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Assessing the efficiency of data normality
verification tests

Sachiko Araki Lira, Anselmo Chaves Neto

Abstract - Applying parametric statistical tests requires
checking some suppositions about their data nature, including
data normality, since such tests are based on Normal
distribution (Gaussian). For this purpose, several tests are
available and among them the following are the most used:
Kolmogorov-Smirnov with Lilliefors correction, Shapiro-
Wilk, Pearson’s Chi-squared, Anderson-Darling, Shapiro-
Francia, Cramér-von Mises, Jarque-Bera and D’Agostino-
Pearson. The present work assesses test efficiency through the
Monte Carlo simulation, including 10,000 samples with sizes
equal to 10, 20, 30, 40, 50, 70, 90, 100, 150, 200 and 500, and
four different distributions: Gamma with parameters 5 and
1/5; Double Exponential with parameters 0 and 1; Chi-
squared with parameter 5; Exponential with parameter 3 and
Contaminated Normal distribution, where 50% of the values
were generated through Standard Normal distribution and 50%
through two parameters Exponential distribution (3 and 1). We
inferred that normality test performances are affected by the
significance level used in the hypothesis test, the shape of data
distribution and the sample size. Concerning non-normal
distribution, the present study allowed us to infer that when
applying normality tests the more asymmetric is data
distribution, the smaller the sample size could be. On the other
hand, the closer to normal (symmetric) the distribution is, the
larger the sample size must be. Thus, we verify that some tests
are more efficient than others depending on the shape of
distribution.

Keywords — Normality test, Monte Carlo simulation, data
distribution, test power.

I. INTRODUCTION

The parametric tests applied to many different areas, such as
engineering, economic and social sciences, health, safety and
others, it is necessary to check some suppositions, including
data normality.
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There are several tests available and among them the most
popular are: Kolmogorov-Smirnov with Lilliefors correction,
Shapiro-Wilk, Pearson’s Chi-squared, Anderson-Darling,
Shapiro-Francia, Cramér-von Mises, Jarque-Bera and
D’Agostino-Pearson. We can also find graphic methods as
Frequency Histogram, Normal Q-Q plot (quantile-quantile
plot) and Normal P-P plot (probability-probability plot) that
are frequently used to check if a data set behaves according to
normal distribution.

When choosing the test, the question is: which one is the
most adequate? Some authors discuss the efficiency of some
tests aforementioned, see [4], [5], [6], [8], and [1].

The Chi-squared test is based on the comparison between
sample data distribution and theoretical distribution of the
sample. The Kolmogorov-Smirnov (K-S) test is based on
proximity analysis or adjustment between the empirical
distribution or sample distribution S(x), and the population

distribution function (theoretical), F,(x), that is admitted in
the null hypothesis H,. Lilliefors corrected the K-S test
standardized by the use of 1 and o estimations. On the other

hand, the Anderson-Darling test, which is a measure that
shows how the points are approaching the straight line
estimated in a probability graphic, is an alternative to the two
aforementioned tests. Its great advantage is to be more
sensitive since it gives more weight to tail observations. The
Cramér-von Mises test is an alternative to the Kolmogorov-
Smirnov test and checks the hypothesis that a data set results
from a specific continuous distribution estimating the
minimum distance between theoretical probability distribution
and empirical distribution. The D’Agostino-Pearson test
statistics combines asymmetry and kurtosis measures thus
producing the normality omnibus test'. The Shapiro-Wilk test,
known as powerful omnibus test [5] was proposed to check if a
certain random sample came from a normally distributed
population. Finally, the Jarque-Bera is an asymptotic normality
test based on the Ordinary Least Squares (OLS) residuals by
firstly calculating the asymmetry and kurtosis measures.

1 Allows to check if in a data set the explained-variance is superior to the
non-explained variance.
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I1. NORMALITY TEST DESCRIPTION
A. Pearson’s Chi-squared Test

The Chi-squared test (Xz) allows to assess adherence

between the frequency distribution of a sample composed of n
observations expressed in any scale and a theoretical
distribution. Performing this test requires a random sample
sizen>30.

The n observations composing the sample are grouped in
k classes (or categories) mutually exclusive (withk >2). Chi-
squared adherence test is calculated by the following
expression:

n (0 -E;)?
z E

2

(1)

i=1 i

where:
O; is the i class observed frequency;
E; isthe i class expected frequency.
If the null hypothesis (Hgq) is true, the aforementioned

statistics has Chi-squared asymptotic distribution with degree
of freedom equal to df =k—p-1, where Kk represents

number of classes and p is the number of distribution
parameters estimated from the sample.

B. Kolmogorov-Smirnov Test with Lilliefors Correction

For a random sample with size n, the empirical distribution
or sample distribution functionS(x), expresses data relative

frequencies with values smaller or equal to x, which is a
particular value of the random variable X. Thus,
considering (X;, X,,...,X, ), a random sample of a

continuous random variable X and the respective order
statistics Xy, X(2)» ---» X(n) ,» We have that S(x) empirical

distribution function is obtained by:

0, x <X

k

S(x) = 2

1, X2 Xy

Thus, the empirical distribution function S(x) is a step
function that increases by 1/n in the jump points (sample

ordinal statistics) and the Kolmogorov-Smirnov test statistics,
denoted by D, (thatis a random variable), correspond to the

maximum difference (supreme), in absolute value between
S(x) and F,(x), when all possible X values are considered.

