
 

 

  
Abstract - Applying parametric statistical tests requires 
checking some suppositions about their data nature, including 
data normality, since such tests are based on Normal 
distribution (Gaussian). For this purpose, several tests are 
available and among them the following are the most used:  
Kolmogorov-Smirnov with Lilliefors correction, Shapiro-
Wilk,  Pearson’s Chi-squared, Anderson-Darling, Shapiro-
Francia, Cramér-von Mises, Jarque-Bera and D’Agostino-
Pearson. The present work assesses test efficiency through the 
Monte Carlo simulation, including 10,000 samples with sizes 
equal to 10, 20, 30, 40, 50, 70, 90, 100, 150, 200 and 500, and 
four different distributions:   Gamma  with parameters 5  and 

5/1 ; Double Exponential with parameters 0 and 1; Chi-
squared with parameter 5;  Exponential with parameter 3 and 
Contaminated Normal distribution, where 50% of the values 
were generated through Standard Normal distribution and 50% 
through two parameters Exponential distribution (3 and 1). We 
inferred that normality test performances are affected by the 
significance level used in the hypothesis test, the shape of data 
distribution and the sample size.  Concerning non-normal 
distribution, the present study allowed us to infer that when 
applying normality tests the more asymmetric is data 
distribution, the smaller the sample size could be. On the other 
hand, the closer to normal (symmetric) the distribution is, the 
larger the sample size must be. Thus, we verify that some tests 
are more efficient than others depending on the shape of  
distribution. 

 
Keywords – Normality test, Monte Carlo simulation, data 

distribution, test power.  

I. INTRODUCTION 
 The parametric tests applied to many different areas, such as 
engineering, economic and social sciences, health, safety and 
others, it is necessary to check some suppositions, including 
data normality. 
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There are several tests available and among them the most 
popular are: Kolmogorov-Smirnov with Lilliefors correction, 
Shapiro-Wilk, Pearson’s Chi-squared, Anderson-Darling, 
Shapiro-Francia, Cramér-von Mises, Jarque-Bera and 
D’Agostino-Pearson. We can also find graphic methods as 
Frequency Histogram, Normal Q-Q plot (quantile-quantile 
plot) and Normal P-P plot (probability-probability plot) that 
are frequently used to check if a data set behaves according to 
normal distribution.  
 When choosing the test, the question is: which one is the 
most adequate? Some authors discuss the efficiency of some 
tests aforementioned, see [4], [5], [6], [8], and [1].  
  The Chi-squared test is based on the comparison between 
sample data distribution and theoretical distribution of the  
sample. The  Kolmogorov-Smirnov (K-S) test is based on 
proximity analysis or adjustment between the empirical 
distribution or sample distribution )x(S , and the population 
distribution function (theoretical), )x(Fo , that is admitted in 
the null hypothesis 0H . Lilliefors corrected the K-S test 
standardized by the use of µ  and σ  estimations.  On the other 
hand, the Anderson-Darling test, which is a measure that 
shows how the points are approaching the straight  line 
estimated in a probability graphic, is an alternative to the two 
aforementioned tests. Its great advantage is to be more 
sensitive since it gives more weight to tail observations. The 
Cramér-von Mises test is an alternative to the Kolmogorov-
Smirnov test and checks the hypothesis that a data set results 
from a specific continuous distribution estimating the 
minimum distance between theoretical probability distribution 
and empirical distribution. The D’Agostino-Pearson test 
statistics combines asymmetry and kurtosis measures thus 
producing the normality omnibus test1. The Shapiro-Wilk test, 
known as powerful omnibus test [5] was proposed to check if a 
certain random sample came from a normally distributed 
population. Finally, the Jarque-Bera is an asymptotic normality 
test based on the Ordinary Least Squares (OLS) residuals by 
firstly calculating the asymmetry and kurtosis measures.  

 
1 Allows to check if in a data set the explained-variance is superior to the 

non-explained variance.  
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II. NORMALITY TEST DESCRIPTION 

A. Pearson’s Chi-squared Test  

The Chi-squared test ( 2χ ) allows to assess adherence 
between the frequency distribution of a sample composed of n 
observations expressed in any scale and a theoretical 
distribution. Performing this test requires a random sample 
size 30n ≥ .   
 The n  observations composing the sample are grouped in 
k  classes (or categories) mutually exclusive (with 2k ≥ ).  Chi-
squared adherence test is calculated by the following 
expression:  
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where: 
iO  is the i class observed frequency; 

iE  is the ith class expected frequency. 
 If the null hypothesis ( 0H ) is true, the aforementioned 
statistics has Chi-squared asymptotic distribution with degree 
of freedom equal to 1pkdf −−= , where k  represents 
number of classes and p  is the number of distribution 
parameters estimated from the sample.  

B. Kolmogorov-Smirnov Test with Lilliefors Correction 
 For a random sample with size n, the empirical distribution 
or sample distribution function )x(S , expresses data relative 
frequencies with values smaller or equal to x, which is a 
particular value of the random variable X. Thus, 
considering ),,,( n21 XXX  , a random sample of a 
continuous random variable X and the respective order 
statistics )n()2()1( XXX ,,,  , we have that )x(S  empirical 
distribution function is obtained by:  
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 Thus, the empirical distribution function )x(S  is a step 
function that increases by n1  in the jump points (sample 
ordinal statistics) and the Kolmogorov-Smirnov test statistics, 
denoted by .obsD  (that is a random variable), correspond to the 
maximum difference (supreme), in absolute value between 

)x(S  and )x(Fo , when all possible X values are considered. 
According to symbolic notation we have: 
 )x(F)x(SmaxD o

x
.obs −=                                           (3) 

 The test performed with Lilliefors correction is processed in 
the same way as the Kolmogorov-Smirnov test, the only 

difference is that original data are standardized by using 
estimates of µ  and σ : 
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C. Anderson-Darling Test 
This test is based on the empirical distribution function.  It 

supports the idea that once the distribution functions under 
0H  is given; data can be transformed into uniform distribution 

and then tested for uniformity. 
 The Anderson-Darling test statistic is given by:  
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is the percentiles of the Standard Normal distribution.  

