such coupling signals are inherent  to the structure  of the 
open-loop  hybrid plant . Finally, the  overall controller  is 
robust against a class of  unmodelled dynamics and uniformly 
bounded state and measurement noises.  
 
A) Hybrid plant description. The  hybrid plant  
   Consider  the  next single-input single-output hybrid linear 
system ,[15-16]: 

[k]dxcdA[k]cxscA(t)cxcA(t)cx   

b c u (t)b cs u[k]                                         

x d [k1]A d x d [k]A d s x c[k]b c u(t)b cs u[k] 

y( t)cc
T x c (t)c cs

T x c [k]cd
T x d[k]d c u(t)d d u[k]     

                                                                                    (16) 
for t   [ kT , ( k+1) T ) ; all nonnegative integer k , with  T 
being the sampling period , where  x c (.) and x d [.] are, 
respectively,  the n c and n d  continuous and digital 
subvectors  and u (.) a nd  y (.) are  the  scalar input and 
output. The continuous  time argument is denoted by  '(t) '  
while  the discrete time argument is denoted by  ' [ k ] '  and 
the  associated continuous and digital variables are denoted  
correspondingly. Thus, a continuous variable at sampling 
instants is denoted  in the same way as a digital variable so 
that xc[k] =x c ( kT) and u [k] = u ( kT) in (1). In  that way , 
there is no distinction in the treatment of digital and time- 
discretized variables. The orders of all the real constant 
matrices in (16) agree with  the dimensions of the substates 
and scalar  input and output.  
 
B) Descriptioopn at samoling instants  
   The input / output solution of (1)at sampling instants is 
given by the ARMA- model :  
Q d (q) y[k] Pd (q) u[k]Q d (q) (c T [k])           (17) 

for  all nonnegative ionteger k ,  where  c T c c
T c c s

T  ,  Q d 
(q) and  P d (q)  are polynomials of real coefficients which 
might be easility calculaterd of degree  n = n c + n d  and  q is 
the one-step -ahead  shift operator.  The ARMA - model (17) 
is obtained from the extended discrete-time system of state  
x[k][ x c

T[k] , x d
T [k]] T  obtained from (16).  

 
C)Description of  in-betwwen sampling instants 
    The input / output  differential-differencerelationship for (1)  
inbetween sampling instants is given by  
Q c (D)Q d (q) y(t)  Pc (D)Qd (q)u(t)Q c (D)   

 ]k[w)q,D(N]k[u)q,D(N
T

dc
u
dc

                     (18) 

for t  [ kT , ( k+1) T with q and D  being the one-step ahead 
time -shift and time-derivative  defined  by q v( t ) = v ( t + T ) 

and (t)vD(t)v   , respectively , for any differentiable  signal v 
(t)  in the continuous-time argument t  , where Q d ( q) and  P 

d ( q)  are  the  polynomials in (17) while  Q c( q) and  P c( q)  

are  polynomials of degree n c and N cd
u  and N cd

  are  a  

scalar  polynomial  and a  two-variable  n c -  polynomial 
matrix which have been obtained from the above parameters 
but the parametrical definition and its development are 
omitted by space reasons. Note that the term in brackets in the 
right - hand- side of (18) is  a coupling  signal from the  digital  
substate and discretized input to the continuous subsystem of 
(16).  The description (18)  is obtained from an extended 
hybrid system of continuous- time  substate x c(t) and  the 
discrete- time substate x[k][ x c

T[k] , x d
T [k]] T  used  for 

obtaining ( 2 ) at sampling instants . The  next simple 
descriptive example  illustrates the decomposition in 
continuous / discrete ( or digital )  state  variables  of  an input 
/ output  linear mapping involving the operators D and q as it 
occurs in the general description of  (18 ).  
 
Example  
    Consider  the  input/ output linear mapping  v (t ) =  H 1 (D) 
H 3 (q) [k ]+H2(D) (t)  driven by the discrete input [k]  

and  the continuous one  (t)  whereH 1 (D) 
D  a

D b
 ; 

H 2 (D) 
1

D  c
 ; H 3 (q) 

q 1

q 2
 with a , b and c being real 

constants. Define now  two  continuous-time  variables  v1 (t) 
and v 2 (t)  and a digital variable   1 [ k ]  given by the 

dynamics  v1 (t) =   
D  a
D  b

  1 [ k ], v2(t) =
1

D  c
 t) and v 

3 [ k ]  = 
q 1
q  2

 [ k]  . Thus , the overall state - space 

representation  is described by   
 

v(t ) v 1(t ) v 2 (t ) v 3 [k]  ]k[v)ba()t(vb)t(v 3
'
1

'
1    

v 1(t)  v 1
' (t)v 3 [k ]   

