
 

 

  
Abstract—This article presents brief descriptions of the bacterial 

foraging optimization (BFO), the tabu search (TS) and the hybrid 
algorithms thereof namely bacterial foraging-tabu search 
optimization (BTSO) algorithms. The proposed hybrid BTSO 
algorithms perform search rapidly, and render a high-quality solution 
according to the operation of the adaptive tabu search (ATS). The 
BTSO algorithm is applied to stability analysis of linear and 
nonlinear systems based on the Lyapunov’s methods. The stability 
analysis results are compared with the threshold accepting (TA) 
method. The article also covers the reviews of the TA and the 
Lyapunov’s methods, respectively. 
 

Keywords—Bacterial foraging optimization, hybrid algorithms, 
Lyapunov’s method, nonlinear systems, tabu search, threshold 
accepting, stability. 

I. INTRODUCTION 

n recent years, bio-inspired and metaheuristic algorithms 
have played very active roles in solving complex 
optimization problems. Some of the well-known bio-

inspired algorithms include genetic algorithm, ant colony, bee 
colony, particle swarm optimization, bacterial foraging 
optimization, etc. Among these, the bacterial foraging 
optimization (BFO) originated in 2002 [1]-[2] has recently 
received much attention in academic research. Some published 
papers have reported a deficit of the original BFO in that 
under some situations it takes a very long time to render an 
elite solution. In other words, the BFO needs a very large 
number of iterative loops to track down the global solution. 
This problem has been resolved by introducing an adaptive 
jump in the chemotaxis step of the BFO. The modified version 
is known as the adaptive BFO, or ABFO [3]-[4]. 
 Metaheuristics have emerged for a number of years, and 
successfully played major roles in economics and management 
fields. Among the existing algorithms, the tabu search (TS) 
[5]-[7] has demonstrated many successful applications in real-
world problems as evidenced by a vast number of publications 
worldwide. The simplistic TS occasionally encounters an 
undefeatable local trap. In such case, the algorithm moves 
around a local solution endlessly without any improvement, 
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otherwise hits the iteration limits. The drawback has been 
overcome by introducing the backtracking (BT) and the 
adaptive search radius (AR) mechanisms to the TS. This 
modified version of the TS has been referred to as the adaptive 
tabu search, or ATS [8]. The ATS has been successfully 
applied to identification [9], control [10]-[12], signal 
processing [13], etc. 

Lyapunov’s stability methods have been successfully 
applied for many years by engineers and scientists [14]-[15]. 
The direct method of Lyapunov’s is regarded as clean and 
concise. Nonetheless, for some systems, finding Lyapunov 
function is not straightforward. Doing this manually in some 
cases is very time consuming, perhaps not possible. Once the 
Lyapunov function is obtained for the system of interest, the 
next practical issue becomes seeking for the region of 
attraction. In order to find this, some computational 
approaches, e.g. geometrical, numerical methods, etc., have to 
be applied. For instance, various previous works have 
proposed the construction of Lypaunov functions based on 
conventional methods [16]-[17], numerical methods [18]-[19] 
and artificial intelligent methods [20]-[21]. 

It is an interest to find a general tool to assist the 
construction of the Lyapunov function and the stability region 
for a nonlinear system. Among those existing algorithms the 
BFO, ATS, BTSO and the threshold accepting methods are 
good candidates. Since the article proposes the BTSO 
algorithms, the descriptions of the BFO, ATS and the BTSO 
appear in section 2,3 and 4 respectively. Section 5 presents the 
review of the Lyapunov’s methods for stability analysis of 
dynamic systems. Section 6 presents the TA the BTSO 
methods applied to stability analysis. The results are compared 
with the previous work [22] for the same systems as appeared 
in [23]-[24].  