D. Cramér-von Mises Test  
 This test is also based on cumulative distribution function. 
The Cramér-von Mises test statistic is given by:  
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is the percentiles of the Standard Normal distribution. 

E. D’Agostino-Pearson Test 
This procedure is also known as D test and the statistic has 

the following expression:  
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and S is the sample standard deviation. 

F. Jarque-Bera Test 
It is based on the difference between the asymmetry and 

kurtosis coefficients of observed data and theoretical normal 
distribution. The test statistic is given by: 
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where: 
2

1 2S , b e b  are respectively the second, third and fourth 
central moments. The JB statistics has asymptotic distribution 

2
)2(χ  under null hypothesis.  

G. Shapiro-Wilk Test  
The Shapiro-Wilk test statistic is expressed by:  
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and ia  is computed as the solution of:  
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where: 
)i(x  is the i-th order statistic; 

)m,,m,m(m n21 = is the expected values vector  of the 
order statistics;  
V  is the variance-covariance  matrix of the random sample 
order statistics. 

H. Shapiro-Francia Test 
Shapiro and Francia introduced a change in the W statistics, 

so W′  depends only of the expected value (m) of the order 
statistic. The Shapiro-Francia test statistic is given by:  
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III. MATERIAL AND METHOD 
The aforementioned test efficiency assessment was carried out 
through the Monte Carlo simulation and used the nortest and 
fBasics libraries available in the R system. Were generated ten 
thousand (10,000) samples, with the sizes equal to 10, 20, 30, 
40, 50, 70, 90, 100, 150, 200 and 500, according to different 
distributions, which are: Standard Normal distribution 

)1,0(N , used to assess type I error percentage, that is, the 
null hypothesis (H0) is true, but is rejected;  Gamma 
distribution with parameters 5  and 5/1 ;  Laplace or Double 
Exponential distribution with parameter 0 and 1; Chi-squared 
distribution with parameter 5; Exponential distribution with 
parameter 3 and Normal Contaminated distribution, where 
50% of the values were obtained using Standard Normal 
distribution and the other 50% using the two-parameter 
Exponential distribution (3 and 1). The respective distribution 

figures are as follows: Fig. 1 shows the frequency histogram of 
random variable X with Gamma distribution ( 5/1;5 ) and 
sample size 50n = . It is possible to observe that this 
symmetry is slightly positive. Fig. 2 shows the frequency 
histogram of random variable X with Double Exponential 
distribution )1;0( , with sample size 50n = . This symmetric 
distribution can be considered as the distribution of the 
difference between two independently and identically 
distributed (i.i.d) random variables with exponential 
distribution. When the graphic is doubled around the y axis it 
is proportional to Exponential distribution density. 

                                               

        

 

      
 
 
 
 
 
Fig. 1  -  Frequency histogram of random variable X with 
Gamma distribution  
 

 

 

 
 
 
 

 
 
 
 
Fig. 2 - Frequency histogram of random variable X with 
Double Exponential distribution  

 
 
Fig. 3 shows frequency histogram of the random variable X 

with distribution )5(2χ   and 50n = , indicating positive 
asymmetry. 
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Fig. 3 – Frequency histogram of the random variable X with 
Chi-squared distribution 

 
The frequency histogram of the random variable X with 

distribution )3(Exp  and sample size 50n =  presented in Fig. 
4 also indicates positive asymmetry.  

 
 
 
 

 

 

 

 
Fig. 4 – Frequency histogram of the random variable X with 
Exponential distribution 
 

Finally,  the  histogram of a  Contaminated Normal 
distribution with sample size equal to 50, where 50% of values 
were generated through Standard Normal distribution and the 
other 50% through   a  two-parameter (3 and 1) Exponential 

distribution, with sample size n=50. Fig. 5 shows that 
distribution has negative asymmetry. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 – Frequency histogram of the random variable X with 
Contaminated Normal distribution 
 

Significance levels of 1% and 2% were used to test the 
hypothesis 0H :  the data follow normal distribution,  against 
the 1H : the data do not follow normal distribution.  This 
choice is due the fact that when performing a hypothesis test 
we want to commit minor mistake as possible.  

 Concerning normal distribution data and test power of 
other distributions (Gamma, Chi-squared, Exponential and 
Contaminated Normal distribution), type I error rates were 
obtained from ratios between number of 0H  rejections (p-
value 01.0<  or p-value 05.0< ) and total samples generated to 
each test. 

IV.  RESULTS AND DISCUSSION 

Tables 1 and 2 show type I error rates of different tests applied 
to normal distribution data for pre-defined sample sizes. 