According to symbolic notation we have:
©)

The test performed with Lilliefors correction is processed in
the same way as the Kolmogorov-Smirnov test, the only

D gps. = Max ‘ S(x)-F, (x)‘
X
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difference is that original data are standardized by using
estimates of w and o:

X -X

ZI y i=1,2,...,n
S

(4)

C. Anderson-Darling Test

This test is based on the empirical distribution function. It
supports the idea that once the distribution functions under
Hg is given; data can be transformed into uniform distribution

and then tested for uniformity.
The Anderson-Darling test statistic is given by:

A:—”—%é[m—l][m(p(i))+|ﬂ(1—p(n—i+1) )] (5)
where:
P(i) =CD( ey -] /S] (6)

is the percentiles of the Standard Normal distribution.

D. Cramér-von Mises Test

This test is also based on cumulative distribution function.
The Cramér-von Mises test statistic is given by:

WZﬁ-Fé.[p(l)—%j O
where:
P =®[[X<i) = /5) ®)

is the percentiles of the Standard Normal distribution.

E. D’Agostino-Pearson Test
This procedure is also known as D test and the statistic has
the following expression:
T

- 9
IS C)]

where:
ni. o n+1

T= _ L 10
i_Zl[' 2 )ym (10)

and S is the sample standard deviation.

F. Jarque-Bera Test

It is based on the difference between the asymmetry and
kurtosis coefficients of observed data and theoretical normal
distribution. The test statistic is given by:

JB:n[(\/E)Z + (bz_s)zj

24
where:

S*, /b, e b, are respectively the second, third and fourth
central moments. The JB statistics has asymptotic distribution
% ({2 under null hypothesis.

11)

G. Shapiro-Wilk Test
The Shapiro-Wilk test statistic is expressed by:
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n 2
{Eiﬁxa)}
W = i=1

(12)
4 )2
2 (Xj—x)
i=1
and a; is computed as the solution of:
m'v
(a,a2, an) (13)

(mlv—l V_lm)l/z
where:
X (i) is the i-th order statistic;

m=(my, m,,---, m, )is the expected values vector of the

order statistics;
V is the variance-covariance matrix of the random sample
order statistics.

H. Shapiro-Francia Test

Shapiro and Francia introduced a change in the W statistics,
so W' depends only of the expected value (m) of the order
statistic. The Shapiro-Francia test statistic is given by:

n 2
{Zbix(i)}
Wr: i=1

14
5 (% -X)2 0
i=1

’

m

where: b'=(by,by -, by ) =————.
1 2 n (m,m)l/z

(15)

1. MATERIAL AND METHOD

The aforementioned test efficiency assessment was carried out
through the Monte Carlo simulation and used the nortest and
fBasics libraries available in the R system. Were generated ten
thousand (10,000) samples, with the sizes equal to 10, 20, 30,
40, 50, 70, 90, 100, 150, 200 and 500, according to different
distributions, which are: Standard Normal distribution
N (0,1), used to assess type | error percentage, that is, the

null hypothesis (Hp) is true, but is rejected; Gamma
distribution with parameters 5 and 1/5; Laplace or Double
Exponential distribution with parameter 0 and 1; Chi-squared
distribution with parameter 5; Exponential distribution with
parameter 3 and Normal Contaminated distribution, where
50% of the values were obtained using Standard Normal
distribution and the other 50% using the two-parameter
Exponential distribution (3 and 1). The respective distribution
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figures are as follows: Fig. 1 shows the frequency histogram of
random variable X with Gamma distribution (5;1/5) and

sample size n=50. It is possible to observe that this
symmetry is slightly positive. Fig. 2 shows the frequency
histogram of random variable X with Double Exponential
distribution (0 ; 1) , with sample size n =50. This symmetric

distribution can be considered as the distribution of the
difference between two independently and identically
distributed (i.i.d) random variables with exponential
distribution. When the graphic is doubled around the y axis it
is proportional to Exponential distribution density.

i
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—
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Fig. 1 Frequency histogram of random variable X with
Gamma distribution

15

Fig. 2 - Frequency histogram of random variable X with
Double Exponential distribution

Fig. 3 shows frequency histogram of the random variable X
with distribution x2(5) andn=50, indicating positive
asymmetry.


http://en.wikipedia.org/wiki/Null_hypothesis
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Fig. 3 — Frequency histogram of the random variable X with
Chi-squared distribution

The frequency histogram of the random variable X with
distribution Exp(3) and sample size n=50 presented in Fig.

4 also indicates positive asymmetry.

0.0 0.5 1.0 1.5 20

Fig. 4 — Frequency histogram of the random variable X with
Exponential distribution

Finally, the histogram of a Contaminated Normal
distribution with sample size equal to 50, where 50% of values
were generated through Standard Normal distribution and the
other 50% through a two-parameter (3 and 1) Exponential

distribution, with sample size n=50. Fig. 5 shows that
distribution has negative asymmetry.

Freg

Fig. 5 — Frequency histogram of the random variable X with
Contaminated Normal distribution

Significance levels of 1% and 2% were used to test the
hypothesisHg: the data follow normal distribution, against
the Hy: the data do not follow normal distribution. This
choice is due the fact that when performing a hypothesis test
we want to commit minor mistake as possible.