II. BACTERIAL FORAGING OPTIMIZATION (BFO) 

The BFO algorithm imitates the foraging behavior of bacteria, 
and consists of 4 main steps namely chemotaxis, swarming, 
reproduction and elimination-dispersal, respectively. The 
chemotaxis step imitates the swift movement of bacteria by a 
fixed distance or height. Under some complex circumstances, 
this conventional BFO algorithm may take very long time to 
reach a satisfactory solution. To resolve this, some 
modifications have been made to the BFO to have an adaptive 
chemotaxis step, i.e. the jumping height or distance is 
adjustable to cope with various environments. This modified 
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version has been known as the adaptive BFO or ABFO 
algorithm, which is more efficient than the conventional BFO. 
The procedural list below provides the ABFO algorithm. 
Algorithm 1.  ABFO 
Initialization of parameters:  S, p, NC, NS, Nre, Ned, ped, C(i), 
dattract, wattract, hrepellant and wrepellant. 
Elimination-dispersal loop: 
while l ≤ Ned do  
 l = l + 1 
 Reproduction loop:  
 while k≤ Nre do 
  k = k + 1 
  Chemotaxis loop: 
 while j ≤ Nc do  
  j = j + 1 
  for  each bacterium i=1,2,…,S do 
   Compute ( , , , )J i j k l  

   ( )( , , , ) ( , , , )  ( , , ), ( , , )CC
iJ i j k l J i j k l J j k l P j k lθ= +  

   Jlast = ( , , , )J i j k l  

   Tumble: 
   Generate a p-dimensional random vector 

   ( ) ,p

m i∆ ∈ ℜ  m=1,2,…,p on [-1,1]. 

   Move: 
   Compute the adaptive step size, C(i 
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θ
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θ θ

∆
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    compute the objective function  

   ( )( , 1, , ) ( , 1, , )  ( 1, , ), ( 1, , )cc
iJ i j k l J i j k l J j k l P j k lθ+ = + + + + . 

    Swim: 
    Let m=0 
    while m < NS do 
    m=m+1 
    if ( , 1, , )J i j k l+ < Jlast, define  

    Jlast = ( , 1, , )J i j k l+ and compute   

   
T

( )
( 1, , ) ( 1, , ) ( )

( ) ( )

i i i
j k l j k l C i

i i
θ θ

∆
+ = + +

∆ ∆
 

  Use this iθ to compute the new( , 1, , )J i j k l+  

   else  
 m= NS 

  end if 
  end while 
  end for  
 end while 

Compute for each bacterium i=1,2,…,S, for given k and l 

 
1

1
( , , , )

c
i
health

N

j
J J i j k l

+

=
= ∑ . 

 

Eliminate Sr of bacteria with high values of Jhealth, and 
split the other bacteria into two at their locations. 

 end while 
For each bacterium, with probability Ped eliminate the 
bacterium and disperse to new location. 

end while 

III.  ADAPTIVE TABU SEARCH (ATS) 

Tabu search (TS) has been originated by Glover to solve 
combinatorial optimization problems. A vast amount of 
publications are available to support that the algorithm is 
worldwide acceptable as an efficient tool for optimization 
problems. Some research results have shown that the 
simplistic TS is suffered from local solution deadlocks [8]. 
Adaptive mechanisms have been added to resolve the 
deadlock problem. The mechanisms are referred to as 
backtracking (BT) and adaptive search radius (AR), 
respectively. Such mechanisms enhance the exploitation and 
the exploration capabilities of the TS. The modified version 
listed in the procedures below has been known as the adaptive 
tabu search (ATS).  
 
Algorithm 2.  ATS 
Initialize search parameters: R, N, TL, countmax, BT and AR. 
Randomly select initial solution S0 from search space: 
define S0 = best_neighbor 
 for coun≤ count max  

- Generate a neighbourhood with an initial search radius 
R, set S1(r) = neighbourhood. 