  
TABLE 1 – TYPE I ERROR  RATES ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES FOR NORMAL DISTRIBUTION 
DATA, USING SIGNIFICANCE LEVEL OF 1%  

TESTS 
SAMPLE SIZES 

10 20 30 40 50 70 90 100 150 200 500 

Lilliefors (K-S) 0.0113 0.0103 0.0114 0.0102 0.0113 0.0105 0.0095 0.0097 0.0100 0.0092 0.0092 
Shapiro-Wilk 0.0114 0.0096 0.0092 0.0086 0.0072 0.0082 0.0098 0.0095 0.0088 0.0085 0.0097 
Chi-squared 0.0141 0.0121 0.0111 0.0116 0.0098 0.0097 0.0100 0.0109 0.0109 0.0113 0.0104 
Anderson-Darling 0.0099 0.0094 0.0091 0.0090 0.0087 0.0090 0.0095 0.0095 0.0091 0.0091 0.0108 
Cramer-von Mises 0.0093 0.0097 0.0097 0.0100 0.0087 0.0083 0.0096 0.0089 0.0097 0.0096 0.0099 
Shapiro-Francia 0.0110 0.0096 0.0099 0.0091 0.0091 0.0088 0.0101 0.0091 0.0092 0.0097 0.0096 
D'Agostino-Pearson  - 0.0169 0.0180 0.0162 0.0163 0.0140 0.0138 0.0143 0.0142 0.0145 0.0120 
Jarque-Bera  - 0.0098 0.0131 0.0143 0.0153 0.0145 0.0153 0.0155 0.0165 0.0159 0.0138 

NOTE: Monte Carlo Simulation 000,10NMC = . 

 
When distribution is normal and used significance level of 

1%, almost all the test are efficient since type I error rates are 
close to 1%, except for Chi-squared tests to n = 10 and  
Jarque-Bera and D’Agostino-Pearson tests that show higher 
error taxes if compared to the others.  The Jarque-Bera is an 

asymptotical test, that’s to say a large sample test. Thus, we 
will only consider the results of samples equal or over size 20. 
Concerning D’Agostino-Pearson, we also took into 
consideration the equal or over 20-sized samples, since this is 
a limitation of the R system. 

TABLE 2 –  TYPE I ERROR  RATES ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES FOR NORMAL DISTRIBUTION 
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DATA, USING SIGNIFICANCE LEVEL OF 5% 

TESTS 
SAMPLE SIZES 

10 20 30 40 50 70 90 100 150 200 500 

Lilliefors (K-S) 0.0556 0.0479 0.0486 0.0519 0.0481 0.0488 0.0490 0.0494 0.0485 0.0479 0.0483 
Shapiro-Wilk 0.0514 0.0489 0.0484 0.0461 0.0491 0.0471 0.0495 0.0494 0.0473 0.0488 0.0491 
Chi-squared 0.0649 0.0492 0.0531 0.0571 0.0525 0.0546 0.0544 0.0502 0.0529 0.0516 0.0534 
Anderson-Darling 0.0522 0.0491 0.0485 0.0486 0.0493 0.0479 0.0490 0.0485 0.0491 0.0486 0.0490 
Cramer-von Mises 0.0507 0.0498 0.0499 0.0487 0.0500 0.0504 0.0517 0.0504 0.0503 0.0486 0.0477 
Shapiro-Francia 0.0555 0.0518 0.0500 0.0487 0.0488 0.0482 0.0500 0.0523 0.0483 0.0484 0.0494 
D'Agostino-Pearson  - 0.0545 0.0559 0.0567 0.0545 0.0521 0.0517 0.0531 0.0536 0.0499 0.0470 
Jarque-Bera  - 0.0215 0.0305 0.0329 0.0344 0.0370 0.0389 0.0407 0.0393 0.0411 0.0411 

NOTE: Monte Carlo Simulation 000,10NMC = . 

The tests were also efficient when we used the significance 
level of  5%, except for the Chi-squared test that showed type I 
error rate of 0.0649 for 10n = . On the other hand, the Jarque-
Bera test showed the lowest type I error rates for all the sample 
sizes. 

According to [8], concerning normal data the four criteria 
(Kolmogorov-Smirnov, Anderson-Darling, Cramer-von Mises 
and Shapiro-Wilk) are equivalent, except for Kolmogorov-
Smirnov. The significance level used was of 1%. 

The authors in [6] say that the Jarque-Bera test was superior 
for Normal distribution and Standard Normal, because it 
showed lower type I error rate. Shapiro-Wilk and 
Kolmogorov-Smirnov with Lilliefors correction tests can also 
be used for practical purposes.  

According to [4], among the five tests studied (Anderson-
Darling, Lilliefors, Jarque-Bera, D’Agostino-Pearson and 
Shapiro-Francia) the best is the Anderson-Darling test. The 
Jarque-Bera test is the most popular and widely used in 
economy area, but results suggest that Anderson-Darling is 
superior. The author carried out the tests taking into 
consideration the significance levels of 1%, 5% and 10%. 
 The test power assessment for Gamma distribution data 
(table 3) with significance level of 1% showed that the 
Shapiro-Wilk test power is superior to 90.0% for sample 
size 150n = .   

Using the significance level of 5% (table 4), the Shapiro-
Wilk test showed a power equal to 89.92%, for sample 
size 100n = . 

TABLE 3 –  POWER ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES  FOR GAMMA DISTRIBUTION  WITH 
SIGNIFICANCE LEVEL OF 1%  

TESTS 
SAMPLE SIZES 

10 20 30 40 50 70 90 100 150 200 500 

Lilliefors (K-S) 0.0274 0.0486 0.0708 0.1037 0.1344 0.2110 0.2959 0.3329 0.5405 0.7040 0.9952 
Shapiro-Wilk 0.0415 0.0995 0.1798 0.2639 0.3533 0.5298 0.6920 0.7563 0.9332 0.9854 1.0000 
Chi-squared 0.0227 0.0345 0.0494 0.0581 0.0719 0.1151 0.1523 0.1811 0.3301 0.4932 0.9792 
Anderson-Darling 0.0353 0.0764 0.1308 0.1923 0.2569 0.3979 0.5402 0.6013 0.8279 0.9378 1.0000 
Cramer-von Mises 0.0313 0.0644 0.1102 0.1606 0.2069 0.3317 0.4525 0.5071 0.7458 0.8819 1.0000 
Shapiro-Francia 0.0407 0.0981 0.1686 0.2437 0.3222 0.4845 0.6386 0.7088 0.9088 0.9774 1.0000 
D'Agostino-Pearson  - 0.1256 0.1831 0.2467 0.3060 0.4263 0.5500 0.6042 0.8296 0.9439 1.0000 
Jarque-Bera  - 0.0868 0.1507 0.2215 0.2858 0.4163 0.5476 0.6051 0.8365 0.9473 1.0000 

NOTE: Monte Carlo Simulation 000,10NMC = . 

