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otherwise hits the iteration limits. The drawback has been
Abstract—This article presents brief descriptions of the bacteriZdvercome by introducing the backtracking (BT) and the
foraging optimization (BFO), the tabu search (TS) and the hybrgdaptive search radius (AR) mechanisms to the TS. This
algorithms  thereof namely bacterial foraging-tabu searamodified version of the TS has been referred to as the adaptive
optimization (BTSO) algorithms. The proposed hybrid BTSQabu search, or ATS [8]. The ATS has been successfully
algorithms perform search rapidly, and render a high-quality soluticgbp“ed to identification [9], control [10]-[12], signal
according to the operation of the adaptive tabu search (ATS). T Focessing [13], etc.

BTSO algorithm is applied to stability analysis of linear an ) e
nonlinear systems based on the Lyapunov’'s methods. The stabilitj‘y‘rleunovs stability methods have been successfully

analysis results are compared with the threshold accepting (TApPlied for many years by engineers and scientists [14]-[15].
method. The article also covers the reviews of the TA and tige direct method of Lyapunov's is regarded as clean and
Lyapunov's methods, respectively. concise. Nonetheless, for some systems, finding Lyapunov
function is not straightforward. Doing this manually in some
Keywords—Bacterial foraging optimization, hybrid algorithms, cases is very time consuming, perhaps not possible. Once the
Lyapunov's method, nonlinear systems, tabu search, threshqlgapunov function is obtained for the system of interest, the
accepting, stability. next practical issue becomes seeking for the region of
attraction. In order to find this, some computational
approaches, e.g. geometrical, numerical methods, etc., have to
In recent years, bio-inspired and metaheuristic algorithni® applied. For instance, various previous works have
have played very active roles in solving compleyrgposed the construction of Lypaunov functions based on

__optimization problems. Some of the well-known bioonyentional methods [16]-[17], numerical methods [18]-{19]
inspired algorithms include genetic algorithm, ant colony, beg, 4 4rificial intelligent methods [20]-[24].

colony, particle swarm optimization, bacterial foraging It is an interest to find a general tool to assist the

optimization, etc. Among these, the bacterial foragingonstruction of the Lyapunov function and the stability region
optimization (BFO) originated in 2002 [1]-[2] has recentlyfor a nonlinear systeym.pAmong those existing algori%msg the

received much attention in academic research. Some publis%efg( ;
papers have reported a deficit of the original BFO in th ' ATS’_BTSO an_d the thresh(_JId accepting methods are
od candidates. Since the article proposes the BTSO

under some situations it takes a very long time to render gpod .
elite solution. In other words, the BFO needs a very largdd0rithms, the descriptions of the BFO, ATS and the BTSO

number of iterative loops to track down the global solutior@PPear in section 2,3 and 4 respectively. Section 5 presents the

This problem has been resolved by introducing an adaptit@view of the Lyapunov's methods for stability analysis of

jump in the chemotaxis step of the BFO. The modified versigiynamic systems. Section 6 presents the TA the BTSO

is known as the adaptive BFO, or ABFO [3]-[4]. methods applied to stability analysis. The results are compared
Metaheuristics have emerged for a number of years, awith the previous work [22] for the same systems as appeared

successfully played major roles in economics and managemanf23]-[24].

fields. Among the existing algorithms, the tabu search (TS)

[5]-[7] has demonstrated many successful applications in real- II. BACTERIAL FORAGING OPTIMIZATION (BFO)

world problems as evidenced by a vast number of publicatiopfie grq aigorithm imitates the foraging behavior of bacteria,

worldwide. The simplistic TS occasionally encounters aQnd consists of 4 main steps namely chemotaxis, swarming,

undefeatable local trap. In such case, the algorithm mOVreei)roduction and elimination-dispersal, respectively. The

around a local solution endlessly without any Improvement o motaxis step imitates the swift movement of bacteria by a
fixed distance or height. Under some complex circumstances,
Manuscript received September 8, 2010. Research grants fraiis conventional BFO algorithm may take very long time to
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version has been known as the adaptive BFO or ABFO Eliminate S of bacteria with high values ke and
algorithm, which is more efficient than the conventional BFO. split the other bacteria into two at their locations.