)t()t(vc)t(v 22  ; 
v 3 [k]  2 v 3[k 1]  [k]   [k 1]   
subject to initial conditions  v i ( 0) =  v i 0  (i = 1, 2)  and   v 

3[0] = v 3 0.                                                                   � 
 
Remark 1  
    The description of (18) also describes eqns. 16  at sampling 
instants  and results to be  
 
Q c(D)Q d (q) y[k]  [Pc (D)Q d (D)  

Q c (D)N c d
u (D,q)]u[k]        kq,DNDQ

T

dcc    

whose discrete-time solution is  (17). Note through a 
comparison with (18) that the parametrization of the 
differential- difference solution to (16) becomes modified at 
sampling instants with respect to the intersample 
parametrization  since  additive  terms  involving the sampled 
continuous substate and sampled input  result from the plant 
parametrization given by  (16) at sampling instants.              � 
  
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D) Some Mathematical Results  an d Controller synthesis                                                                                                                                     
Global  exponential  stability conditions for  the open-loop  
plant 
    The  global  exponential stability of the unforced system 
(16) is only dependent on the stability of  the  A -matrix 
defined by 
 

 
e
AcT

[I( e
Acd0

T
 )Acd] e

Ac T
( e

Acd0
T
 )Ad

Ads Ad









          (19) 

 
obtained after omitted calculations . This follows from 
building the extended unforced discrete dynamics x [k +1]  =  
A x[ k ] with x [ k ] =  (x c

T [k] , x d
T [k]  )T . Thus, the 

continuous - time solution of the continuous substate  in  ( 16)  
satisfies : 

x c ( k T  ) [e A c  ( I e A c  ' d '
0



 )A cs )  

                    , e A c ( e A c  ' d  '
0



 )A c d ]x[ k]          

    Thus , if  A  is  strictly Hurwitzian , then  x d [ k ]  , x  c [k]  
and   x  c ( t)  converge to zero exponentially fast  
exponentially fast for  any bounded rinitial conditions. The 
next result , whose proof is omitted, is concerned with the  
stability of  the A  - matrix under  that of  A c  and  A d   
provided  that  the  coupling  signals between  continuous and 
discretized (or, indistinctly, digital ) variables  are sufficiently 
small. 
 
Proposition 1  
     Assume  that  A c and A d are strictly Hurwitzian with 
their maximum eigenvalues  satisfying : 
   

 e  ' T   max ( e A c T )    

            e T( i. e.,  max ( A c )  ' )   

 
and max ( A d)  e T .Thus, the open-loop unforced plant 

is globally exponentially stable if  

max (
A cs A d

A ds I









)  Min( e T  1 ,

' ( e T  1)

e ' T 1
)
 

 
Controller synthesis  
   General design philosophy and  Assumptions.  The 
controller  to be synthesized will consist  of two subcontrollers 
each  one  being designed  to satisfy a different ( respectively,  
continuous-time or discrete - time ) control objective , namely  
 
Objective  1 
      u [ k ] =  u [ k T ]  is generated  in such a  way that a 
prescribed stable discrete reference model of transfer function 
W m d ( q )  is matched at sampling instants. A discrete 
subcontroller (Subcontroller 1) which will be then synthesized 
accomplishes with this control objective.  As a part of the 
design , the coupling signal  in (17) from the continuous-time  
subsystem to the discrete - time  subsystem , caused by the 

signal    k [ e A c T ( e A c t

0

T

 u (k T  t )dt ) b c  ,that 

includes the contribution of the continuous-time input over 
one sampling period to the output at sampling instants ,  is 
annihilated by synthesizing the appropriate compensator as 
addressed below.  
 
Objective  2   
    u  ( t )  ( t   k T  )  is generated  in such a  way that  the 
closed-loop system matches a  prescribed stable continuous-
time  reference model of transfer function W mc (D) 
inbetween sampling instants.  A mixed  continuous / discrete  
subcontroller  ( Subcontroller 2 ) is synthesized  to accomplish   
with such a control  objective.  As a part of the design , the 
couplings between the discretetized signals  u [ k ] and   k  