TABLE 4 - POWER ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES FOR GAMMA DISTRIBUTION WITH 
SIGNIFICANCE LEVEL OF 5% 

TESTS 
SAMPLE SIZES  

10 20 30 40 50 70 90 100 150 200 500 

Lilliefors (K-S) 0.0950 0.1476 0.2064 0.2648 0.3206 0.4356 0.5408 0.5959 0.7813 0.8910 0.9995 
Shapiro-Wilk 0.1184 0.2349 0.3570 0.4776 0.5804 0.7494 0.8599 0.8982 0.9820 0.9976 1.0000 
Chi-squared 0.1058 0.1069 0.1383 0.1890 0.2039 0.2746 0.3568 0.3905 0.5730 0.7287 0.9965 
Anderson-Darling 0.1101 0.2001 0.2932 0.3858 0.4725 0.6245 0.7541 0.8007 0.9408 0.9866 1.0000 
Cramer-von Mises 0.1045 0.1794 0.2587 0.3358 0.4159 0.5590 0.6816 0.7301 0.8920 0.9638 1.0000 
Shapiro-Francia 0.1251 0.2313 0.3403 0.4494 0.5498 0.7153 0.8353 0.8742 0.9731 0.9957 1.0000 
D'Agostino-Pearson  - 0.2154 0.3031 0.3864 0.4715 0.6177 0.7455 0.8036 0.9509 0.9906 1.0000 
Jarque-Bera  - 0.1387 0.2346 0.3241 0.4147 0.5817 0.7206 0.7840 0.9453 0.9900 1.0000 
NOTE: Monte Carlo Simulation NMC = 10,000. 
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 According to [6], for )30(t distribution, all the tests showed 
low power. We have to keep in mind that the Student  t 
distribution developed by William Sealy Gosset is a 
symmetrical and bell-shaped distribution similar to the 
Standard Normal curve but with wider tails. The only 
parameter that defines and characterizes it is the degree of 
freedom )( ν . The larger the parameter, the closer to Normal 
the distribution is.  For degree of freedom equal to 30, the 
distribution is closer to Standard Normal distribution. 
 
 

 The following table (table 5) shows the power of different 
tests and sample sizes for Double Exponential distribution 
data, which is a symmetrical but not mesokurtic distribution. 
 It was observed that Shapiro-Wilk, Anderson-Darling, 
Cramer-von Mises, Shapiro-Francia and Jarque-Bera tests 
show test power greater than 92.00% for the sample size when 
using the significance level of 1 %.that Shapiro-Wilk, 
Anderson-Darling, Cramér-von Mises, Shapiro-Francia and 
Jarque-Bera tests show test power higher than 92.00% for 
sample size 200n =  when using significance level of 1%. 
Thus, the closer to normal the distribution is the data analyzed, 
the large the sample size must be, so that the tests for 
normality checking will be efficient.  
 

TABLE 5 – POWER ACCORDING TO DIFFERENT TESTS AND  SAMPLE  SIZES  FOR DOUBLE EXPONENTIAL 
DISTRIBUTION DATA WITH SIGNIFICANCE LEVEL OF 1%  

TESTS 
SAMPLE SIZES  

10 20 30 40 50 70 90 100 150 200 500 

Lilliefors (K-S) 0.0536 0.0886 0.1288 0.1671 0.2161 0.3182 0.4119 0.4577 0.6661 0.8170 0.9985 
Shapiro-Wilk 0.0707 0.1310 0.2032 0.2661 0.3392 0.4717 0.5790 0.6317 0.8278 0.9271 1.0000 
Chi squared 0.0352 0.0590 0.0750 0.0918 0.1122 0.1775 0.2315 0.2689 0.4217 0.5707 0.9762 
Anderson-Darling 0.0649 0.1292 0.1973 0.2682 0.3400 0.4775 0.6035 0.6568 0.8523 0.9451 1.0000 
Cramer-von Mises 0.0615 0.1247 0.1879 0.2570 0.3298 0.4653 0.5946 0.6485 0.8489 0.9423 0.9998 
Shapiro-Francia 0.0756 0.1592 0.2427 0.3186 0.3941 0.5292 0.6299 0.6806 0.8595 0.9408 0.9999 
D'Agostino-Pearson  - 0.1894 0.2544 0.3026 0.3460 0.4409 0.5173 0.5571 0.7206 0.8364 0.9982 
Jarque-Bera  - 0.1493 0.2522 0.3330 0.4085 0.5333 0.6314 0.6760 0.8385 0.9231 0.9996 

NOTE: Monte Carlo Simulation 000,10NMC = . 
 
Using significance level of 5% (table 6), the 

Anderson-Darling, Cramer-von Mises and Shapiro-Francia 
tests show power of over 98.00%, for sample sizes equal to 

200, thus proving that for the tests are efficient, If distributions 
are closer to Normal distribution, sample sizes needs to be 
considerably large.  