The procedural list below provides the ABFO algorithm.
Algorithm 1. ABFO
Initialization of parameters: S, p, N, Ns, Nee, Negy Peas C(i),
dattracta Wattract hrepellantandwrepellant-
Elimination-dispersal loop:
while | £Nggdo
I=1+1
Reproduction loop:
while k<N,.do
k=k+1
Chemotaxis loop:
while j <N.do
i=i+1
for each bacteriun¥1,2,...,Sdo
Computed (i, j,k,I)

3G ikD=36i kI ace(0 Gk 1P K1)
Jast = J(i, j,k,I)

Tumble:
Generate @-dimensional random vector

A, (i) eR®, m=1,2,...pon [-1,1].

Move:
Compute the adaptive step sieg,
) b@) 1
'@ +a ,, @
3'0)

A(i)
VAT()AG)
compute the objective functio_n
36 i+3k D=3 (+K g0 1+ XL P i K1

Swim:
Let m=0
while m < Nsdo
m=m+1
if I(i, j + LK | )< Jasy define

Jast =J(i, j + 1,k | Jand compute

6'(j+1k,=6"( k1 )+C ()

6 (j+1k1)=6 (+1k | yC [)—2l)__
AT()AG)
Use thig9' to compute the ned(i, j +1K | )
else
m= Ns
end if
end while
end for
end while
Compute for each bacteriuiml,2,...,S for givenk andl

) Nc+1 o
‘]rl1ealth= Zl J(@, j.k,I).
=

Issue 3, Volume 4, 2010

82

end while
For each bacterium, with probabilitP.q eliminate the
bacterium and disperse to new location.

end while

Ill. ADAPTIVE TABU SEARCH (ATS)

Tabu search (TS) has been originated by Glover to solve
combinatorial optimization problems. A vast amount of
publications are available to support that the algorithm is
worldwide acceptable as an efficient tool for optimization
problems. Some research results have shown that the
simplistic TS is suffered from local solution deadlocks [8].
Adaptive mechanisms have been added to resolve the
deadlock problem. The mechanisms are referred to as
backtracking (BT) and adaptive search radius (AR),
respectively. Such mechanisms enhance the exploitation and
the exploration capabilities of the TS. The modified version
listed in the procedures below has been known as the adaptive
tabu search (ATS).

Algorithm 2. ATS
Initialize search parameters:R, N, TL, count,s, BT andAR
Randomly select initial solution & from search space:
defineS, = best_neighbor
for coun< countay
- Generate a neighbourhood with an initial search radius
R, setS(r) = neighbourhood
- Evaluate] each member belonging 8xr).
defineS, =best_neighborl.
if Ji< J storeSin theTL
define§ =9
else
StoreS; in theTL.
Invoke theBT when a deadlock occurs.
if n>BT
n=n+1
look back in thdL.
best_error = RANK(TL)
else
n=0
defineS, = best_neighbor
best_error = best_error
end if
Invoke theARwhen the current solutio®, is close
to local minima
if best_error<best_error_expectl
R:Rl
end
if best_error<best_error_expect2
R=R,
end

en.(.j. if
end for
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IV. HYBRID BTSOALGORITHMS MATLAB codes on a duo-core PC (Pentium IV 2.4GHz

From observation, the search movement of the ATS is limitéffOMbytes of SD-RAM.). The data indicate that the hybrid
within the preset search radius resulting in limited exploratidi1 O algorithms are superior to the others. The proposed
on the search space. Consequently, some parts of the sedgRrithms consume considerably short search time. This is
space containing high-quality solutions may not be exploregPPorted by the average deadlocks encountered by the
As a result, the algorithm consumes a considerably long tirREPPosed algorithms are much less than those of the two
to struggle for an elite solution. In the contrary, the ABF@lgorithms. It is not_ unexpected because the seargh behaviour
algorithm via its adaptive chemotaxis step can explofé the ABFO provides rather thorough exploration of the
various parts of the entire search space. This provides m&fdireé search space in a short duration, however, lacks the
chances to grasp at least one elite solution at the vdpjensification characteristic.