and the continuous subsystem  are   cancelled  by synthesizing 
the appropriate compensator  as addressed below.   
 Since  u [k] and u ( t ) , t[ k T, ( k+1) T] , all 
nonnegative integer k  are , in general , synthesized  to satisfy 
two different control objectives , discontinuities of the control 
input at sampling instants occur in general. Also , there are 
input discontinuities caused  by  the influence  in the  
feedback signals of  the modification of the digital substate at 
sampling instants while it is kept constant inbetween sampling 
instants.  When suitable, the two  reference  models  can be 
appropriately related to  each other  in order to  state the 
problem with a unique control objective as discussed later. 
Those input discontinuities translate in output discontinuities 
at sampling instants  in the more general case  when  W mc ( 
D ) and Wmd ( q)  are chosen independently.  The combined 
objective can be intuitively figured as of the actions of  
Subcontrollers  1- 2  synthesized to satisfy the  Control  
Objectives 1 - 2 . There are two control channels  integrated in  
the actuator that generate the input ' at ' and ' inbetween' 
sampling instants  as u ( t ) = u ' [ k ]  ( t = k T )  ;  u ( t ) =  u ' 
( t ) (  t    k T  )  Channel 1 is used  to  generate ( inbetween 
sampling instants )the input for model -matching of W md (q )  
while Channel  2 is used to match  W mc ( D ) . Note that 
once Channel 1modifies its state, it supplies u [k]  at  sampling 
instants  .  
 
Assumptions  
1.  P d  ( q)  and   P c ( D )   have all their zeros  in  q 1 and  

Re ( D ) < 0 . 
2.  All common zeros  of  P d (q)  and  Q d ( q ) 
 (of P c (D)  and   Q c (D) ) , if any , are strictly  Hurwitzian  
and closed - loop  zeros and poles  of the discrete-time  ( 
continuous- time ) dynamics , i. e . , they  are  zero- pole 
cancellations of  W md (q)  in  q 1 ( of  W mc ( D)  in 

Re (D)0  ). Also, the   zeros   of  P c (D)  and    P d (q)  
which are cancelled by the controller, if any,  are closed- loop  
poles and thus poles of   W mc ( D) and  W md ( q  ) , 
respectively .  
 
3. W mc ( D) and  W md ( q  ) are proper ,  strictly Hurwtzian 
and  of  relative orders  non less than those of   P c (D) / Q c ( 
D) and P d (q) / Q d ( q ) , respectively.                        �                             
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    Note  that  Assumption 1 means that both ( open-loop) 
discrete and continuous-time descriptions eqns. 2 and 3 are 
inversely stable. Assumption 2 means that if any of the 
discrete or continuous plant dynamics is uncontrollable (i.e., 
there are zero-pole cancellations) then the associated 
uncontrollable modes have to be stable and closed-loop poles 
of the corresponding dynamics. The need for such an 
assumption will then arise from the solvability of the 
diophantine equations  associated with the pole-placement 
problems of Objectives 1-2. Note also that if  d= d c +d d ( d 

c)  is  nonzero in  (1)  then  P d (q) / Q d ( q )  ( P c (D) / Q c ( 
D) )  is nonstrictly proper and  then the realizability of 
Subcontroller 1 (Subcontroller 2 )  is realizable for any 
realizable W md (q ) (W mc ( D) ).  Thus, the relative order 
constraint  of Assumption 3 holds automatically under the 
realizability of the discrete-time (continuous- time) reference 
model  guaranteed by  its  properness of the first partof the 
assumption.  
 
Objective 1: Synthesis of Subcontroller 1  and  Generation of 
u [ k ] = u ( kT)  
    The next discrete control law is designed to achieve 
Objective 1 when the plant (16) is perfectly known and noisy-
free: 
 

u[k]
G 1d (q)

L d (q)
u[k]

G 2d (q)

L d (q)
y[k]    

          
G 3d

T (q)

L d (q)
 [k]

R 1d (q)

L d (q)
r 1d [k]                 (20) 

 
The compensating signal r 1d [ . ]  is forwarded to the plant 
input from the  reference model input  r d [k] and   k  =  

( e A c (T  )

0

T

 u(k T  ) d )b c   according to  generation 

laws given below . All  the  transfer functions in the above  
control law are expressed as quotients of polynomials and 
realizable. The above law is explicited as follows: 
 

u[k] C y u
d (q) y[k] C  u

d T

(q)  [k]   

            C r1 u
d (q) r 1d [k]                                    (21.a) 

where the compensator transfer  functions are  
 

C yu
d (q) 

G 2d (q)

L d (q)G 1d (q)
 

C u
d (q) 

G 3d (q)

L d (q)G 1d (q)
 

C r1 u
d (q) 

R 1d (q)

L d (q) G 1d (q)L d (q)
                 (21.b) 