 
 
 

 
 

TABLE 6 – POWER ACCORDING TO DIFFERENT TESTS AND  SAMPLE  SIZES  FOR DOUBLE EXPONENTIAL 
DISTRIBUTION DATA WITH SIGNIFICANCE LEVEL OF 5% 

TESTS 
SAMPLE SIZES 

10 20 30 40 50 70 90 100 150 200 500 

Lilliefors (K-S) 0.1435 0.2168 0.2904 0.3606 0.4315 0.5526 0.6632 0.7079 0.8652 0.9452 0.9999 
Shapiro-Wilk 0.1567 0.2607 0.3638 0.4433 0.5194 0.6490 0.7529 0.7919 0.9217 0.9742 1.0000 
Chi-squared 0.1379 0.1520 0.1962 0.2560 0.2679 0.3582 0.4419 0.4757 0.6475 0.7817 0.9955 
Anderson-Darling 0.1625 0.2778 0.3736 0.4615 0.5372 0.6828 0.7835 0.8265 0.9414 0.9843 1.0000 
Cramer-von Mises 0.1575 0.2724 0.3651 0.4578 0.5318 0.6786 0.7797 0.8242 0.9412 0.9844 0.9999 
Shapiro-Francia 0.1893 0.3264 0.4330 0.5199 0.5976 0.7200 0.8099 0.8428 0.9444 0.9823 1.0000 
D'Agostino-Pearson  - 0.3051 0.3873 0.4517 0.5157 0.6155 0.6967 0.7302 0.8655 0.9394 0.9996 
Jarque-Bera  - 0.2213 0.3380 0.4321 0.5184 0.6451 0.7388 0.7738 0.9070 0.9613 1.0000 

NOTE:  Monte Carlo Simulation 000,10NMC = . 

 

Concerning 2χ distribution of data (table 7 and table 8), the 
Shapiro-Wilk test showed test power of  89.56% and  97.31% 

for significance levels of  1% and 5%, respectively for sample 
size 70n = .  
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TABLE 7 – POWER  ACCORDING  TO  DIFFERENT TESTS  AND  SAMPLE  SIZES  FOR  CHI-SQUARED  DISTRIBUTION  
WITH SIGNIFICANCE LEVEL OF 1% 

TESTS 
SAMPLE SIZES 

10 20 30 40 50 70 90 100 150 200 500 

Lilliefors (K-S) 0.0488 0.1062 0.1753 0.2573 0.3349 0.4999 0.6432 0.7034 0.9040 0.9751 1.0000 
Shapiro-Wilk 0.0765 0.2226 0.4038 0.5764 0.7159 0.8956 0.9699 0.9858 1.0000 1.0000 1.0000 
Chi-squared 0.0390 0.0872 0.1369 0.1979 0.2519 0.4296 0.5613 0.6474 0.8873 0.9782 1.0000 
Anderson-Darling 0.0671 0.1859 0.3263 0.4702 0.5927 0.7974 0.9106 0.9433 1.0000 1.0000 1.0000 
Cramer-von Mises 0.0603 0.1599 0.2802 0.4035 0.5128 0.7147 0.8446 0.8874 0.9870 0.9989 0.9949 
Shapiro-Francia 0.0732 0.2106 0.3671 0.5253 0.6605 0.8564 0.9511 0.9740 0.9994 1.0000 1.0000 
D'Agostino-Pearson  - 0.2193 0.3255 0.4322 0.5423 0.7115 0.8423 0.8883 0.9904 0.9997 1.0000 
Jarque-Bera  - 0.1598 0.2798 0.3992 0.5212 0.7105 0.8503 0.8954 0.9910 0.9996 1.0000 

 NOTE: Monte Carlo Simulation 000,10NMC = . 
 
 
TABLE 8 –  POWER  ACCORDING  TO  DIFFERENT  TESTS  AND  SAMPLE  SIZES  FOR  CHI-SQUARED DISTRIBUTION  
WITH SIGNIFICANCE LEVEL OF 5% 

TESTES 
SAMPLE SIZES 

10 20 30 40 50 70 90 100 150 200 500 

Lilliefors (K-S) 0.1409 0.2595 0.3802 0.4889 0.5879 0.7460 0.8541 0.8893 0.9795 0.9975 1.0000 
Shapiro-Wilk 0.1929 0.4274 0.6406 0.7924 0.8862 0.9731 0.9954 0.9978 0.9996 1.0000 1.0000 
Chi-squared 0.1605 0.2126 0.3003 0.4214 0.4937 0.6620 0.8038 0.8350 0.9666 0.9958 1.0000 
Anderson-Darling 0.1800 0.3734 0.5495 0.6907 0.8007 0.9214 0.9754 0.9863 1.0000 1.0000 1.0000 
Cramer-von Mises 0.1648 0.3376 0.4935 0.6253 0.7298 0.8734 0.9467 0.9653 0.9978 0.9999 0.9968 
Shapiro-Francia 0.2002 0.4066 0.6001 0.7534 0.8538 0.9582 0.9917 0.9956 1.0000 1.0000 1.0000 
D'Agostino-Pearson  - 0.3421 0.4810 0.6083 0.7157 0.8746 0.9564 0.9776 0.9994 1.0000 1.0000 
Jarque-Bera  - 0.2389 0.3935 0.5457 0.6737 0.8540 0.9490 0.9747 0.9994 1.0000 1.0000 

NOTE:  Monte Carlo Simulation 000,10NMC = .  
 
 

 Concerning Exponential distribution data, presented in table 
9 and table 10, the Shapiro-Wilk test showed power of 97.91% 
for sample size 40n =  with significance level of 1%. When 
using significance level of  5%, the same test showed test 
power of 96.44% for sample size 30n = .  