- Evaluate J each member belonging to S1(r).  
 define S1 = best_neighbor1. 

        if J1< J0 store S0 in the TL 
 define S0 = S1 
 else 
 Store S1 in the TL. 
 Invoke the BT when a deadlock occurs. 
    if n≥ BT  
    n=n+1 
    look back in the TL. 
   best_error = RANK(TL) 
  else 
   n=0 
   define S0 = best_neighbor  
    best_error = best_error 
    end if 

 Invoke the AR when the current solution S0 is close 
to local minima 

   if best_error<best_error_expect1 
   R=R1  

   end                                                                                        
   if best_error<best_error_expect2 
   R=R2  

   end  
    … 
  end if 
 end for  
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TABLE I 

SUMMARY OF THE RESULTS (AVERAGED OVER 50 TRIALS). 
Average search times (seconds) Average search rounds Average deadlocks Test 

functions ABFO ATS BF-TS ABFO ATS BF-TS ATS BF-TS 

BF 5.754 12.89 6.83 12.06 661.98 151.20 56.28 14.28 

RF 48.63 14.79 5.81 60.20 811.02 323.30 343.18 32.20 

ShuF 182.83 3.28 2.80 715.12 68.06 55.28 7.60 4.44 

 

IV.  HYBRID BTSO ALGORITHMS 

From observation, the search movement of the ATS is limited 
within the preset search radius resulting in limited exploration 
on the search space. Consequently, some parts of the search 
space containing high-quality solutions may not be explored. 
As a result, the algorithm consumes a considerably long time 
to struggle for an elite solution. In the contrary,    the   ABFO    
algorithm   via   its   adaptive chemotaxis step can explore 
various parts of the entire search space. This provides more 
chances to grasp at least one elite solution at the very 
beginning of the search providing that an initial exploration is 
not repeated too many times. The ABFO algorithm yet has 
some drawbacks concerning its complexity, possibility to be 
locked up by a local solution, for instance. These deficits can 
be overcome by the BT and the AR mechanisms of the ATS. 
Therefore, the algorithms have been combined, and designated 
as the hybrid bacterial foraging and tabu search, or BTSO 
algorithms. The steps for executing the BTSO algorithms are 
as follows: 
 

 
 To investigate the performance, the algorithms have been 
tested against 3D surface optimization problems. These 
include the Bohachevsky’s, Rastrigin’s and Shubert’s 
functions, or BF, RF and ShuF, respectively. Representations 
of the problems appear in the following expressions: 
 

2 2( , ) 2 0.3cos(3 ) 0.4cos(4 ) 0.7f x y x y x yπ π−−= + +         (1) 
 

2 2
( , ) 10cos(2 ) 10cos(2 ) 20f x y x y x yπ π= + − − +         (2) 

 
5 5

1 2 1 2
1 1

( , ) cos(( 1) ) cos(( 1) )
i i

f x x i i x i i i x i
= =

= + + ∗ + +∑ ∑        (3). 

where = 
1 210 , 10x x− ≤ ≤  

 

In particular, the ShuF in (3) contains 18 global solutions. 
Table 1 summarizes the results obtained from running the 

MATLAB codes on a duo-core PC (Pentium IV 2.4GHz 
640Mbytes of SD-RAM.). The data indicate that the hybrid 
BTSO algorithms are superior to the others. The proposed 
algorithms consume considerably short search time. This is 
supported by the average deadlocks encountered by the 
proposed algorithms are much less than those of the two 
algorithms. It is not unexpected because the search behaviour 
of the ABFO provides rather thorough exploration of the 
entire search space in a short duration, however, lacks the 
intensification characteristic.  

V. LYAPUNOV’S METHODS  

A nonlinear system can be represented by 
 

),( txfx=ɺ                                      (4) 

 
for a non-autonomous one, and 

 
)(xfx =ɺ                                      (5) 

 
for an autonomous system. At the equilibrium 0=ex , the 

following conditions hold : 0)( =exf and 0=exɺ .   

 

A. The Lyapunov’s indirect method 

Consider an autonomous system, the Jacobian at the 
equiblibrium point can be defined as  
 

0

)(

=∂
∂

=
exx

f x
A                                      (6). 

 
- If all eigenvalues of A  are strictly in the left-half 

complex plane, then the asymptotic stability at the 
equilibrium point of the linearized system can be 
concluded. 

- If at least one eigenvalue of A is strictly in the right-
half complex plane, then the instability of the linearized 
system is concluded. 