beginning of the search providing that an initial exploration is
not repeated too many times. The ABFO algorithm yet has
some drawbacks concerning its complexity, possibility to be A nonlinear system can be represented by
locked up by a local solution, for instance. These deficits can
be overcome by the BT and the AR mechanisms of the ATS.
Therefore, the algorithms have been combined, and designated
as the hybrid bacterial foraging and tabu search, or BTSg a non-autonomous one, and
algorithms. The steps for executing the BTSO algorithms are
as follows:

V. LYAPUNOV'SMETHODS

x=f (x,t) @)

x=f(x) (®)

STEP 1: Call ABFO.
STEP2: Transport the solution obtained from the ABFQ

for an autonomous system. At the equilibrimmy = 0, the
following conditions hold f (x,)=0and X, =0.

to the ATS as an initial solution.
STEP3: Call ATS.
STEP4: Report solution and exit.

A. The Lyapunov’s indirect method

Consider an autonomous system, the Jacobian at the
equiblibrium point can be defined as

Fig.1 BTSO algorithms. o (%)
X
To investigate the performance, the algorithms have been A ZT

tested against 3D surface optimization problems. These Xg=0

include the Bohachevsky's, Rastrigin’s and Shubert’s

functions, or BF, RF and ShuF, respectively. Representations - If all eigenvalues of A are strictly in the left-half

of the problems appear in the following expressions: complex plane, then the asymptotic stability at the
equilibrium point of the linearized system can be
concluded.

- If at least one eigenvalue @& is strictly in the right-
half complex plane, then the instability of the linearized
system is concluded.

- If all eigenvalues ofA are in the left-half complex
plane but at least one of them is on faeaxis, then the
linearized system is said to be marginally stable but one
cannot conclude anything from the linear
approximation.

(6).

f(x y)=*¥+2y-0.3cos@x) O.4cosdyr) ( (1)
f(x y)= X+ y —10cos(Z x}- 10cos@yd) :  (2)

f(xl,x2)=§5]icos((+ 1 +i )kii cos{(+ X, +i @3).
i=1 =1
where =-10<x,,X, < 10

In particular, the ShuF in (3) contains 18 global solutions.
Table 1 summarizes the results obtained from running the

TABLE |
SUMMARY OF THE RESULTS(AVERAGED OVER50TRIALS).

Test Average search times (seconds) Average search rounds Average deadlocks
functions ABFO ATS BF-TS ABFO ATS BF-TS ATS BF-TS
BF 5.754 12.89 6.83 12.06 661.98 151.20 56.28 14.28
RF 48.63 14.79 5.81 60.20 811.02 323.30 343.18 32.20
ShuF 182.83 3.28 2.80 715.12 68.06 55.28 7.60 4.44
Issue 3, Volume 4, 2010 83
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B. The Lyapunov’s direct method V1. NONLINEAR STABILITY ANALYSIS
According to the method, the Lyapunov functivifx) must A. The indirect method

be found, and the stability can be concluded without knowing As reviewed earlier, the stability of any linearized systems
the solutions of the equation governing the syste¥h&) can be concluded via the quadratic Lyapunov function.

must be scalar, positive definite and differentiable. Regarding this, the matricéd8 and Q must exist and satisfy

A nonlinear system can be said to have a globalihe Lyapunov equation. Generic threshold accepting (TA)
asymptotically stable equilibrium, iff algorithms [25]-[26] have been modified to search for these

matrices. The procedural list below accommodates the
-VX)>0 stability analysis of the second-order systems.
- V(X)<0
- V(x) >was|x| > » o . .
. STEP 0: Initialize solutionsP and Q by zeroing all
. elements.