According to [5], who assessed the Shapiro-Wilk and 
D’Agostino-Pearson tests, the first was more powerful than the 

second for different distributions and sample sizes, thus 
inferring that normality test performance is strongly affected 
by the shape of distribution data and sample size. The 
significance level used was of 5%. 

 
TABLE 9 –  POWER  ACCORDING  TO  DIFFERENT  TESTS  AND  SAMPLE  SIZES  FOR  EXPONENTIAL DISTRIBUTION 
WITH SIGNIFICANCE  LEVEL  OF  1% 

TESTS 
SAMPLE SIZES 

10 20 30 40 50 70 90 100 150 200 500 
Lilliefors (K-S) 0.1289 0.3305 0.5396 0.7259 0.8566 0.9706 0.9959 0.9987 1.0000 1.0000 1.0000 
Shapiro-Wilk 0.2323 0.6248 0.8730 0.9791 0.9949 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Chi-square 0.1274 0.4212 0.6566 0.7884 0.8691 0.9791 0.9898 0.9975 1.0000 1.0000 1.0000 
Anderson-Darling 0.2044 0.5678 0.8136 0.9369 0.9834 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 
Cramer-von Mises 0.1883 0.5117 0.7510 0.8980 0.9621 0.9964 0.9997 1.0000 0.9990 0.9803 0.0013 
Shapiro-Francia 0.2108 0.5762 0.8257 0.9492 0.9878 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 
D'Agostino-Pearson  - 0.4430 0.6344 0.7790 0.8774 0.9750 0.9968 0.9989 1.0000 1.0000 1.0000 
Jarque-Bera  - 0.3541 0.5870 0.7565 0.8735 0.9785 0.9970 0.9992 1.0000 1.0000 1.0000 

NOTE:  Monte Carlo Simulation 000,10NMC = . 
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TABLE 10 – POWER  ACCORDING TO  DIFFERENT TESTS AND SAMPLE SIZES  FOR  EXPONENTIAL  DISTRIBUTION  
WITH SIGNIFICANCE  LEVEL  OF  5% 

TESTS 
SAMPLE SIZES  

10 20 30 40 50 70 90 100 150 200 500 
Lilliefors (K-S) 0.2929 0.5719 0.7795 0.9013 0.9615 0.9963 0.9994 0.9999 1.0000 1.0000 1.0000 
Shapiro-Wilk 0.4320 0.8314 0.9644 0.9954 0.9993 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Chi-squared 0.3879 0.6556 0.8493 0.9543 0.9840 0.9994 0.9999 1.0000 1.0000 1.0000 1.0000 
Anderson-Darling 0.4024 0.7746 0.9314 0.9859 0.9965 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Cramer-von Mises 0.3738 0.7282 0.8991 0.9676 0.9918 0.9998 1.0000 1.0000 0.9991 0.9844 0.0018 
Shapiro-Francia 0.4212 0.7937 0.9474 0.9914 0.9986 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
D'Agostino-Pearson  - 0.5954 0.7842 0.9026 0.9675 0.9989 0.9999 1.0000 1.0000 1.0000 1.0000 
Jarque-Bera  - 0.4787 0.7278 0.8803 0.9579 0.9979 0.9999 1.0000 1.0000 1.0000 1.0000 

NOTE: Monte Carlo Simulation 000,10NMC = . 

Finally, if the data analyzed come from negative 
asymmetrical distributions, such as the Contaminated Normal 
used in this work (table 11), with significance levels of 1%, the 
Kolmogorov-Smirnov with Lilliefors correction test showed 
power of 96.26% for sample size 40n = . Using significance 

level of 5% (table 12), the test power is of 95.50% for sample 
size 30n = .  
 When analyzing the Cramér-von Mises test, it was observed 
that test power for samples sizes higher then 200 are reduced 
for distributions with strong and moderate asymmetry.  

TABLE 11 –  POWER ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES  FOR CONTAMINATED NORMAL 
DISTRIBUTION DATA WITH SIGNIFICANCE  LEVEL OF 1% 

TESTS 
SAMPLE SIZES 

10 20 30 40 50 70 90 100 150 200 500 
Lilliefors (K-S) 0.1306 0.5406 0.8466 0.9626 0.9928 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000 
Shapiro-Wilk 0.1001 0.3015 0.5440 0.7321 0.8530 0.9698 0.9946 0.9985 1.0000 1.0000 1.0000 
Chi-squared 0.1430 0.3311 0.6122 0.7654 0.8993 0.9815 0.9989 0.9997 1.0000 1.0000 1.0000 
Anderson-Darling 0.1128 0.4224 0.7235 0.8946 0.9607 0.9958 0.9999 1.0000 1.0000 1.0000 1.0000 
Cramer-von Mises 0.1172 0.4571 0.7741 0.9242 0.9765 0.9980 1.0000 1.0000 1.0000 1.0000 0.0033 
Shapiro-Francia 0.0737 0.2444 0.4766 0.6753 0.8178 0.9595 0.9934 0.9976 1.0000 1.0000 1.0000 
D'Agostino-Pearson  - 0.0975 0.1406 0.1907 0.2573 0.4210 0.6130 0.7021 0.9282 0.9863 1.0000 
Jarque-Bera  - 0.0534 0.1065 0.1630 0.2381 0.4324 0.6389 0.7279 0.9378 0.9883 1.0000 

NOTE:  Monte Carlo Simulation 000,10NMC = . 
 