Concerning normal distribution data and test power of
other distributions (Gamma, Chi-squared, Exponential and
Contaminated Normal distribution), type | error rates were
obtained from ratios between number of Hg rejections (p-
value <0.01 or p-value<0.05) and total samples generated to

each test.
IV. RESULTS AND DISCUSSION

Tables 1 and 2 show type | error rates of different tests applied
to normal distribution data for pre-defined sample sizes.

TABLE 1 - TYPE | ERROR RATES ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES FOR NORMAL DISTRIBUTION

DATA, USING SIGNIFICANCE LEVEL OF 1%

SAMPLE SIZES
TESTS
10 | 20 | 30 | 4 | 50 | 70 | e | 200 | 150 | 200 | s00
Lilliefors (K-S) 00113 00103 00114 00102 00113 00105 00095 00097 0.0100 0.0092 0.0092
Shapiro-Wilk 0.0114 00096 0.0092 00086 0.0072 00082 00098 0.0095 0.0088 0.0085 0.0097
Chi-squared 00141 00121 00111 00116 0.0098 00097 00100 00109 0.0109 00113 0.0104
Anderson-Darling 0.0099 00094 0.0091 00090 0.0087 00090 00095 00095 0.0091 0.0091 0.0108
Cramer-von Mises 0.0093 00097 0.0097 00100 0.0087 00083 00096 0.0089 0.0097 0.0096 0.0099
Shapiro-Francia 0.0110 00096 0.0099 00091 0.0091 00088 00101 0.0091 0.0092 0.0097 0.0096
D'Agostino-Pearson - 00169 00180 00162 00163 00140 00138 00143 00142 00145 0.0120
Jarque-Bera - 00098 00131 00143 00153 00145 00153 00155 0.0165 0.0159 0.0138

NOTE: Monte Carlo Simulation NMC = 10,000 .

When distribution is normal and used significance level of
1%, almost all the test are efficient since type | error rates are
close to 1%, except for Chi-squared tests to n = 10 and
Jarque-Bera and D’Agostino-Pearson tests that show higher
error taxes if compared to the others. The Jarque-Bera is an

asymptotical test, that’s to say a large sample test. Thus, we
will only consider the results of samples equal or over size 20.
Concerning D’Agostino-Pearson, we also took into
consideration the equal or over 20-sized samples, since this is
a limitation of the R system.

TABLE 2 - TYPE | ERROR RATES ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES FOR NORMAL DISTRIBUTION
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DATA, USING SIGNIFICANCE LEVEL OF 5%

SAMPLE SIZES
TESTS
10 | 20 | 30 | 40 | 50 | 70 | e | 100 | 150 | 200 | s00
Lilliefors (K-S) 0.0556 00479 0.0486 00519 00481 00488 00490 0.0494 0.0485 0.0479 0.0483
Shapiro-Wilk 0.0514 00489 0.0484 00461 00491 00471 00495 0.0494 0.0473 0.0488 0.0491
Chi-squared 0.0649 00492 00531 00571 00525 00546 00544 00502 0.0529 0.0516 0.0534
Anderson-Darling 0.0522 00491 0.0485 00486 0.0493 00479 00490 0.0485 0.0491 0.0486 0.0490
Cramer-von Mises 0.0507 00498 0.0499 00487 0.0500 00504 00517 0.0504 0.0503 0.0486 0.0477
Shapiro-Francia 0.0555 00518 0.0500 0.0487 0.0488 0.0482 00500 0.0523 0.0483 0.0484 0.0494
D'Agostino-Pearson - 00545 00559 00567 00545 00521 00517 00531 0.0536 0.0499 0.0470
Jarque-Bera - 00215 00305 00329 00344 00370 00389 00407 0.0393 00411 0.0411

NOTE: Monte Carlo Simulation NMC = 10,000 .

The tests were also efficient when we used the significance
level of 5%, except for the Chi-squared test that showed type |
error rate of 0.0649 forn =10 . On the other hand, the Jarque-
Bera test showed the lowest type | error rates for all the sample
sizes.

According to [8], concerning normal data the four criteria
(Kolmogorov-Smirnov, Anderson-Darling, Cramer-von Mises
and Shapiro-Wilk) are equivalent, except for Kolmogorov-
Smirnov. The significance level used was of 1%.

The authors in [6] say that the Jarque-Bera test was superior
for Normal distribution and Standard Normal, because it
showed lower type | error rate. Shapiro-Wilk and
Kolmogorov-Smirnov with Lilliefors correction tests can also
be used for practical purposes.

TABLE 3 -
SIGNIFICANCE LEVEL OF 1%

According to [4], among the five tests studied (Anderson-
Darling, Lilliefors, Jarque-Bera, D’Agostino-Pearson and
Shapiro-Francia) the best is the Anderson-Darling test. The
Jarque-Bera test is the most popular and widely used in
economy area, but results suggest that Anderson-Darling is
superior. The author carried out the tests taking into
consideration the significance levels of 1%, 5% and 10%.

The test power assessment for Gamma distribution data
(table 3) with significance level of 1% showed that the
Shapiro-Wilk test power is superior to 90.0% for sample
sizen=150.

