

Abstract—This paper presents a variation of a Kohonen self

organizing feature map. From the proposed algorithm possible
performance improvements are investigated in terms of time and
space complexity taking advantage from a sparse input data set. The
proposed variation has been tested on different datasets coming from
case studies in the field of bioinformatics. The improvements make
the application of the algorithms feasible to massive document
collections. The application of the proposed improvements for grid
implementations could be beneficial to reduce the computing element
demand

Keywords— algorithm, Kohonen Self Organizing Map, Space
and Time complexity, performance improvements.

I. INTRODUCTION
LUSTERING algorithms are playing a central role in data
analysis and exploration. This is true in almost all fields

of science. In fact, nowadays the amount of data produced
and stored is surprisingly increasing especially in life science
and in gene expression data collected by microarray
experiments [1], [2].

To overcome the increasing computational demand coming
from the exponentially rising volume of data generated and,
eventually, by the change in space representation (from
feature to similarity space representation) the paper proposes
and evaluates some performance improvements in terms of
computational time and space by developing exact algorithms
that don’t introduce any error in the classification algorithm.
These improvements are more effective on sparse datasets.
The results in terms of execution time reduction and
concordance between the clusters obtained by the improved
algorithms against the Kohonenn algorithm without
performance improvement, which has been taken as reference
point, are presented and evaluated.

We also envisage the application of this algorithm in a grid
infrastructure. A faster algorithm can lead to less computing
element demand, which could be beneficial in situation where
the computational elements are local resources not spread all
over the word.

We also compared the classification error of the best

Manuscript received January 7, 2009.
F. Maiorana is with the University of Catania, Department of Computer

Engineering and Telecomminications, Viale A. Doria, 6, 95127, Catania, Italy,
phone: + 39 95; fax: +39 95; e-mail: fmaioran@ diit.unict.it).

Kohonen algorithm for a grid infrastructure proposed in [3]
and the classification error in a fast but approximate version of
the Kohonen algorithm proposed in this paper. The results
show that the grid algorithm has the better correct
classification rate with respect to the approximate one.
Moreover, it has the possibility to use several computing
elements thus scaling the computational complexity of the
algorithm to a feasible level even for massive document
collections.
The paper is organized as follows: section 2 briefly review
clustering techniques, section 3 recalls the Kohonen self
organizing feature map algorithms; section 4 revises the
literature about fast implementation of the Kohonen
algorithms; section 5 describes some implementations of fast
Kohonen algorithms and compares the results for exact and
approximate algorithms; section 6 presents some implications
of the proposed improvements for a grid implementations,
section 7 draws some conclusions and feature works.

II. REVIEW OF CLUSTERING TECHNIQUES
Among various clustering techniques we recall:

• partitioning algorithms
• hierarchical algorithms
• grid based.

We will focus on a particular partitioning algorithm.
Partitional clustering algorithms start either with a cluster

containing all the elements and find subsequent clusters by a
sequence of repeated bisections or with a set of k cluster that
are refined by the process. The number of clusters is usually
predetermined by the user but can also be automatically
derived. Partitioning algorithms can be viewed as optimizing
algorithms that try to optimize at each iteration a function
usually given by a combination of intra-cluster similarity and
inter-cluster dissimilarity. The best known partitioning
algorithms is K-means. A survey of the most significant
variations of K-means can be found in [4]. New techniques
represented by bio-inspired algorithms such as ant clustering
algorithms belong also to this category. These algorithms are
based on ant based agents and do not require knowledge of the
initial number of clusters. In [5] the authors present an
overview of ant clustering algorithms and an interesting
variation based on a dynamically adaptive particle swarm-like
agent approach.

Time and space complexity improvements for a
grid implementation of a Kohonen-like

classification algorithms on sparse data-sets
Francesco Maiorana

C

Hierarchical clustering constructs a tree like partition. This
method can be either agglomerative or divisive. The
agglomerative techniques start with a class for each element,
and then proceed by merging the most similar pair of clusters.
The divisive techniques start with one class containing all the
elements and then try to divide the initial class in subclasses.
The criterion used aims at optimizing a performance index.
With this method the elements that are merged (divided) will
remain merged (divided) until the end of the classification
process. One of the most relevant hierarchical algorithms is
the C4.5 [6]. Hierarchical ant-based algorithms also exist in
literature such as the one proposed in [7].