- If all eigenvalues of A are in the left-half complex 
plane but at least one of them is on theωj axis, then the 

linearized system is said to be marginally stable but one 
cannot conclude anything from the linear 
approximation. 

 

 

STEP 1: Call ABFO. 

STEP2: Transport the solution obtained from the ABFO 

to the ATS as an initial solution. 

STEP3: Call ATS. 

STEP4:  Report solution and exit. 

 

Fig.1 BTSO algorithms. 
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B. The Lyapunov’s direct method 

According to the method, the Lyapunov function )(xV  must 

be found, and the stability can be concluded without knowing 
the solutions of the equation governing the systems. )(xV  

must be scalar, positive definite and differentiable. 
A nonlinear system can be said to have a globally 

asymptotically stable equilibrium, iff 
 

- 0)( >xV  

- 0)( <xVɺ  

- ∞→)(xV as ∞→x
. 
 

 

A thorough treatment of the theorems can be found in [14]-
[15]. 

Consider a nonlinear mass-spring-damper system described 
by 

03
10 =+++ xkxkxxbxm ɺɺɺɺ                         (7). 

 
The energy function is used as the Lyapunov function 

candidate expressed by 
 

32
0 10

1
( ) ( )

2

x
V mx k y k y dy= + +∫x ɺ  

4
1

2
0

2

4

1

2

1

2

1
xkxkxm ++= ɺ                      (8). 

 
It can be clearly seen that )(xV  is scalar, differentiable, 

positive definite and unbounded. The function )(xV  is, hence, 
the Lyapunov function. Next, 
 

3)()( xbxxbxV ɺɺɺɺɺ −=−=x                     (9) 

 
is negative definite. Therefore, the globally asymptotic 
stability of the system can be concluded. 

According to the indirect method, the quadratic Lyapunov 
function can be generally applied. It can be expressed by 

 

0)( >= Pxxx TV                            (10) 

 
,whereas x  is the state vector, and P is a symmetrically scalar 
matrix. The following equations must be satisfied 
 

PxxPxxx TT +=)(Vɺ                           (11) 
  

0)( <−= Qxxx TVɺ                              (12) 
 

PAPAQ T+=                           (13) 
 

,and 
 

TQQ =                                  (14). 

VI. NONLINEAR STABILITY ANALYSIS 

A. The indirect method 

As reviewed earlier, the stability of any linearized systems 
can be concluded via the quadratic Lyapunov function. 
Regarding this, the matrices P  and Q  must exist and satisfy 
the Lyapunov equation. Generic threshold accepting (TA) 
algorithms [25]-[26] have been modified to search for these 
matrices. The procedural list below accommodates the 
stability analysis of the second-order systems. 

 
 

 
Example 1 Consider the system [15] 

 

2111 2 xxx −−=xɺ  

2212 xxx −=xɺ                                   (15) 

 

having  








−

−
=

∂

∂
=

= 10

02

0exx

f
A . 

 
The search spent 4 iterations to reach for 









=

5.07892.0793-

2.0793-5.9006
P

 
and 








=

5.9992-1.2575

1.25754.1585-
Q  .  

 

Thus, )(xV  and )(xVɺ  are of the forms 

 

212
2

2
2

1 12.0793-2.0793-5.0789-5.9006)( xxxxxxV =x     (16) 

 

2111.8012-14.3162-14.3162)( 21
2

2 xxxxxV +=xɺ
       

 (17), 

 
whose surface plots are illustrated in Figs. 3(a) and (b), 
respectively, and the asymptotic stability at the origin can be 
concluded. 
 
 
 
 
 
 

 

STEP 0: Initialize solutions Pand Q  by zeroing all 
elements. 

STEP 1: Generate randomly within the ranges [-10,+10] 
the elements of P . Determine the positive 
definiteness of P . If P  is not positive definite, 
go to STEP 1. 

STEP 2: Compute Q  based on P . Determine the 

negative definiteness of Q . If Q  is not 
negative definite, go to STEP 1. 

STEP 3: Accept solutions P  and Q . Exit. 
 