AiSthorough treatment of the theorems can be found in [14]- STEP 1: Generate randomly within the ranges [-10,+10]
[ (%.ons'der a nonlinear mass-spring-damper system describe the elements oP. Determine the positive
b ! ' “Spring-damper sy 1he: definiteness ofP. If P is not positive definite

y o , go toSTEP 1

mi+b X+ ko X+ k=0 @). STEP 2: ComputeQ based orP . Determine the
negative definiteness @. If Q is not

The energy function is used as the Lyapunov function negative definite, go t8TEP 1.

candidate expressed by STEP 3: Accept solutions® and Q. Exit.
1 X Fig.2 TA algorithms to search fd? and Q.
Ve =omxX+[ (v k) a
=% e +% 3’3 +% o x* (8). Example1 Consider the system [15]
. . . X1==2%— XX
It can be clearly seen thaf(x) is scalar, differentiable, .
X2= %X =% (15)

positive definite and unbounded. The functi(x) is, hence,
the Lyapunov function. Next,
having A =—|

of _{—2 o}
X0 LO -1

. . defini heref h loball . The search spent 4 iterations to reach for

is qggatwe efinite. Therefore, the globally asymptotic 50006 2.0793 4.1585 12575

stability of the system can be concluded. = andQ = .
2.0793 5.0789 1.2575 5.9992

According to the indirect method, the quadratic Lyapunov
function can be generally applied. It can be expressed by

)= %- bt =) ©)

Thus,V(x) andV(x) are of the forms
V(X)=x"Px>0 (10)
VX E) 59008 5.0789° 2.0793,% 2.079%Xx, (16)
,whereasx is the state vector, andis a symmetrically scalar

matrix. The following equations must be satisfied . 2
V Kk F-14.316%,°+14.3162x, 11.801%x. a7),

V(%) = X' Px+ x"Px (11)
whose surface plots are illustrated in Figs. 3(a) and (b),
V(x) —xTQx<0 (12) respectively, and the asymptotic stability at the origin can be

concluded.
Q=PA+A"P (13)
,and
T
Q=Q (14).
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Fig. 4(a) Lyapunov functioV(x) , (b) V(x) of example 2.

(b)

Fig.3 (a) Lyapunov functiotV(x) , (b) V(x) of example 1.
Example 2 Consider th&/an der polsystem Fig. 4 depicts the surface plots\éfx) andV(x) to confirm
) the asymptotic stability at the origin of the system.
Xp= %+ (4" =D% (18)
B. The direct method
having A = of 10 -1 This section pays an interest in the method proposed by
aving ~ox -0 REEEI Xiao-Lin and You-Lin [22]. The method considers the
e polynomial system of the form
3.149 41.001 and %: y
dt 7’
q (21),
y
A
IS

By 7 iterations, the search returned=
-1.001 8.726
(22)

€ xy= R X+ @3 y+ Ry

12.597 3.004
Q= Hence,
3004 17.45
2 2 where
V x(9 21479~ 8.726%," -10013xx, (19)
V K =14.3162x,% 14.3162x22 11.8012x;x, (20).
85
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N N N having
PX=) px @3¥=Dqx, RY=) ix (23).
= =0 =0 O('j—\t/:—(z ee) kx )+ (Q(R- (@dce) x+208) y—ey? (29)

This section demonstrates the usefulness of the TA and the

BTSO algorithms to seek for the suitable coefficients of the | 3 N &y q o
Lyapunov function candidate. Moreover, the search®l Q(X— (4c-&)x+2cx ):ZHTX » then
approaches provide larger stable regions than those provided

by the previous method. QX = (20—%)x2 —%x“ +ZL% x? | and
Example 3 Consider the system v
9V _ o 3 N P2 2y a2
=R+ (Y AR Y-yt (30)
dx_
dt—y, (24) The function V(xy) will be positive definite iff
%/:—Hx?’—y 0<e<c<a; and a;030s...ay_>0 . For the direct

method problems, the TA procedures are declared in Fig. 5.
Fig. 6 illustrates the stability regions around the equilibrium
and the Lyapunov function candidate at origin. The dotted line represents the result from the direct
calculation [27]; the dashed and dark solid lines represent
those from the TA and the BTSO method, respectively. Fig.7
depicts the cost function, which is the inverse of the area of
stable region, during the search by BTSO. MATLAB returns

¥ xy= Q¥+ QUAIWQMY  (25).