In the grid based clustering algorithms the basic idea is to
partition the input space by a grid structure in order to divide
the space in cells of the same dimension. Among the created
cells the algorithm selects the cells that contain a significant
number of input elements, and groups the others to the nearest
selected ones..

Variation of such scheme, such as the one proposed in [8]
compare the classification result in the original grid structure
and in a deflected one to obtain a final clustering solution.

It is important to notice that the clustering results depend on
the distance or similarity measure used. A comprehensive
survey can be found in [9].

All the classification algorithms can work either on the
feature space represented by the original input matrix, or in
the similarity space. In this case a similaritry matrix is
computed which stores a similarity value of each element
against all the others. This is a symmetric square matrix whose
size is equal to the number of input elements squared. The
classification is then performed over the similarity space.

.

III. BRIEF REVIEW OF THE SOM ALGORITHM
Kohonen Self Organizing Maps (SOM) are often used to

cluster datasets in an unsupervised manner [10] – [12]. This
paper deals with on–line SOM since the batch version has
some disadvantages such as the fact that it often represents
an approximation of the on–line algorithm [13].

In the on–line version the weights are updated after the
presentation of each input vector. In order to do this, the
distance (usually the Euclidean distance) is computed between
the input vector and each weight vector as in (1).

)1(...1)()()(noKtwtxtd kk =−=

where no is the number of output neurons.
In the second step the algorithm searches for the winning

neuron, dw,, i.e., the neuron that best matches the input being
characterized by the minimum distance from the input vector

)2(...1))((min)(noKtdtd kkw ==

In the third phase the algorithm updates the weights of the

winning neuron and of the neurons that lie in a user defined
neighborhood as follows

)3(...1)()()()()()1(noKtwtxthttwtw kwkk =−+=+ α

where α(t) is the learning rate that modulates the weight

update, and hkw is the neighborhood function that depends,
given a time t, on the winning neuron w and the neuron under
consideration k. Usually the output neurons are arranged in a
bi-dimensional array as showed in fig. 1a.

a)

 b)

Fig. 1: SOM architecture: two dimensions (a); one

dimension (b).

However, some implementations have been proposed,
which adopt a different topology of the network where the
output neurons are arranged along a single layer (SL
configuration) [14], [15] as shown in fig.1b.

In the SL configuration the network topology is composed
of an input layer with as many nodes as the number of
components of the input element and an output layer with as
many nodes as the number of classes.

This means that if, at the final cycle, the winning neuron
mostly activated by the ith item is the jth neuron, then the input
object belongs to the class j.

In this scheme there is no topological similarity among
output neurons since adjacent output neurons do not
necessarily represent similar classes.

Let us note that in the SL configuration the updating
formula (3) is replaced by a neighborhood function that
chooses the winning neurons and the ones (usually two o three
neurons) that are mostly activated by the current input object.
The neighborhood function is not a topological but a logical
one that finds the output neurons closer to the input vector.

As neighborhood function the following one has been
proposed in [14]:

)4(
)(

1)(2kord
thkw =

where ord (k) is the rank of weight vector k in the ordered

vector of distance computed with formula 1).
The SL clustering algorithms work on both the feature and

the similarity space as proposed in [14], [15]. If the similarity
space is considered, the algorithm has to perform a final step
to find for each class both the most relevant features common
to the majority of the class elements, called positive features,
and the features not present in the majority of the class
elements, called negative features.

An automatic strategy to find the optimal number of classes
is also proposed in [14], [15].

IV. REVIEWS OF PERFORMANCE IMPROVEMENTS OF THE
KOHONEN SOM ALGORITHMS

Some algorithms belonging to the Kohonen family (here
on referred to as Kohonen–like algorithms) can be
summarized by the following three phases:

Phase D aiming at computing the distance between input
and weight vector by equation (1);

Phase W: dealing with the computation of the winning
neuron by equation (2)

Phase U which updates the weight by equation (3) using
equation (4) for the neighbourhood.

The computational complexity of each iteration of above
mentioned version of the on-line Kohonen algorithm without
any optimization is :

1. Phase D: O(N2 * no)
2. Phase W : O(N * (no * log (no))) since the vector of

distances must ordered if all the output neurons
should be updated according to their rank.

3. Phase U: O (N2 * no)
where N is the number of input elements, and no is the

number of classes or output neurons. The analysis is

performed for a classification step involving the similarity
matrix that has a dimension of N x N.

In literature several studies concerning performance
improvements of the Kohonen like algorithm can be found.