Fig.2 TA algorithms to search for P  and Q . 
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(a) 

 

(b) 

 
Fig.3 (a) Lyapunov function )(xV , (b) )(xVɺ of example 1. 

 

 
 (a)  

 

(b) 

 
Fig. 4 (a) Lyapunov function )(xV , (b) )(xVɺ  of example 2. 

Example 2 Consider the Van der pol system  
 

21 x−=xɺ  

2
2

112 )1( xxx −+=xɺ                          (18) 

 

having 








−

−
=

∂

∂
=

= 11

10

0exx

f
A . 

 

By 7 iterations, the search returned 







=

8.7261.001-

1.001-3.149
P  and 









=

17.453-3.004

3.00412.597-
Q  Hence, 

 

21
2

2
2

1 .00131-8.7265-1479.2)( xxxxV =x     (19) 

 

21
2

212 11.8012-14.3162-14.3162)( xxxxxV =xɺ   (20). 

 

Fig. 4 depicts the surface plots of )(xV  and )(xVɺ to confirm 

the asymptotic stability at the origin of the system. 
 
 

B. The direct method 

This section pays an interest in the method proposed by 
Xiao-Lin and You-Lin [22]. The method considers the 
polynomial system of the form 

 










=

=

),(

,

yxf
dt

dy

y
dt

dx

                                (21), 

 
 where  
 

2)()()(),( yxRyxQxPyxf ++=              (22) 
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STEP 0: Initialize 0...,,, 12975 =−Nαααα . 

STEP 1: Generate possible coefficient randomly: 

]10[, 3 ∈αε   and  ]1010[, 8
1

−×∈αc . If  

30 αε ≤≤≤ c  is false, then go to STEP 1. 

STEP 2: If Vɺ is not negative definite, then go to STEP 
1. 

STEP 3:  Accept solutions cc ,,,, 13 ααε . Exit. 

 
Fig. 5 TA algorithms for the direct method of example 3. 

 

∑∑∑
===

===
N

i
i

N

i
i

N

i
i

iii xrxRxqxQxpxP
001

)(,)(,)(    (23). 

 
This section demonstrates the usefulness of the TA and the 
BTSO algorithms to seek for the suitable coefficients of the 
Lyapunov function candidate. Moreover, the search 
approaches provide larger stable regions than those provided 
by the previous method. 
 
Example 3 Consider the system 
 
 










−+−=

=

yxx
dt

dy

y
dt

dx

3

,
                         (24) 

 

and the Lyapunov function candidate 

 
2

210 )()()(),( yxQyxQxQyxV ++=           (25). 

 
Since 
 

3
2

2
21

2
3

10
3

1

)()](2)([

)]()(2)()([])[(

yxQyxQxQ

yxQxxxQxQxxxQ
dt

dV

ɺɺ

ɺ

+−+

−−−+−−=
 (26), 

 

let 0)(2 =xQɺ  and ε−=− )(2)( 21 xQxQɺ , one can obtain 
 





−=

=

xcxQ

cxQ

)2()(

)(

1

2

ε
                        (27). 

 
Hence, the Lyapunov function candidate can be rewritten as  
 

2
0 )2()(),( cyxycxQyxV +−+= ε                       (28) 

 

having  
 

23
0

3 )2)4()(()()2( yycxxcxQxxxc
dt

dV
εεε −+−−+−−−= ɺ (29) 

 

Let ∑ =
−=+−−

N

i

ii x
i

cxxcxQ
1

2123
0 2

)2)4()(
α

εɺ , then 

∑ =
−+−−=

N

i

ii x
i

x
c

xcxQ
1

21242
0 22

)
2

2()(
αε

 , and  

 

2

1

2123 )
2

()()2( yyx
i

xxxc
dt

dV N

i

ii ε
α

ε −+−−−= ∑ =
−

      (30) 

 
The function ),( yxV  will be positive definite iff 

30 αε ≤≤≤ c   and  0,...,,, 12531 ≥−Nαααα  . For the direct 

method problems, the TA procedures are declared in Fig. 5. 
 Fig. 6 illustrates the stability regions around the equilibrium 
at origin. The dotted line represents the result from the direct 
calculation [27]; the dashed and dark solid lines represent 
those from the TA and the BTSO method, respectively. Fig.7 
depicts the cost function, which is the inverse of the area of 
stable region, during the search by BTSO. MATLAB returns 
the area of 6.2824, 7.0999 and 7.2097 units for the stable 
regions found by the direct calculation, the TA and the BTSO, 

respectively, with the corresponding ),( yxV
 function in (31)-

(33). 
 