Since the area of 6.2824, 7.0999 and 7.2097 units for the stable
4V regions found by the direct calculation, the TA and the BTSO,
T Ok x F+ Q¥ QUI3-2( x ¥) Q(X]y (26) respectively, with the corresponding(X y) function in (31)-

. . ' 33).
£ Q32 QU+ (Y’ (33)
_ 2
let Q(x)=0 and Q(X)—2Q,(X) =—¢ , one can obtain V(X )= X'+ xy+ 05y (31)
_ ,wheree= Oc= 050,=0,a5=1
{Qz(x) =c ). 1 3
Q¥ = (2c—¢&)x

V(x,y .09550- 0035¥%: (09556y+ 4775y%  (32)

Hence, the Lyapunov function candidate can be rewritten as
,where

(XY= Q( R+ (2c-¢) xy+cy? (28) &= 2166310c> 04775,= 1544 10" o= 08124

V X =) 09883 0.2498. 09808y+ 049022 (33)

STEP O: Initialize « 5, 7,Q..., 0L ON -] = 0.
STEP 1: Generate possible coefficient randomly: , where
£,a,€[01 and c,a € [0 1x1078]. If g= 71026 Toc= 04902, = 34153 10° pz= 07811
0<e<c<aq, is false, then go t8TEP 1.

STEP 2:1f V is not negative definite, then go SFEP
1
STEP 3: Accept solutionss,a,,c,a,,c. EXxit.

Fig. 5 TA algorithms for the direct method of example 3
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Fig.6 Stability regions of example 3.

The BTSO spent 620 iterations to reach for tiéx,y) Example4 Consider a nonlinear system of

function in (33). Its area, although larger than the others, is

rather limited by the coefficient constraints derived by the >'(1=—Xl+2X12X2

previous method [22]. Fig.7 depicts the convergence curve Xp=—X, (34)
indicating that the BTSO stopped when the termination

criterion (TC) was satisfied, i.e] = 0.1388< 0.013!. The having an equilibrium at the origin. This time the construction
recommendations for search parameter settings for the ABl6® the Lyapunov function follows the trajectories reversing

and the ATS can be found in [4] and [8], respectively. technique [27]. The structure of the Lyapunov function is in
the form of
m
M3=MxP=D ¥ p (35)
i=1

|

:

|

| , iIn which p; represents coefficients, ang(x) is constructed
|

; from a homogeneous polynomial of ordér Using this
|

|

|

|

I

|
|
|
|
0148 — 4+ — — — — - — — — — T
|
|
|
|

0.146 - —

technique, the functionV(x, p) based on (34)-(35) can be

} ! obtained as
e
[ | | | | | 4
R o Vb= B+ BoXgt Bkt Pl Pt oo
S T e i e 4 -
| I I I I I + H3 ).? )§+ p44)&)(§+ p45X2
R e
; ! ; ; ; | ouss The coefficients py; , pyy and p,s are set to zero [27].
ozl ‘ l l l l l Hence, the TA returns th¥(x, p) function in (37), whilst the
0 100 200 300 400 500 600 . .. ..
Iterations BTSO returns (38). Both functions are positive definite, and
Fia. 7 Cost unction: of example . V(K X; ):0-273)(12 + 0.546¢%, +0-546X22 (37)

+0.018%° %, +0.018%°X,°
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Fig. 8 Stability regions of example 4.
accepting (TA) algorithm, respectively. The BTSO has been
V(%% ):0.222&2_‘_ 0.54%%, +0.54]>(22 forr_ne_d fr_om the ABFO and the ATS. Using the 3D surface
3 s 5 (38). optimization problems, our computational results have shown
40.0115¢”% 40.0183¢ X, the superiority of the BTSO. The proposed BTSO has been
applied to stability analysis problems of nonlinear systems
their corresponding4 are negative definite. based on the Lyapunov’s methods. The useful Lyapunov’s

Fig. 8 illustrates the stability regions in the similar manndHnctions have been found by searches. The results obtained
to those in Fig.6. The BTSO provides the largest region wifty rom the BTSO, the TA and the conventional methods [22],
the corresponding cost functions shown in Fig. 9. Its spent 288v€ been compared. The results show that faster convergence

iterations to reach for the solution by the TC &f Q0603 to the solutions of Lyapunov’'s functions is achieved with
(<0.0605). larger stability regions by using the proposed BTSO

algorithms.
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