 
The problem of accomplishing with Objective 1  consists of 
designing the polynomials  G i d (q) ( i=1,2) and  R1d (q), the 
polynomial vector  G 3d (q)  as well as  the compensating 
signal  r 1d [.] , for a given stable  L d ( q ) so that  Wmd (q) is 
matched if the plant is perfectly known and free of 

unmodelled dynamics and noise.  The next result  addresses 
the controller design :  
 
Theorem 1 
   Suppose that  the control law (21) is applied , r d [k]  (k ≥ 
0)is the uniformly bounded reference  input sequence  to  
Wmd ( q ) and that the next  assumptions hold : 
 
4.  Assumptions 1 - 3 hold for  P d ( q ) , Q d ( q ) and  the 
poles of  Wmd (q) , and that all the roots of  R 1d ( q )  and  L 

d ( q )  are in q 1 . Assume also  that  d c = - d d  in (1) and  

deg( R 1d )  deg(L d G1d ) .  

 
5.  P d ( q ) =  Q d (q )P d

' ( q )  and  Qd ( q ) =  

Q d (q )Q d
' ( q )  where  Q d (q )  is  the strictly Hurwitzian ( 

from Assumption 2 ) ma ximum common factor of  P d ( q ) 
and Q d ( q ). Also ,  P d

' (q) P1d (q)P 2d (q)  with  P 1d ( q ) 
being defined by the discrete strictly Hurwitzian plant zeros ( 
from Assumption 2 ) which are not plant poles  and  they are 
transmitted to the reference model W md ( q ) =  B md ( q ) / 
Amd ( q ) .  
 
6.  L d ( q ) is factorized as  L d ( q ) =  P 2d ( q ) L ' d ( q )  in 
( 20) .  
 
   Thus , the discrete closed - loop transfer function equalizes 
that of W md ( q )  provided that Subcontroller 1  and its 
associated compensating signal  r 1d [.]  are synthesized as 
follows  :   
 

r 1d [k]
B md (q)

R 1d (q) P d (q)
rd [k]  

            
L d (q) G 1d (q)

R 1d (q)
M d c T [k]                 (22) 

where  G 1d (q)G 1d
' (q)P 2d (q)  , d = d c + d d  ,  

c c c  c c s   with M d (q) being an arbitrary polynomial 

satisfying  deg ( M d ( q ) ) < deg  ( L d ( q) - G 1d ( q ) )  -  
deg ( R 1d ) ,  G 3d (q) =  ( 1R 1d M d c ) , and  G 1d

'  (q) , 

G 2d ( q)  being polynomials which are  the  unique solution 
to  the diophantine equation  :  
 
Q d

' (q) G1d
' (q ) P 1d (q)G 2d (q )   

                      Q d
' (q) L d

' (q) A m d
" (q )                  (23) 

subject to the degree constraints  deg  ( G 2d ( q )  ) <  deg ( Q 
' d ( q ) )  or  deg  ( G ' 1d  ( q )   
< deg ( P 1d ( q ) ) )  for  A m d

" (q)  being a polynomial  

satisfying the  factorizations  
A md (q) = Q d (q)A md

' (q)    

            = Q d (q)P 2d (q) A md
" (q)                              (24) 

which exist  from Assumption  2 .                                �                             
 
Corollaries  
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   1 . Theorem 1 also holds under the same assumptions if  G 3 
d is a  rational function and  the compensating signal  in the 
controller satisfy : 
 

G 3d (q)
Q d

' (q)( G1d
' (q)L d

' (q) )c

P 1d (q)
                    (25) 

r 1d [k]  =  
1

R 1d (q)

B m d
' (q)

P 2d (q)
rd [k]                          (26) 

and all  the remaining compensators  of the control law  
remaining identical as in Theorem 1 .  
 
  2 . Theorem 1  and Corollary 1 also apply  directly to the 
regulation case  with r d [ k] = r 1d [ k] = 0  with the closed-
loop dynamics  resulting to be A md ( q )  y [k] =  0.        �                                                             
 
The proof of Corollary 1 becomes direct from the  application 
of  Assumptions  3 - 6 of Theorem 1  and the  use of the 
cancelled factors  Q d P 2 d and  G 1dG1d

' P 2 d  to  yield : 

 

G 3d
Q d Q d

' ( G 1dL d )c

P d

  

        
Q d

' ( G 1d
' L 1d

' ) c

P 1d

 

          C r1 u
d 

G 3d

L d
' G 1d

'  
Q d

'

P d
'  