 
TABLE 12 –  POWER ACCORDING TO DIFFERENT TESTS AND SAMPLE SIZES  FOR CONTAMINATED NORMAL 
DISTRIBUTION  DATA WITH  SIGNIFICANCE  LEVEL OF 5% 

TESTS 
SAMPLE SIZES  

10 20 30 40 50 70 90 100 150 200 500 
Lilliefors (K-S) 0.3543 0.7969 0.9550 0.9939 0.9985 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Shapiro-Wilk 0.3068 0.5999 0.8051 0.9161 0.9666 0.9958 0.9995 0.9996 1.0000 1.0000 1.0000 
Chi-squared 0.3512 0.5477 0.8154 0.9221 0.9724 0.9968 1.0000 1.0000 1.0000 1.0000 1.0000 
Anderson-Darling 0.3376 0.7146 0.9055 0.9747 0.9949 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 
Cramer-von Mises 0.3447 0.7570 0.9312 0.9855 0.9971 0.9998 1.0000 1.0000 1.0000 1.0000 0.0046 
Shapiro-Francia 0.2819 0.5736 0.7870 0.9081 0.9629 0.9950 0.9996 0.9996 1.0000 1.0000 1.0000 
D'Agostino-Pearson  - 0.2244 0.3142 0.4333 0.5585 0.7771 0.8903 0.9217 0.9873 0.9981 1.0000 
Jarque-Bera  - 0.1144 0.2165 0.3427 0.4872 0.7468 0.8795 0.9161 0.9865 0.9983 1.0000 

NOTE: Monte Carlo Simulation 000,10NMC = . 
 

Aiming at confirming the aforementioned discussed 
results, we carried out normality tests in different sample sizes 
obtained through the Monte Carlo simulation for some 
selected distributions. 

The following tables show p-values of different 
normality tests applied to samples generated through the 

Monte Carlo simulation. It was observed that Normal 
distribution samples in all the tests discussed herein indicate 
data normality whatever their sizes (n). It is important to  
emphasize that asymmetry coefficients are very close to zero, 
thus indicating symmetric distribution (table 13). 
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TABLE 13 – P-VALUES FOR NORMALITY TESTS APPLIED TO NORMAL DISTRIBUTION SAMPLES ACCORDING TO 
DIFFERENT SAMPLE SIZES AND ASYMMETRY COEFFICIENTS 

TESTS 
SAMPLE SIZES AND ASYMMETRY COEFFICIENTS  

10n =  
5790.0As =  

20n =  
1983.0As =  

30n =  
0089.0As −=  

50n =  
1578.0As =  

100n =  
2068.0As −=  

Lilliefors (K-S) 0.9580 0.7863 0.5183 0.5444 0.4754 
Shapiro-Wilk 0.8492 0.7560 0.5887 0.9087 0.6439 
Chi-squared 0.3618 0.6626 0.3920 0.7327 0.5378 
Anderson-Darling 0.8580 0.7241 0.5200 0.8032 0.5690 
Cramer-von Mises 0.8960 0.6777 0.4551 0.6958 0.6007 
Shapiro-Francia 0.8008 0.8515 0.7178 0.9042 0.5921 
D'Agostino-Pearson - 0.5817 0.5539 0.8204 0.5634 
Jarque-Bera - 0.6576 0.6437 0.7566 0.6793 

NOTE: Samples from distribution )19,380(N 2 .  

 For Exponential distribution with small samples (n=10) and 
with asymmetry coefficient lower than 1, all the tests indicate 
data normality. However, if the sample size is equal to 20 and 

asymmetry coefficient higher than 2, all tests indicates non-
normality (table 14). 

TABLE 14 – P-VALUES FOR NORMALITY TESTS APPLIED TO EXPONENTIAL DISTRIBUTION SAMPLES 
ACCORDING TO DIFFERENT SAMPLE SIZES AND ASYMMETRY COEFFICIENTS 

TESTS 
SAMPLE SIZES AND ASYMMETRY COEFFICIENTS 

10n =  
7352.0As =  

20n =  
8894.2As =  

30n =  
9259.0As =  

50n =  
9742.0As =  

100n =  
2995.1As =  

Lilliefors (K-S) 0.8867 1.981E-04 1.530E-03 1.144E-04 4.191E-09 
Shapiro-Wilk 0.7575 1.641E-05 4.499E-03 1.951E-04 4.245E-08 
Chi-squared 0.5724 8.687E-03 9.029E-03 1.124E-04 1.085E-09 
Anderson-Darling 0.6760 2.636E-05 2.115E-03 9.450E-05 4.622E-10 
Cramer-von Mises 0.6862 1.022E-04 2.036E-03 3.151E-05 1.395E-07 
Shapiro-Francia 0.6056 3.261E-05 8.738E-03 6.733E-04 4.399E-07 
D'Agostino-Pearson - 8.544E-08 9.267E-02 2.371E-02 4.784E-06 
Jarque-Bera - 7.772E-16 1.449E-01 2.426E-02 8.805E-08 
NOTE: samples )380/1(Exp .  

The Gamma distribution with small sample size (n=10) and 
asymmetry coefficient higher than 1, all the tests indicate data 
normality with significance level of 1%.  

The  D’Agostino-Pearson and  Jarque-Bera  tests    indicate 
data normality even for sample with sizes equal to 20 and 30 
and asymmetry coefficients close to 1 (table 15). 