In [16] the authors propose the use of spatial indexing
method such as R-Tree in order to speed up the search of the
winning neuron to reduce the cost from O(no) to O(logm (no))
where m is the node size.
In [17] the authors propose a fast implementation for a batch
version of the standard Kohonen algorithm. The optimization
they propose has the following computational complexity for
the various phases of the Kohonen algorithm:

1) Phase D: O(no* (N * fnon zero)
2)

2) Phase W: O (no)
3) Update weight O (no * N * fnon zero

)
where fnonzero is the percentage of elements different from

zero in the input matrix. Their implementation takes
advantage from the batch implementation and from a different
arrangement of equation (1) so that in computing the distance
in equation 1 only the elements of x different from zero are
taken into consideration.

This is possible since in the batch version the weights are
updated only at the end of an epoch , i.e., after the
presentation of all the input elements, so allowing the weights
to be pre-computed at the beginning of each epoch.

In [18] the author proposes an on-line implementation of
the Kohonen-like algorithm with the following computational
complexity:

1) Phase D, computes Distance: O(no* N2 * fnon zero))
2) Phase W, computes Winning neuron: O (N * no)
3) Phase U, Updates weights: O (no * N2 * fnon zero

)
To achieve this result a normalized set of weight zk is used

such that wk = βkzk. This set of weight zk can be updated at a
cost proportional to the number of non-zero elements of the
input vector. The algorithm does not update all the normalized
weights after each presentation of an input vector, but only the
weights corresponding to elements of the input vector
different from zero, reducing the overall computational cost.

The drawback is that in the update steps it is necessary to
update the normalized weights and two constant (βk and ηk in
the paper) with a computational cost proportional to the
number of input components different from zero.

Another drawback is that if the value of βk drops below a
predefined threshold (0.01) the updating equations change
with a computational cost that is no longer determined by the
sparsity of the input matrix.

In [19] the author uses an early stopping strategy in
computing the distance between the input element and the
output ones. In summing up the squared difference between
the components of the ith input element and the weight vector
ones, he stops when the summation is above the current
minimum. In the paper it is suggested to try to start from the
output neuron with the expected smallest distance.

The observation that in many applications, such as speech
recognition and image processing, successive vectors exhibit
strong correlation, leads to the conclusion that the best

matching node (BMN) found for the last input can be the best
candidate for the BMN for the successive input. The author
reports a percentage of CPU time saved ranging from 51.3 %
to 56.2 % on real speech data composed of 17,179 weighted
cepstrum vectors with a dimension of 12 components for a
map size ranging from 10x10 to 20x20. .

In [20] the author finds, for a given input vector, the new
winner (at phase t + 1) in the vicinity of the old one (at phase
t) by storing the old winner in a table containing, for each
training vector, a pointer to the winner.

This is particularly true when the SOM is already smoothly
ordered although not yet asymptotically stable. In searching
for the winning neuron at phase t + 1 the author suggests to
locate the winner for phase t in the table and to perform a
local search for the winner in the neighbourhood around the
located unit. If the best match is found at the border of this
neighbourhood, the search is continued in the surround of the
preliminary best match. This principle can be used in both on-
line and batch version of the SOM.

The author also suggests to estimate the initial value of a
map on the basis of the asymptotic values of a map with a
much smaller number of units.

In [21] the authors compare the performance of a
conventional SOM algorithm and a modification proposed by
one of the authors. The modification consists in:

a) selecting the first 2m +1 neurons (Nw) which best match
the input vector;

b) correcting the weight in the set Nw by equation 3)
c) exchanging the weight vectors of BMU’s neighbors

with the neurons in Nw, so that all the winning neurons
will be clustered together as neighbors with BMU at
the centre.

In their implementation they chose m = 2. The new
approach is faster but less stable since the original neighbors
around the BMU are forced to leave the original class and thus
may disrupt the harmony elsewhere in the map. They report a
speed up improvement ranging from 9.68 % to 30.3 % on
different datasets with a performance improvement that tends
to increase along with the dimensionality of the input data.

In [22] several optimization strategies are proposed for
similarity batch self organizing maps, e.g., the possibility to
use pre computed values, a monitoring of the clusters that
change and an early stopping strategy in computing equation
1), (they stop in computing when the partial sum is above the
minimum).

This last optimization however is dependent on the dataset
and on the order of presentation of the input elements. To
reduce this dependency they propose to first compute the
distance of the elements which are the best candidate winning
neurons.