Q d

P d

  

 
which is  nonstrictly proper  and stable since P d is strictly 
Hurwitzian and d c    d d .  The use of the above 
relationships leads to   
 
[( L d G1d)Q dP d G 2 d] y[ k]  

                               Q d (q) R 1d (q )r 1d [ k ]            (27) 

 
from (22)-(26) and Corollaries 1-2 follow as Theorem 1. 
Corollary 2 follows when rd [k]  0.                               �                                                                                                           
 
   Note that the main difference  between the design of 
Theorem 1 and Corollary 1 is the choice of the compensator  
C r1 d

d  (q) in (21).  In Theorem 1 , this  proper compensator  of  

high - frequency being  
 - d - 1 c =  -  ( d c + d d )

 -1  ( c c + c cs )  which  cancels  the 

high- frequency gain of 
G 1d

' L d
'

P 1d

Q d
' c  . Thus , the closed-

loop dynamics depends on   1k   but not on  k  and M 

d (q) is kept arbitrary. However,  the  decomposition of  all  
the  transfer functions  from  the  components of  k  to  u 

[k] in  Corollary 1 with  their high- frequency gains  being  
cancelled  is not  used. The synthesis mechanism  in that case 
is  the choice of G 3d (q) such that the  transfer function  from  

 k  to  u [k] is cancelled.  

 

Objective 2: Synthesis of Subcontroller 2 and generation of u 
( t )  ( t   k T ) 
    The next control law is designed  for  the achievement of 
Objective 2 when the known plant is perfectly modelled and 
free- noise and  has the following  implicit  structure : 
 

u(t) 
G 1c (D, q)

L c (D, q)
u(t) 

G 2 c (D,q)

L c (D, q)
y(t )  


G3c (D,q)

L c (D,q)
u[k]

G 4c
T (D,q)

L c(D,q)
[k]

R1c (D)

Lc (D,q)
r1c(t)  (28) 

 
for  all  t  ( k T , ( k+1) T ) and all nonnegative integer k , 
with r 1c (t ) being a compensating signal to be generated as a 
part of the controller design and  L c ( D , q) being a  strictlty 
Hurwitzian two-variable polynomial. The various filters are  
formed by  two variable polynomials and the associated  
hybrid  realizations  can be obtained as addressed in the given 
example. The above control law becomes explicited as 
follows:  
 
u(t) C y u

c ( D,q )y(t)  C uu
c ( D, q) u[k]   

 C u
c T

( D,q ) [k] C r 1 u
c (D, q) r 1c[ k]       (29) 

 
for  all  t ( k T , ( k+1) T )  with  
 

C yu
c (D, q) 

G 2c ( D,q )

L c (D, q) G1c (D, q)
              (30) 

C u u
c (D, q) 

G 3c ( D,q )

L c ( D,q )G 1c ( D,q )
              (31) 

C  u
c (D, q) 

G 4c ( D,q )

L c (D, q) G 1c (D, q)
               (32) 

C r 1u
c ( D,q )

R 1c (D )

L c ( D,q )G 1c ( D,q )
        (33) 

 
    Note that the compensators of (39)-(33) are dependent on D 
and q  because of  structure of (3) . The problem of fulfilling 
Objective 2 consists of synthesizing (14), subject to (30)-(33), 
as well as  the compensating signal r 1c (.) as addressed in the 
next result which applies the philosophy  of Theorem 1  and 
Corollary 1  to the  problem of  model-matching  of the 
continuous reference model .  In the following, the degree of 
two-variable polynomials with respect to one of the variables 
is denoted with the corresponding subscript.  
 
Theorem 2 
    Suppose that  r c ( t )  is the uniformly bounded reference 
input to Wmc D) and that the next assumptions hold  
7.  Assumptions 1 - 3 hold for P d (q) , Q d( q) , P c ( D)  and  
Q c( D) and that the poles of Wmc( D)  and  all the roots of  R 

1c ( D) and L c ( D) are in Re (D)0  . Assume also that  
d c   d d . 
 
8.  P c (D) admits the polynomial factorization  Q c (D)  P 1c ( 

D) P 2c ( D) where  Q c (D)  includes the  (stable ) common 
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roots of P c ( D)  and  Q c( D) ,  P 1c ( D) contains eventual 
zeros of P c ( D)  transmitted from the plant to the reference 
model and  P 2c ( D) includes the (stable) plant  zeros which 
are closed-loop poles and controller poles .  
 