Using the significance level of 5% (table 4), the Shapiro-
Wilk test showed a power equal to 89.92%, for sample
sizen=100.

POWER ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES FOR GAMMA DISTRIBUTION WITH

SAMPLE SIZES
TESTS
10 | 20 | 30 | 4 | 50 | 70 | o0 | 100 | 150 | 200 | s00
Lilliefors (K-S) 0.0274 00486 00708 0.1037 01344 02110 02959 03329 0.5405 0.7040 0.9952
Shapiro-Wilk 0.0415 00995 01798 0.2639 03533 05208 0.6020 0.7563 0.9332 0.9854 1.0000
Chi-squared 0.0227 00345 00494 00581 00719 01151 0.523 01811 0.3301 04932 0.9792
Anderson-Darling 0.0353 00764 01308 0.1923 02569 03979 05402 0.6013 0.8279 0.9378 1.0000
Cramer-von Mises 0.0313 00644 01102 0.1606 02069 03317 04525 05071 0.7458 0.8819 1.0000
Shapiro-Francia 0.0407 00981 0.1686 0.2437 03222 04845 06386 07088 0.9088 0.9774 1.0000
D'Agostino-Pearson . 01256 01831 02467 03060 04263 05500 0.6042 0.8296 0.9439 1.0000
Jarque-Bera - 00868 01507 02215 02858 0.4163 05476 0.6051 0.8365 0.9473 1.0000

NOTE: Monte Carlo Simulation NMC = 10,000 .

TABLE 4 - POWER ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES FOR GAMMA DISTRIBUTION WITH

SIGNIFICANCE LEVEL OF 5%

SAMPLE SIZES
TESTS

10 | 20 | 30 | 40 | 50 | 70 | 90 | 100 | 150 | 200 | 500
Lilliefors (K-S) 0.0950 0.1476 0.064 0.2648 03206 04356 05408 05959 0.7813 0.8910 0.9995
Shapiro-Wilk 0.1184 02349 03570 04776 05804 07494 0.8599 0.8982 0.9820 0.9976 1.0000
Chi-squared 01058 0.1069 0.1383 0.1890 02039 0.2746 03568 0.3905 0.5730 0.7287 0.9965
Anderson-Darling 01101 02001 02932 03858 04725 0.6245 07541 0.8007 0.9408 0.9866 1.0000
Cramer-von Mises 0.1045 01794 0.2587 03358 04159 05500 0.6816 0.7301 0.8920 0.9638 1.0000
Shapiro-Francia 01251 02313 0.3403 04494 05498 07153 0.8353 08742 09731 09957 1.0000
D'Agostino-Pearson . 02154 03031 03864 04715 06177 07455 0.8036 0.9509 0.9906 1.0000
Jarque-Bera - 01387 02346 03241 04147 05817 07206 07840 0.9453 0.9900 1.0000

NOTE: Monte Carlo Simulation NMC = 10,000.
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According to [6], for t(30)distribution, all the tests showed

low power. We have to keep in mind that the Student t
distribution developed by William Sealy Gosset is a
symmetrical and bell-shaped distribution similar to the
Standard Normal curve but with wider tails. The only
parameter that defines and characterizes it is the degree of
freedom (v) . The larger the parameter, the closer to Normal

the distribution is. For degree of freedom equal to 30, the
distribution is closer to Standard Normal distribution.

TABLE
DISTRIBUTION DATA WITH SIGNIFICANCE LEVEL OF 1%

5 - POWER ACCORDING TO DIFFERENT TESTS

The following table (table 5) shows the power of different
tests and sample sizes for Double Exponential distribution
data, which is a symmetrical but not mesokurtic distribution.

It was observed that Shapiro-Wilk, Anderson-Darling,
Cramer-von Mises, Shapiro-Francia and Jarque-Bera tests
show test power greater than 92.00% for the sample size when
using the significance level of 1 %.that Shapiro-Wilk,
Anderson-Darling, Cramér-von Mises, Shapiro-Francia and
Jarque-Bera tests show test power higher than 92.00% for
sample size n=200 when using significance level of 1%.
Thus, the closer to normal the distribution is the data analyzed,
the large the sample size must be, so that the tests for
normality checking will be efficient.

AND SAMPLE SIZES FOR DOUBLE EXPONENTIAL

SAMPLE SIZES
TESTS
10 | 20 | 30 | 4 | 50 | 70 | e | 200 | 150 | 200 | s00
Lilliefors (K-S) 0.0536 00886 01288 0.1671 02161 03182 04119 04577 0.6661 0.8170 0.9985
Shapiro-Wilk 0.0707 0310 02032 02661 03392 04717 05790 0.6317 0.8278 09271 1.0000
Chi squared 0.0352 00590 0.0750 00918 01122 01775 02315 02689 0.4217 05707 0.9762
Anderson-Darling 0.0649 01292 01973 02682 03400 04775 06035 0.6568 0.8523 0.9451 1.0000
Cramer-von Mises 0.0615 0.1247 01879 02570 0.3298 04653 05946 0.6485 0.8489 0.9423 0.9998
Shapiro-Francia 0.0756 0.1592 0.2427 03186 03941 05202 06299 0.6806 0.8595 0.9408 0.9999
D'Agostino-Pearson . 01894 02544 03026 03460 04409 05173 05571 0.7206 0.8364 0.9982
Jarque-Bera . 01493 02522 03330 04085 05333 0.6314 06760 0.8385 09231 0.9996

NOTE: Monte Carlo Simulation NMC = 10,000 .