In [23] the authors extend the optimization technique by
applying the branch and bound principle to reduce the
expected cost of the minimization problem by avoiding an
exhaustive search. The method introduces some
approximations.

The results show, as reported by the authors, that the branch

and bound principle reduces a lot the search burden; the
speeding up along with the number of classes increases
although the speeding up decreases along with the number of
elements since the search phase has not a dominant
computational cost.

In [24] the authors compared several classification
techniques that deal with large datasets by approximation
techniques, by sampling the data sets, by randomized search in
the solution space, or by a probabilistic parallel randomized
search strategy implemented by genetic algorithms.

In [25] the author proposes, for a batch dissimilarity SOM,
to work on a random sample of the original data set instead of
working on the entire one. The random sample will fit in main
memory and will be much smaller than the original data set.
The author uses the Chernoff bounds to calculate the
minimum sample size for which the sample contains, with
high probability, at least a significant fraction of every
cluster.

If the clustering algorithm on the reduced dataset finds
small clusters, new representations for these clusters are
searched among the remaining data.

In [26] the authors suggest a batch learning algorithms that
update the weights after processing 15% of the training
examples, not only after processing all the training examples
as requested by the batch algorithm. The proposed algorithm
achieves about half of the acceleration of the batch algorithm
without showing its negative effects in term of correct
classification rate.

V. KOHONEN SOM IMPROVEMENTS
This paper uses the Kohonen-like algorithm proposed in

[14], [15] as reference point, whereas a sparse dataset of 3,528
rows and 262 columns used in [27] to discover and evaluate
hopefully new gene-disease relationships from MEDLINE
abstracts has been chosen to give a realistic basis to the
results. This dataset represents a vector space representation
of the chosen set of abstracts.

From this vector space model representation the similarity
space model has been built. This representation is based on
the similarity matrix: a symmetric matrix where the element at
row i and column j contains the similarity between the ith and
the jth element. In this paper it has been adopted a similarity in
a broad sense defined by the sum of the minimum of each pair
of vector components.

The similarity matrix obtained is normalized between zero
and one. Let us note that a strict similarity measure may be
obtained by normalizing each row in such a way that the sum
of its elements is equal to one.

The similarity matrix used for classifications has a
dimension of 3,528 X 3,528. The total number of ones is
1,900, 992 out of 12,446,784 elements equal to 15.27% of
ones.

The weighted average number of ones for each column
(row) is 539 elements. Fig. 2 shows the number of columns
with different number of ones.

The first implementation of the Kohonen-like algorithm
was carried out with the possibility of using different metrics
to compute the distance between the input elements and the
model and many other features.

The first step was to optimize this implementation by using:
only one distance, a prior check of elements that can be
eliminated since equal to other elements, some optimization
techniques to compute the winning neuron, some short-cuts in
the implementation of the algorithms such as avoiding the use
of function. Moreover the implementation avoids , when
possible, the use of power in favour of multiplications, or
multiplications in favour of additions, and the use of
intermediate variables and so on.

In the second step a compact representation of the similarity
matrix is done. This representation consists in maintaining for
each row the list of elements greater than zero, storing for
each row the column numbers and the values different from
zero. A count of the elements greater than zero for each row
will allow a compact memorization of the matrix and a faster
searching inside this one.

The above mentioned representation allows us to consider
only the element in the similarity matrix different from zero.
The space complexity to store the similarity matrix, with this
representation, drops from O (N2) to O ((N * fnon zero)2). The
similarity matrix can be pre-computed and used in all the
cycles of the Kohonen-like algorithm.

Moreover, the compact representation of the similarity
matrix implies also a time improvement. For example, if
50,000 documents are considered and the similarity matrix is
stored as double, its allocations requires more or less 20 G.

The time required for its allocation, on an Apple with Intel
Xeon Dual Core 2 GHz 64 bit, RAM 4 GB DIMM DDR2 667
MHz, 300GB hard disk, with MacOs X 10.4 operating system
was 35 minutes.

Using the compact representation, since the numbers of
ones in the original similarity matrix is around 15% of the
total number of elements, the space requirement drops to 3 GB
thus reducing the virtual memory allocation requirements and
hence the overall allocation time becomes insignificant (less
than five seconds).

The best optimization in terms of computational time can be
obtained if the computation of equation (1) is performed by
taking in consideration only the value of the similarity matrix
that are different from zero.