Thus, the closed -loop dynamics is globally exponentially 
stable and defined by 
 
A mc (D)y(t )B m c (D) rc(t )                                  (34) 

 
if the compensators  in (30)-(33) and compensating  signal  
r1c (t)  are  chosen  to  satisfy  G1c (D, q) = P 2 ( D , q ) 
G 1c

' (D, q) where  ( G 1c
' (D, q) ,  G 2c (D, q)  ) is a 

polynomial pair being a unique solution to the two- variable 
diophantine equation  : 
 
Q c

' ( D) G1c
' ( D,q)P c

' (D )G 2 c (D, q)   

                     L c
' ( D, q) A m c

" ( D, q)                   (35) 

with L c ( D , q ) = P 2c ( D, q ) L c
' (D,q )  and Amc (D, q) = 

Q c (D,q)P 2c (D,q)A mc
" (D,q)  subject to any of the two 

the next degree constraints  
 
deg D ( L c ( D,q )A mc ( D)) deg D (G 1c (D, q))  
deg D ( G2 c (D, q)) deg (Q c (D ))  deg ( P c ( D))  

                                                                                 (36.a) 
deg D( L c ( D,q)A mc ( D) ) deg D (G 2c (D, q))   

deg D( G1c( D, q)) deg (Q c (D ))  deg ( P c ( D))  

                                                                                 (36.b) 
and 
 

G 3c(D,q)
G 1c

' (D, q) L c
' (D, q)

Q c (D) P1c (D)Q d (q)
N cd

u (D, q)        (37.a) 

G 4c (D,q) 
G 1c

' (D, q) L c
' (D,q)

Q c (D)P1c (D) Q d (q)
N cd

 (D, q)
    

 (37.b) 

r 1c (t )
B mc

' ( D)

P 2c ( D)R 1c ( D)
r c (t)                              (37.c) 

 
with B m c

' (D)  being the free- design zeros  of  Wmc (D)  ( i. 

e. , those of  Wmc  D) excluding the factor Q c (D)P 1c (D)  ).  

                                                                                          �   
The proof is omitted by space reasons. Note   that Theorem 2  
applies the same philosophy for pole-placement  for the 
continuous reference model as  the previously  used for the 
discrete one  in Corollary 1 since the  coupling  signals from 
the discrete  subsystems to  the continuous one are cancelled 
by  the controller (29)-(32) with the compensators and 
compensating signal fulfilling (35)-(37)  while the 
compensating signal in (37.c)  is used to cancel the unsuitable 
plant zeros .  A more general choice of  r1c (t) based on an 
arbitrary design of  G ic ( D, q )  ( i = 3 , 4 ) could be 
established without difficulty  in the same way as addressed in 
Theorem 1 for the discrete model  , although at the expense of 
more involved calculations .               

 
E) Summary of the controller synthesis method and  
guidelines for  particular designs of  interest  
   The synthesis of the hybrid controller  for the hybrid plant 
(1) consists of firstly defining the discrete and continuous  
reference models W md (q)  = B md (q) / Amd (q)  and  W mc 
(q)  = B mc(q) / Amc (q)   for uniformly bounded reference 
inputs  r d [ k] and  rc (t) , t  [ k T , ( k+1)T) .   Then,  u [ k]   
and u (t)  , t   [ k T , ( k+1)T)  are generated  from  (6) ,  
with the compensators designed according to Theorem 1 or 
Corollary 1 , and  (30)-(33) with the compensators designed 
according to Theorem 2 , respectively . There are several 
particular designs of practical interest, within the above 
general framework, which are now described concerning  the 
use of a unique reference model or the way of combining the 
dynamics of two separate discrete and continuous reference 
models  to improve the  performances  of the closed-loop 
system . 
 
Design 1 (Continuous - time  reference  model). The reference  
input to the continuous-time  reference modelWmc(D)is 
piecewise continuous with discontinuities at sampling instants 
and being constant inbetween sampling instants and  the 
discrete-time reference model  W m d (q)   is the z - transform  
of  W m c(D) . Choose  the reference signal as  r (t) = r c (t) = 
r c [k] = r d[k] = r [k]  ,  t  [ k T , ( k + 1 ) T ). Thus, the 
reference output  is generated  by a unique reference model 
for all  t ≥ 0 .  The , in general discontinuous , plant  input is 
generated from (6) and Theorem 1 , or Corollary 1 , for t = k T 
and from (30) -(33)and Theorem 2 for t   k T .  The main 
difference of  Design 1 with respect to  Design 2 below is that  
the  plant  input  is generated at sampling instants  from a 
discrete-time model - following philosophy  while it is 
generated from a continuous-time model- matching  
philosophy inbetween  sampling instants  despite that  a 
unique continuous - time  model is available together  with  its  
discretization  at  sampling  instantse.  In other words, the 
diophantine equation solving the pole-placement problem at 
sampling instants  is of a discrete nature  and it  is related to 
the q-operator while  that  used for the continuous dynamics 
pole-placement is of a continuous nature and it is related to 
the D-operator.  
 