Using significance level of 5% (table 6), the
Anderson-Darling, Cramer-von Mises and Shapiro-Francia
tests show power of over 98.00%, for sample sizes equal to

200, thus proving that for the tests are efficient, If distributions
are closer to Normal distribution, sample sizes needs to be
considerably large.

TABLE 6 — POWER ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES FOR DOUBLE EXPONENTIAL
DISTRIBUTION DATA WITH SIGNIFICANCE LEVEL OF 5%
SAMPLE SIZES
TESTS

10 | 20 | 30 | 4 | 50 | 70 | 90 | 100 | 150 | 200 | 500
Lilliefors (K-S) 0.1435 02168 0.2904 03606 04315 05526 06632 0.7079 0.8652 0.9452 0.9999
Shapiro-Wilk 0.1567 02607 0.3638 04433 05194 06490 07529 07919 09217 09742 1.0000
Chi-squared 01379 01520 0.1962 0.2560 02679 0.3582 04419 04757 0.6475 0.7817 0.9955
Anderson-Darling 0.1625 02778 03736 04615 05372 06828 07835 08265 0.9414 09843 1.0000
Cramer-von Mises 01575 02724 03651 04578 05318 0.6786 07797 0.8242 09412 09844 0.9999
Shapiro-Francia 0.1893 03264 04330 05199 05976 07200 0.8099 0.8428 0.9444 09823 1.0000
D'Agostino-Pearson - 03051 03873 04517 05157 0.6155 0.6967 0.7302 0.8655 0.9394 0.9996
Jarque-Bera . 02213 03380 04321 05184 06451 07388 07738 0.9070 0.9613 1.0000

NOTE: Monte Carlo Simulation NMC =10,000 .

Concerning y 2 distribution of data (table 7 and table 8), the
Shapiro-Wilk test showed test power of 89.56% and 97.31%
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TABLE 7 - POWER ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES FOR CHI-SQUARED DISTRIBUTION
WITH SIGNIFICANCE LEVEL OF 1%
SAMPLE SIZES
TESTS
10 | 20 | 30 | 4 | 50 | 70 | e | 100 | 150 | 200 | s00

Lilliefors (K-S) 0.0488 01062 01753 02573 03349 04999 06432 07034 0.9040 09751 1.0000
Shapiro-Wilk 0.0765 02226 0.4038 05764 07159 08956 0.9699 0.9858 1.0000 1.0000 1.0000
Chi-squared 0.0390 00872 01369 0.1979 02519 04296 05613 0.6474 0.8873 09782 1.0000
Anderson-Darling 0.0671 0.1859 0.3263 04702 05927 07974 09106 09433 1.0000 1.0000 1.0000
Cramer-von Mises 0.0603 0.1599 0.2802 04035 05128 07147 08446 08874 0.9870 0.9989 0.9949
Shapiro-Francia 0.0732 02106 03671 05253 0.6605 0.8564 09511 09740 0.9994 1.0000 1.0000
D'Agostino-Pearson . 02103 03255 04322 05423 07115 0.8423 0.8883 0.9904 0.9997 1.0000
Jarque-Bera . 01598 02798 03992 05212 07105 0.8503 0.8954 0.9910 0.9996 1.0000

NOTE: Monte Carlo Simulation NMC = 10,000 .

TABLE 8 - POWER ACCORDING TO DIFFERENT TESTS
WITH SIGNIFICANCE LEVEL OF 5%

AND SAMPLE SIZES FOR CHI-SQUARED DISTRIBUTION

SAMPLE SIZES
TESTES

10 | 20 | 30 | 40 | 50 | 70 | 90 | 100 | 150 | 200 | 500
Lilliefors (K-S) 0.1409 02595 0.3802 04889 05879 0.7460 0.8541 0.8893 0.9795 0.9975 1.0000
Shapiro-Wilk 01920 04274 06406 07924 0.8862 09731 09954 09978 0.9996 1.0000 1.0000
Chi-squared 0.1605 02126 0.3003 04214 04937 0.6620 0.8038 0.8350 0.9666 0.9958 1.0000
Anderson-Darling 0.1800 03734 05495 0.6907 0.8007 0.9214 09754 0.9863 1.0000 1.0000 1.0000
Cramer-von Mises 0.1648 03376 0.4935 06253 07298 0.8734 09467 09653 0.9978 0.9999 0.9968
Shapiro-Francia 0.2002 04066 0.6001 0.7534 0.8538 0.9582 09917 0.9956 1.0000 1.0000 1.0000
D'Agostino-Pearson . 03421 04810 0.6083 07157 08746 09564 09776 0.9994 1.0000 1.0000
Jarque-Bera - 02389 03935 05457 06737 0.8540 0.9490 0.9747 0.9994 1.0000 1.0000

NOTE: Monte Carlo Simulation NMC =10,000.

Concerning Exponential distribution data, presented in table
9 and table 10, the Shapiro-Wilk test showed power of 97.91%
for sample size n=40 with significance level of 1%. When
using significance level of 5%, the same test showed test
power of 96.44% for sample size n =30.