Passing to the phase U, let us note that equation 1) can be
rewritten as:

)5()())(2)()(()(
0 1

2∑ ∑
≠ =

+−=
ix

N

i
kikiiik twtwtxtxtd

In equation (5) the first summation is computed over the

elements of the input matrix that are different from zero thus
reducing the complexity from O (N2 * no) to O (N2 * fnon zero *
no). The second summation can be pre-computed and updated
during Phase U. The overall running time to compute equation

(5) remains O (N2 * fnon zero * no) multiplied by a small
constant since only 2 * xi(t) * wki(t) must be computed in each
iteration. The other computations can be done using pre-
computed values, only at the beginning of the algorithm, for
xi(t)2; and pre-computed values, during the update phase, for
wki(t)2.

Fig. 2. Number of columns with different number of ones.

It has also been tried to avoid a pre-computation of the

second summation in the update phase and to compute it on
the fly in the distance phase using an early stopping strategy.
Moreover. it has been implemented the possibility, in the
computation of equation 5, of starting from the winning
neuron of the previous phase for the same input elements, in
order to improve the gain in the early stopping strategy. This
optimization however is dependent on the dataset, and
requires some extra computations.

It is important to notice that all the proposed optimizations
are exact optimizations that do not produce any classification
errors with respect to the original algorithms.

The computational time required by the algorithm can be
further reduced by considering, in the computation of the
neighborhood function, only the first three neurons with the
smallest distance from the examined input vector.

With the chosen neighborhood function the contribution of
the third element is 1/9, to be multiplied by the leaning rate
that is less than one thus further reducing the overall
contribution. In this case the computational complexity of the
update phase decreases to O (6 N2), where the constant
derives from the fact that three columns of the weight vector
and its squared components must be updated. This case has
the advantage to lose the proportionality with the number of
classes, which increases along with the number of documents
to be classified. This optimization makes the pre computation
of the second summation of equations 5) still more appealing.

Various simulations have been performed for different
number of documents (ranging from 500 to 5,000 in steps of
500) and different number of classes (ranging from 20 to 100
in steps of 20) of the optimized brute force classification
(without any advantage of the sparsity of the matrix), the
optimized version of the classification algorithms by equations

5) with pre computed values for the second summation; the
brute force algorithm with a neighborhood of three elements
and the optimized version by equation 5) with a neighborhood
of three elements.

This choice of the optimization strategy makes the
comparison not dependent on the dataset. The results are
summarized in fig. 3 and fig. 4.

All the classifications were performed on laptop computer
with an AMD Turion 64 bit Mobile Technology ML – 30 1.6
GHz with 2 GB DDR2 RAM with Windows XP 32 bit
operating system. The classification algorithms were
developed in Java. No virtual memory was required in order
to run the algorithm

From the figures the optimization gained with the proposed
algorithms can be observed: the time required in the optimized
version is halved, and in the optimized version with reduced
neighborhood is almost reduced to 1/14. The gain increases
with the number of elements to be classified or with the
number of classes.

.

 (a)

 (b)
Fig. 3. Execution time for different number of documents

and classes: a) brute force; b) optimized version

 (a)

 (b)
Fig. 4. Execution time for the classification algorithms with

reduced neighborhood for different number of documents and
classes: a) brute force; b) optimized version.

The proposed algorithms were also tested on the Dexter

dataset [28]. This is a dataset for a two-class classification
problem.

The task is to filter texts about “corporate acquisitions”
hence in the text domain.

This kind of text applications is becoming important in
bioinformatics such as the automatic discovery and clustering
of scientific literature abstracts.

The original dataset is a subset of the Reuters text
categorization benchmark with 9,947 features. To this 10,053
probe features were added for a total of 20,000.

The input matrix is sparse integer and contains, for each
document, the word indexes with the frequencies of the words
in the documents.

This dataset was one of the five datasets used in the NIPS
2003 feature selection challenge. The training and validation
datasets are composed of 150 positive and 150 negative
examples. The test dataset contains 1,000 positive and 1,000
negative examples.

The dataset is available at
http://www.nipsfsc.ecs.soton.ac.uk/dataset and at the
University of California Irvine Machine Learning Repository
at http://archive.ics.uci.edu/ml/datasets. We used the test
dataset.
The initial dataset is very sparse: only 192, 449 elements out
of 40,000,000 are different from zero.