Design 2  (Continuous- time reference model with the 
controller using periodic plant reparametrization). W m c( D ) 
is used as  the unique reference model at all time.  The use of 
a discrete-time reference model   W md (q)  is omitted in this 
design . At each new sampling instant t = kT , the  continuous-
time description of the plant is reparametrized  with the 
replacement  Pc(D) Qd(q)  with Pc(D) Qd(q) + 
Q c (D)Ncd

u (D,q)   in  (3), according to  Remark 1,  since the 

right - hand -side  terms of (1.a ) and (1.c) that involve to u ( t 
) and u [ k ] have to be summed up  when  t = k T . Thus , (30) 
-(18)and Theorem 2 are used to generate the control signal for  
each  t = k T    with  r  (t)=r [k ]= r c  [k]. Subsequently, r1c (t) 
= r 1 (t) and  r  (t)  = r c  (t)   , t  ( k T , ( k + 1 ) T ) and the 
plant input u (t) is generated  from (32) and Theorem 2  for t 
 k T.  The main difference of Design 2 with respect to 
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Design 1  is that  now  the plant input is always generated 
from Theorem 2 (i. e.,  from the continuous-time dynamics) 
with the plant involving a reparametrization at sampling 
instants (see Remark 1 ).  In  other words, the associated pole-
placement problem problem  is  given by two diophantine 
equations at and inbetween sampling instants. Those equations 
are associated to , in general , different plant parametrizations  
which arise  fro the fact that the input , state and output  
signals become additive at sampling instants in the rigth-hand-
sides of eqns. 1 .  
 
Design 3 (Discrete - time reference model).  The plant input is 
restricted to be piecewise continuous   with discontinuities at 
sampling instants only while being constant  inbetween 
sampling instants , i. e .,  it is generated by a zero-order-hold 
and u (t) = u [ k ] = u ( kT) , t   ( k T , ( k + 1 )T ) . Thus , 
only the discrete-time reference model W md (q)  is used  in 
this particular design . Thus, r1 [k] = r1d [k] and  r (t) = r [k]= 
r d [k]. Simple calculus yields   after substitution  in (17) and 
(21) yields directly : 
 
Q d y[k]P d (q)u[k]                                             (38.a) 

u (t )u[k]C yu
d (q)y[k] C r 1u

d (q) r 1d [k]     

                                                                                (38.b)                                  
all t  [ k T , ( k + 1 ) T ) with  
 

G 1d (q) G1d (q) G 3d
T (q) G 1d

' (q)P 2d (q)       

                                                                                (38.c) 

P d (q) P d (q)Q d (q)c T                                   (38.d) 

C yu
d (q)

G 2d (q)

L d (q)G 1d (q)
                                     (38.e) 

C r 1u
d (q)

R 1d (q)

L d (q)G 1d (q)
                                     (38.f) 

 
the model- matching problem is solved by  applying the 
controller to the plant while solving the diophantine equation 
(23) with the replacement  G 1 d G 1d  in the solution 

polynomials  G 1d
'  and  G 2 d  , which are unique if  deg (G 1d

'  

) = deg ( P 1d ) -1  and the compensating signal  r 1 (t) = r 1 [ 
k ] = r 1d [k] = R 1d

 1 P 2 d
1 B md

' r [k]  ,  all t  [ k T, (k+1)T ] 

and all nonnegative integer k . 
 
Design 4 (General combined continuous - time and discrete-
time reference models  with large sampling  periods ). This 
design keeps  both Objectives 1-2. The discrete-time reference 
model W md (q)  is designed with a large sampling period 
compared to the dominant  constant of the continuous- time  
subsystem while  keeping Assumption 3. I this context,  
Objective 2 over the continuous- time reference model W mc 
(D )  is the basis of the overall design . Objective 1 is used  for 
periodic testing of the closed-loop performance  and eventual 
re- adjustment of the continuous-time model in case of 
performance' s test failure. If such a test fails  in terms  of 
excessive deviations of the sampled output  from its 
neighbouring values  generated by Objective 1 then  either the  