According to [5], who assessed the Shapiro-Wilk and
D’Agostino-Pearson tests, the first was more powerful than the

second for different distributions and sample sizes, thus
inferring that normality test performance is strongly affected
by the shape of distribution data and sample size. The
significance level used was of 5%.

TABLE 9 — POWER ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES FOR EXPONENTIAL DISTRIBUTION

WITH SIGNIFICANCE LEVEL OF 1%

TESTS SAMPLE SIZES
10 [ 20 [ 30 | 4 | s0 | 70 | 90 | 100 | 150 [ 200 | 500
Lilliefors (K-S) 0.1289 0.3305 05396 0.7259 0.8566 0.9706 0.9959 0.9987 1.0000 1.0000 1.0000
Shapiro-Wilk 0.2323 0.6248 0.8730 0.9791 0.9949 10000 1.0000 1.0000 1.0000 1.0000 1.0000
Chi-square 0.1274 04212 0.6566 0.7884 0.8691 0.9791 0.9898 0.9975 1.0000 1.0000 1.0000
Anderson-Darling 0.2044 05678 0.8136 0.9369 09834 09994 1.0000 1.0000 1.0000 1.0000 1.0000
Cramer-von Mises 0.1883 05117 07510 0.8980 0.9621 0.9964 0.9997 1.0000 0.9990 0.9803 0.0013
Shapiro-Francia 0.2108 05762 0.8257 0.9492 0.878 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000
D'Agostino-Pearson - 04430 06344 07790 0.8774 09750 0.9968 0.9989 1.0000 1.0000 1.0000
Jarque-Bera - 03541 05870 0.7565 0.8735 0.9785 0.9970 0.9992 1.0000 1.0000 1.0000
NOTE: Monte Carlo Simulation NMC = 10,000.
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TABLE 10 - POWER ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES FOR EXPONENTIAL DISTRIBUTION
WITH SIGNIFICANCE LEVEL OF 5%
TESTS SAMPLE SIZES

10 [ 20 [ 30 | 4 | 50 | 70 | 90 | 100 | 150 [ 200 | 500
Lilliefors (K-S) 02929 05719 07795 09013 09615 09963 09994 09999 1.0000 1.0000 1.0000
Shapiro-Wilk 04320 08314 09644 09954 09993 10000 1.0000 1.0000 1.0000 1.0000 1.0000
Chi-squared 03879 0.6556 0.8493 09543 09840 09994 09999 1.0000 1.0000 1.0000 1.0000
Anderson-Darling 04024 07746 09314 09859 09965 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Cramer-von Mises 03738 07282 0.8991 09676 09918 09998 1.0000 1.0000 09991 0.9844 0.0018
Shapiro-Francia 04212 07937 09474 09914 09986 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
D'Agostino-Pearson - 05954 07842 0.9026 0.9675 0.9989 0.9999 10000 1.0000 1.0000 1.0000
Jarque-Bera - 04787 07278 08803 0.9579 0.9979 0.9999 10000 10000 1.0000 1.0000

NOTE: Monte Carlo Simulation NMC =10,000.

Finally, if the data analyzed come from negative
asymmetrical distributions, such as the Contaminated Normal
used in this work (table 11), with significance levels of 1%, the
Kolmogorov-Smirnov with Lilliefors correction test showed
power of 96.26% for sample size n=40. Using significance

level of 5% (table 12), the test power is of 95.50% for sample
sizen=30.

When analyzing the Cramér-von Mises test, it was observed
that test power for samples sizes higher then 200 are reduced
for distributions with strong and moderate asymmetry.

TABLE 11 - POWER ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES FOR CONTAMINATED NORMAL
DISTRIBUTION DATA WITH SIGNIFICANCE LEVEL OF 1%
TESTS SAMPLE SIZES

10 [ 20 [ 30 | 4 | 50 | 70 | 90 | 100 | 150 [ 200 | 500
Lilliefors (K-S) 0.1306 0.5406 0.8466 09626 09928 09995 1.0000 1.0000 1.0000 1.0000 1.0000
Shapiro-Wilk 0001 03015 05440 07321 08530 09698 09946 0.9985 1.0000 1.0000 1.0000
Chi-squared 01430 03311 06122 07654 08993 09815 09989 09997 1.0000 1.0000 1.0000
Anderson-Darling 01128 04224 07235 08946 09607 09958 09999 1.0000 1.0000 1.0000 1.0000
Cramer-von Mises 01172 04571 07741 09242 09765 09980 1.0000 1.0000 1.0000 1.0000 0.0033
Shapiro-Francia 0.0737 0.2444 04766 06753 08178 09595 09934 09976 1.0000 1.0000 1.0000
D'Agostino-Pearson - 00975 0.1406 0.1907 0.2573 04210 0.6130 0.7021 09282 09863 1.0000
Jarque-Bera - 00534 01065 0.1630 0.2381 04324 06389 07279 09378 09883 1.0000

NOTE: Monte Carlo Simulation NMC =10,000.