22 5.0),( yxyxyxV += +                       (31) 

 

, where 1,0,5.0,0 31 ==== ααε c  
 

242 47750955000357095500 y.xy.x.-x.V(x,y) += +      (32) 

  
,where 

8124.0,10544.1,4775.0,101663.2 3
7

1
7 =×==×= −− ααε c   

 
242 4902.09803.00.2498-9803.0),( yxyxxyxV += +     (33) 

 
, where 

7811.0,104153.3,4902.0,101026.7 3
8

1
8 =×==×= −− ααε c . 
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Fig.6 Stability regions of example 3. 
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Fig. 7 Cost functions of example 3. 

The BTSO spent 620 iterations to reach for the ),( yxV  

function in (33). Its area, although larger than the others, is 
rather limited by the coefficient constraints derived by the 
previous method [22]. Fig.7 depicts the convergence curve 
indicating that the BTSO stopped when the termination 

criterion (TC) was satisfied, i.e. 0 1388 0.0139J = .  < . The 
recommendations for search parameter settings for the ABFO 
and the ATS can be found in [4] and [8], respectively. 
 
 
 

 
 

Example 4 Consider a nonlinear system of 
 

2
2
111 2 xxx +−=xɺ  

22 x−=xɺ                                           (34) 

 
having an equilibrium at the origin. This time the construction 
of the Lyapunov function follows the trajectories reversing 
technique [27]. The structure of the Lyapunov function is in 
the form of 
 

∑
=

==
m

i
i

T
i pxvpxVxV

1

)(),()(              (35) 

 
, in which ip  represents coefficients, and )(xvi  is constructed 

from a homogeneous polynomial of order i . Using this 
technique, the function ),( pxV  based on (34)-(35) can be 
obtained as 
  

4
245

3
2144

2
2

2
143

2
3
142

4
141

2
2232122

2
121),(

xpxxpxxp

xxpxpxpxxpxppxV

+++

++++=
 (36). 

 
The coefficients 41p  , 44p  and 45p  are set to zero [27]. 

Hence, the TA returns the ),( pxV function in (37), whilst the 

BTSO returns (38). Both functions are positive definite, and  
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2
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2
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2
121

0.018+0.018+

0.546+0.5460.273),(

xxxx

xxxxxxV +=
  (37) 
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Fig. 8 Stability regions of example 4. 
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Fig.9 Cost functions of example 4. 
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xxxx

xxxxxxV +=
   (38). 

 

their corresponding sVɺ  are negative definite. 
 Fig. 8 illustrates the stability regions in the similar manner 
to those in Fig.6. The BTSO provides the largest region with 
the corresponding cost functions shown in Fig. 9. Its spent 256 
iterations to reach for the solution by the TC of 06030.J=  
(<0.0605).  

VII. CONCLUSION 

This paper has proposed hybrid algorithms namely bacterial 
foraging and tabu search optimization (BTSO). The paper has 
explained the adaptive bacterial foraging optimization 
(ABFO), the adaptive tabu search (ATS) and threshold 

accepting (TA) algorithm, respectively. The BTSO has been 
formed from the ABFO and the ATS. Using the 3D surface 
optimization problems, our computational results have shown 
the superiority of the BTSO. The proposed BTSO has been 
applied to stability analysis problems of nonlinear systems 
based on the Lyapunov’s methods. The useful Lyapunov’s 
functions have been found by searches. The results obtained 
by from the BTSO, the TA and the conventional methods [22], 
have been compared. The results show that faster convergence 
to the solutions of Lyapunov’s functions is achieved with 
larger stability regions by using the proposed BTSO 
algorithms. 
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