TABLE 15 –  P-VALUES FOR NORMALITY TESTS APPLIED TO GAMMA  DISTRIBUTION SAMPLES ACCORDING TO 
DIFFERENT SAMPLE SIZES AND ASYMMETRY COEFFICIENTS 

TESTS 
SAMPLE SIZES AND ASYMMETRY COEFFICIENTS 

10n =  
6353.1As =  

20n =  
2944.1As =  

30n =  
0422.1As =  

50n =  
5508.1As =  

100n =  
6033.1As =  

Lilliefors (K-S) 0.1227 2.699E-03 4.761E-04 6.071E-05 5.305E-06 
Shapiro-Wilk 0.0138 1.528E-03 6.131E-04 5.048E-06 1.608E-08 
Chi-squared 0.0154 3.449E-03 1.180E-03 1.847E-03 5.534E-06 
Anderson-Darling 0.0209 5.100E-04 1.228E-04 8.783E-07 1.705E-09 
Cramer-von Mises 0.0255 4.960E-04 1.608E-04 6.327E-06 2.374E-07 
Shapiro-Francia 0.0156 2.699E-03 1.525E-03 2.058E-05 1.352E-07 
D'Agostino-Pearson - 3.750E-02 6.435E-02 4.334E-05 3.471E-09 
Jarque-Bera - 8.995E-02 8.383E-02 2.380E-06 <2.200E-16 
NOTE: Samples from distribution )9,1(Gamma .  

Taking into consideration samples with chi-squared 
distribution with small size (n=10) with asymmetry coefficient 
a little higher than 1, all the tests also indicate data normality 
for significance level of 1% and 5%, except for chi-squared. 

Even when we increase the sample size to 30 with low 
asymmetry coefficient, all the tests indicate data normality for 
significance level of  5%, except for Lilliefors (K-S) which the 
level is 4% (table 16). 
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TABLE 16 – P-VALUES FOR NORMALITY TESTS APPLIED TO CHI-SQUARED DISTRIBUTION SAMPLES 
ACCORDING TO DIFFERENT SAMPLE SIZES AND ASYMMETRY COEFFICIENTS 

TESTS 
SAMPLE SIZES AND ASYMMETRY COEFFICIENTS 

10n =  
3152.1As =  

20n =  
9089.1As =  

30n =  
6948.0As =  

50n =  
0105.1As =  

100n =  
4568.1As =  

Lilliefors (K-S) 0.2416 1.180E-02 0.0435 3.195E-02 1.258E-03 
Shapiro-Wilk 0.0792 1.287E-03 0.0663 2.456E-03 5.298E-06 
Chi-squared 0.0268 6.905E-02 0.1637 2.986E-01 5.738E-03 
Anderson-Darling 0.1000 2.687E-03 0.1245 5.109E-03 2.868E-05 
Cramer-von Mises 0.1150 4.505E-03 0.1621 9.200E-03 2.146E-04 
Shapiro-Francia 0.0717 1.387E-03 0.1030 4.720E-03 1.812E-05 
D'Agostino-Pearson - 1.445E-04 0.2604 1.070E-02 2.113E-06 
Jarque-Bera - 9.296E-05 0.3119 1.391E-02 5.972E-09 

NOTE: Samples from distribution )4(2χ . 

V.  CONCLUSION 
 The present study concluded that normality test performance 
is affected by the significance level used in the hypothesis test, 
the shape of data being analyzed and sample size. 
 Concerning normal distribution data, the different tests 
analyzed herein showed similar performances. When using 
significance level of 1%, the D’Agostino-Pearson, Jarque-Bera 
and Chi-squared tests with size samples equal or smaller than 
20 are the less efficient. But, when using %5=α , the Jarque-
Bera test performance is the  best.  
 Shapiro-Wilk, Anderson-Darling, Cramer-von Mises, 
Shapiro-Francia and Jarque-Bera tests can be used to assess 
distributions similar to normal distribution, that’s to say almost 
symmetrical, for sample sizes equal to or higher than 200 and 
significance level of 1%. However, when using significance 
level of 5%, we recommend the Anderson-Darling, Cramér-
von Mises and Shapiro-Francia for sample sizes close to 200. 
 Concerning slightly positive asymmetric distributions, such 
as )51,5(Gamma , Shapiro-Wilk and Shapiro-Francia tests 
are efficient for sample sizes close to 150 when using 
significance level of 1%. The same tests are efficient for 
sample sizes higher than 100, when using significance level of 
5%.  
  Concerning moderate positive asymmetric distributions 
such as )5(2χ , Shapiro-Wilk, Shapiro-Francia and Anderson-
Darling tests are efficient for samples sizes close to 90 with 
significance level of 1%. When using significance level of 5%, 
the same tests are efficient for sample sizes close to 70.  

 When data show strong positive asymmetry such as 
)3(Exp , Shapiro-Wilk, Anderson-Darling and Shapiro-

Francia tests are efficient for sample sizes close to 40 with 
significance level of 1%. When using significance level of 5%, 
the same tests are efficient for sample sizes close to 30.  
 Concerning negative asymmetry data, such as the 
Contaminated Normal distribution described in the present 
study, Kolmogorov-Smirnov with Lilliefors correction and 
Cramér-von Mises tests are efficient for sample sizes close to 
40 with significance level of 1%. When using significance 
level of 5%, the same tests are efficient for sample sizes close 
to 30. It is important to consider that Cramér-von Mises test 
should be used for sample sizes (n) smaller than or equal to 
200, since for higher values of n, the test power can decrease.  
 The present study permits us to infer that to apply a 
normality test when distribution is not normal the more 
asymmetric it is, as )380/1(Exp  shown in table 14, the 
smaller the sample size can be. On the other hand the closer to 
Normal the distribution is, almost symmetric, the larger the 
sample size should be. This fact shows the importance of 
carrying out a previous exploratory analyzes before starting 
any statistical inference process. We recommend the use of 
Normal Q-Q plot or Normal P-P plot graphic, when sample 
sizes are small ( 30n < ) and distributions are symmetric, for it 
helps data normality checking analysis.  
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