TABLE 12 - POWER ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES FOR CONTAMINATED NORMAL
DISTRIBUTION DATA WITH SIGNIFICANCE LEVEL OF 5%
TesTS SAMPLE SIZES
10 [ 20 [ 3 | 4 | s0 | 70 | 90 | 100 | 150 [ 200 | 500

Lilliefors (K-S) 03543 0.7969 0.9550 0.9939 0.9985 1.0000 1.0000 1.000 1.0000 1.0000 1.0000
Shapiro-Wilk 0.3068 0.5999 0.8051 09161 0.9666 09958 0.9995 0.9996 1.0000 1.0000 1.0000
Chi-squared 03512 05477 08154 09221 09724 09968 1.0000 1.0000 1.0000 1.0000 1.0000
Anderson-Darling 03376 0.7146 09055 09747 09949 09994 1.0000 1.0000 1.0000 1.0000 1.0000
Cramer-von Mises 0.3447 07570 09312 09855 09971 09998 1.0000 1.0000 1.0000 1.0000 0.0046
Shapiro-Francia 0.2819 05736 0.7870 09081 09629 09950 0.9996 0.9996 1.0000 1.0000 1.0000
D'Agostino-Pearson - 02244 03142 04333 05585 0.7771 08903 09217 09873 09981 1.0000
Jarque-Bera - 01144 02165 03427 04872 0.7468 0.8795 09161 0.9865 09983 1.0000

NOTE: Monte Carlo Simulation NMC =10,000.

Aiming at confirming the aforementioned discussed
results, we carried out normality tests in different sample sizes
obtained through the Monte Carlo simulation for some
selected distributions.

The following tables show p-values of different
normality tests applied to samples generated through the
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Monte Carlo simulation. It was observed that Normal
distribution samples in all the tests discussed herein indicate
data normality whatever their sizes (n). It is important to
emphasize that asymmetry coefficients are very close to zero,
thus indicating symmetric distribution (table 13).
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TABLE 13 — P-VALUES FOR NORMALITY TESTS APPLIED TO NORMAL DISTRIBUTION SAMPLES ACCORDING TO
DIFFERENT SAMPLE SIZES AND ASYMMETRY COEFFICIENTS

SAMPLE SIZES AND ASYMMETRY COEFFICIENTS
TESTS n=10 n=20 n=30 n =50 n =100
As=05790 | As=0.1983 As=-0.0089 | As=0.1578 As = -0.2068
Lilliefors (K-S) 0.9580 0.7863 05183 0.5444 0.4754
Shapiro-Wilk 0.8492 0.7560 0.5887 0.9087 0.6439
Chi-squared 0.3618 0.6626 0.3920 0.7327 05378
Anderson-Darling 0.8580 0.7241 05200 0.8032 0.5690
Cramer-von Mises 0.8960 0.6777 0.4551 0.6958 0.6007
Shapiro-Francia 0.8008 0.8515 0.7178 0.9042 05921
D'Agostino-Pearson - 05817 0.5539 0.8204 0.5634
Jarque-Bera ; 0.6576 0.6437 0.7566 0.6793

NOTE: Samples from distribution N (380, 192 ).

For Exponential distribution with small samples (n=10) and  asymmetry coefficient higher than 2, all tests indicates non-
with asymmetry coefficient lower than 1, all the tests indicate  normality (table 14).
data normality. However, if the sample size is equal to 20 and

TABLE 14 - P-VALUES FOR NORMALITY TESTS APPLIED TO EXPONENTIAL DISTRIBUTION SAMPLES
ACCORDING TO DIFFERENT SAMPLE SIZES AND ASYMMETRY COEFFICIENTS

SAMPLE SIZES AND ASYMMETRY COEFFICIENTS
TESTS n=10 n=20 n=30 n=50 n =100
As =0.7352 As =2.8894 As =0.9259 As =0.9742 As =1.2995
Lilliefors (K-S) 0.8867 1.981E-04 1.530E-03 1.144E-04 4.191E-09
Shapiro-Wilk 0.7575 1.641E-05 4.499E-03 1.951E-04 4.245E-08
Chi-squared 0.5724 8.687E-03 9.029E-03 1.124E-04 1.085E-09
Anderson-Darling 0.6760 2.636E-05 2.115E-03 9.450E-05 4.622E-10
Cramer-von Mises 0.6862 1.022E-04 2.036E-03 3.151E-05 1.395E-07
Shapiro-Francia 0.6056 3.261E-05 8.738E-03 6.733E-04 4.399E-07
D'Agostino-Pearson - 8.544E-08 9.267E-02 2.371E-02 4.784E-06
Jarque-Bera - 7.772E-16 1.449E-01 2.426E-02 8.805E-08
NOTE: samples Exp (1/380 ).
The Gamma distribution with small sample size (n=10) and The D’Agostino-Pearson and Jarque-Bera tests indicate
asymmetry coefficient higher than 1, all the tests indicate data  data normality even for sample with sizes equal to 20 and 30
normality with significance level of 1%. and asymmetry coefficients close to 1 (table 15).