high- frequency gain  of  Wmc ( D) or  its  reference input rc 
(t) can be  re-updated appropriately. This model re-updating 
procedure makes justifiable the use of two separate 
continuous-time and discrete- time reference models and two 
associated control objectives  as stated in the general design 
procedure. An important advantage is that the possible re-
updating could be implemented while keeping two 
independent continuous-time and discrete - time reference 
dynamics. Another important key  issue  which can be 
extended to all the above designs is that the continuous-time 
equations of both the plant and continuous-time reference 
model can  be implemented  in practice through  a 
discretization at very low sampling periods compatred  to  the  
sampling  period  that  regulates  the  discrete  dynamic. All 
the formulation has been extended to the presence of 
unmodelled dynamics and noise environments and also it has 
been tested with numerical examples in both of these 
situations as well as in the ideal deterministic one, but the 
obtained results have been omitted by space reasons. 
 
 

VI. CONCLUDING REMARKS 
 

   This paper has developed a continuous-time adaptive 
stabilizer for a continuous-time first-order controllable plants 
which can  have an unstable zero and is subject to an input 
saturation of sigmoidal function type.  The mechanism  used 
to guarantee the scheme' s closed-loop stability is a 
modification scheme of the parameter estimates  which is  
based on the use of a hysteresis switching function.  The 
switches  are built so that the modified plant  estimated model  
is controllable and then it has no pole-zero cancellation.  An 
alternative adaptive stabilizer which only modifies the  
parameter estimates  at sampling instants, but which is based 
on  continuous-time input / output measurements,  is also 
addressed for the same kind of simple plant. The resulting 
closed-loop system is of a hybrid nature because of the 
discrete updating of the estimation scheme. A similar 
hysteresis switching function, which operates at sampling 
instants, is also used in that case so as to guarantee the 
controllability of the modified estimated plant  model. Some 
extensions to  design control objectives of a class of  
saturation- free hybrid systems have been developed . Such a 
class consists of coupled continuous-time and digital 
dynamics. 
 

APPENDICES 
 

    A) Outline of Proof of Theorem 1 
      Define the Lyapunov-like function candidate 

   ~
P

~
2/1V 1T  by using the parametrical error 

*~
 and the inverse of the covariance matrix. It follows 

that  ~
P 1  is constant for all time so that  P* .Thus, 

 

  1
**

0 fc0   

       




  2*

2131 ,1maxpppvff  
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where 
 

25
2
441f   

*
1

**
01 babf   

     41
T
33

T
41

T
25

T pppppv   

 
    It follows directly that 
 
c ( ) = )()( 52341    

             0pppvf 3
T

41
T   

 
since 1ff  , v , 3p  and 41 pp   cannot be simultaneously 

zero since   0c *  . 0ff 1   if 0ff 1  so that 

  0c  .  If 0v   then   0c  . If 0vf  then   

equalizes one of the combinations   341 ppp   and 

  0c  . Property (i) has been proven.  Property (ii) is 

proven as follows.  First note that 0eV2 2   what 

implies that    0VV . Then, e(t) is bounded  and 

square-integrable and the parametrical error is also bounded 

for al time. Finally,   0Pdt/Ptrd 2T   what implies 

that P  is bounded and square-integrable. Properties (iii)-(iv)  

follow from the fact that P is non-increasing and positive 
semidefinite from its updating rule so that it converges. Also,  
 

              dePd0t t
0

t
0
  

                           deP
2

1 t
0

22  

 
for all time. It follows that the parametrical error converges 
asymptotically to a finite limit. From this partly result, the 
remaining of the proof follows by calculating a bounded 
upper-bound of the norm-square integral of the time 

derivative of  the estimate time-.derivative. It follows that   
is bounded and square-integrable. Then , using the 
Diophantine equation for the controller synthesis, it follows 

that the  modified estimated vector   also converges 
asymptotically  as well as they converge the various controller 
parameters.                                                                          
 

B) Outline of Proof of Theorem 2 

    One gets from (16) that  1k
1

kk1k
~

P
~

P
~




   

with the one-step incremental error being: 
 

1kk1k
~~~

    and 1
k

1
1k

1
k PPP

~ 


   

 
    Then, for a Lyapunov sequence candidate 

k
1

k
T
kk

~
P
~~

V   , one gets a one-step increment from (16) : 

 

1kk1k VVV    

                0
~

P
~

PP
~

PIP
~~

1k
1

kk
1

kk
1

k
T

1k  


  

 
if 0kk cc  . Then, the  candidate is a Lyapunov sequence 

with bounded eigenvalues of the covariance matrix  implying 
strictly positive eigenvalues of its inverse, what leads to the 
results of Theorem 2.                                                         
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