TABLE 15 - P-VALUES FOR NORMALITY TESTS APPLIED TO GAMMA DISTRIBUTION SAMPLES ACCORDING TO
DIFFERENT SAMPLE SIZES AND ASYMMETRY COEFFICIENTS

SAMPLE SIZES AND ASYMMETRY COEFFICIENTS
TESTS n=10 n=20 n=30 n =50 n =100
As =1.6353 As =1.2944 As =1.0422 As =1.5508 As =1.6033
Lilliefors (K-S) 0.1227 2.699E-03 4.761E-04 6.071E-05 5.305E-06
Shapiro-Wilk 0.0138 1.528E-03 6.131E-04 5.048E-06 1.608E-08
Chi-squared 0.0154 3.449E-03 1.180E-03 1.847E-03 5.534E-06
Anderson-Darling 0.0209 5.100E-04 1.228E-04 8.783E-07 1.705E-09
Cramer-von Mises 0.0255 4.960E-04 1.608E-04 6.327E-06 2.374E-07
Shapiro-Francia 0.0156 2.699E-03 1.525E-03 2.058E-05 1.352E-07
D'Agostino-Pearson - 3.750E-02 6.435E-02 4.334E-05 3.471E-09
Jarque-Bera - 8.995E-02 8.383E-02 2.380E-06 <2.200E-16

NOTE: Samples from distribution Gamma (1,9) .

Taking into consideration samples with chi-squared Even when we increase the sample size to 30 with low
distribution with small size (n=10) with asymmetry coefficient — asymmetry coefficient, all the tests indicate data normality for
a little higher than 1, all the tests also indicate data normality  significance level of 5%, except for Lilliefors (K-S) which the
for significance level of 1% and 5%, except for chi-squared. level is 4% (table 16).
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TABLE 16 - P-VALUES FOR NORMALITY TESTS APPLIED TO CHI-SQUARED DISTRIBUTION SAMPLES
ACCORDING TO DIFFERENT SAMPLE SIZES AND ASYMMETRY COEFFICIENTS

SAMPLE SIZES AND ASYMMETRY COEFFICIENTS
TESTS n=10 n=20 n=30 n=>50 n =100
As=1.3152 | As=1.9089 | As=0.6948 | As=1.0105 As =1.4568
Lilliefors (K-S) 0.2416 1.180E-02 0.0435 3.195E-02 1.258E-03
Shapiro-Wilk 0.0792 1.287E-03 0.0663 2.456E-03 5.298E-06
Chi-squared 0.0268 6.905E-02 0.1637 2.986E-01 5.738E-03
Anderson-Darling 0.1000 2.687E-03 0.1245 5.109E-03 2.868E-05
Cramer-von Mises 0.1150 4.505E-03 0.1621 9.200E-03 2.146E-04
Shapiro-Francia 0.0717 1.387E-03 0.1030 4.720E-03 1.812E-05
D'Agostino-Pearson - 1.445E-04 0.2604 1.070E-02 2.113E-06
Jarque-Bera - 9.296E-05 0.3119 1.391E-02 5.972E-09

NOTE: Samples from distribution 3% (4) .

V. CONCLUSION

The present study concluded that normality test performance
is affected by the significance level used in the hypothesis test,
the shape of data being analyzed and sample size.

Concerning normal distribution data, the different tests
analyzed herein showed similar performances. When using
significance level of 1%, the D’ Agostino-Pearson, Jarque-Bera
and Chi-squared tests with size samples equal or smaller than
20 are the less efficient. But, when using o = 5%, the Jarque-
Bera test performance is the best.

Shapiro-Wilk,  Anderson-Darling, Cramer-von Mises,
Shapiro-Francia and Jarque-Bera tests can be used to assess
distributions similar to normal distribution, that’s to say almost
symmetrical, for sample sizes equal to or higher than 200 and
significance level of 1%. However, when using significance
level of 5%, we recommend the Anderson-Darling, Cramér-
von Mises and Shapiro-Francia for sample sizes close to 200.

Concerning slightly positive asymmetric distributions, such
as Gamma(5,1/5), Shapiro-Wilk and Shapiro-Francia tests

are efficient for sample sizes close to 150 when using
significance level of 1%. The same tests are efficient for
sample sizes higher than 100, when using significance level of
5%.

Concerning moderate positive asymmetric distributions
such as x?(5), Shapiro-Wilk, Shapiro-Francia and Anderson-

Darling tests are efficient for samples sizes close to 90 with
significance level of 1%. When using significance level of 5%,
the same tests are efficient for sample sizes close to 70.

When data show strong positive asymmetry such as
Exp(3), Shapiro-Wilk, Anderson-Darling and Shapiro-

Francia tests are efficient for sample sizes close to 40 with
significance level of 1%. When using significance level of 5%,
the same tests are efficient for sample sizes close to 30.
Concerning negative asymmetry data, such as the
Contaminated Normal distribution described in the present
study, Kolmogorov-Smirnov with Lilliefors correction and
Cramér-von Mises tests are efficient for sample sizes close to
40 with significance level of 1%. When using significance
level of 5%, the same tests are efficient for sample sizes close
to 30. It is important to consider that Cramér-von Mises test
should be used for sample sizes (n) smaller than or equal to
200, since for higher values of n, the test power can decrease.
The present study permits us to infer that to apply a
normality test when distribution is not normal the more
asymmetric it is, as Exp(1/380 ) shown in table 14, the

smaller the sample size can be. On the other hand the closer to
Normal the distribution is, almost symmetric, the larger the
sample size should be. This fact shows the importance of
carrying out a previous exploratory analyzes before starting
any statistical inference process. We recommend the use of
Normal Q-Q plot or Normal P-P plot graphic, when sample
sizes are small (n<30) and distributions are symmetric, for it
helps data normality checking analysis.
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