Fig. 5 shows the number of rows for different number of
elements greater than zero.

The classification was performed on the feature space and
on the similarity space.
 On the feature space the effect of time and space reduction
is still more evident since the grade of sparsity is increased.

On the similarity space, with the proposed similarity
measures the number of zero is less than fifteen.

Fig. 5: number of rows for different number of elements greater than
zero.

Fig. 6 shows the simulation results on the Dexter dataset.

Fig. 6. Time requirements for the brute force algorithm and

the reduced neighborhood one for different number of classes.

The figure shows the time required for the brute force

algorithms and the reduced neighborhood one in the
similarity space for different number of classes.

No space reduction can be implemented in this case.
We report the simulation result in this case to show the

performance improvements due to the reduced neighborhood.
From the figure it is possible to observe that the time

reduction due to the reduced neighborhood is about one third.
It has also been designed and implemented an approximate

version which quantizies the values in the similarity matrix

and in the weight matrix in 10 classes or quantizied ranges
starting from 0.1 to 1 with 0.1 quantization steps.

This quantization allows us to pre-compute the number of
elements in each quantizied range. The knowledge of the
number of elements in each interval allows us, in the distance
and update phases, to perform an operation per quantization
interval, by multiplying the changes by the number of
elements in the considered interval.

When the matrices are quantizied, a performance
improvement of 12.7 % over the optimized version has been
observed, but the price paid is a correct classification rate of
0.92 when compared with the exact algorithm.

From the data it is possible to conclude that, for massive
document collections, when a grid infrastructure is not
available, the quantization of the input or the similarity matrix
gives a performance improvement with a reasonable
classification error

VI. IMPLICATION FOR A GRID IMPLEMENTATION
The proposed algorithm can be implemented on a GRID

infrastructure.
In a Grid Infrastructure there is a master node that is

responsible for the coordination of the operation. It assigns
tasks to the slaves or Computing Elements (CE) and collects
their results.

Several strategies for the Kohonen like algorithm can be
implemented. Among these the data partitioning scheme is the
simplest and most effective.

The method consists in dividing the input matrix among the
CE; each CE performs the classification on its data and send
back the results, usually expressed as the weight of the
connection between the input and the output neurons. Each
CE works with the same network topology.

The master collects the results, and eventually computes a
new starting weight matrix, common to all the slaves, to
iterate the process.

The proposed methodology is illustrated in fig. 7.
With this strategy it is reasonable that he number of CE

cannot increase without limit since each computing element
will have a too restricted vision of the dataset.

As reported in [27] a good threshold estimation is 10%:
each CE should not have less than 10 % of the input elements.
For large input matrix it becomes important to speed up the
execution of the classification process and to reduce the space
requirements.

In such scheme for an input matrix of size N x M and S
slaves, each slave receives as input a matrix of size N/S x M.

For a C class classification problem the weight matrix is of
size M x C.

If for example we must classify 105 elements in the
similarity space, with the previously stated criteria each slave
will receive 10% of the input elements.

So the input matrix for each slave will have 104 x 105 = 109
elements. If each element is a double stored in 8 bytes the
memory requirement is equal to 8G that represents a
demanding amount of resources and the necessity to use only
CE with a 64 bits processor and operating system.

If the input matrix is sparse the proposed storing
methodology could save space if the grade of sparsity is high.

Fig. 7. Architecture of the parallel Kohonen algorithm

In order to be convenient, in the input matrix the number
of elements different from zero must not exceed 30 % of
elements if with the proposed storing methodology the
indexes of the elements different from zero could be saved
in three bytes.

If the indexes of the elements different from zero require
four bytes, the number of elements different from zero must
be less than 25 %.

The necessity for a compact representation becomes
more important with an increasing number of documents. It
is important that all the slaves can perform their task
without the necessity to use the virtual memory, since this
greatly increase the execution time.

The proposed speed up makes feasible the execution of
the classification task in the slaves: an increased amount of
time needed for the execution increases the probability of
failure of the submitted task.

The space and time complexity reduction is hence
important also in a grid infrastructure.

The implementation of the parallel algorithm has been
carried out in [3] by using a grid infrastructure based on the
Globus toolkit. 4 [29] – [33].

Among the various components of the Globus toolkit 4
architecture we used the following components:

1. The Grid Resource Allocation and Management
(GRAM) service that provides “a single interface for
requesting and using remote system resources for the
execution of "jobs".

2. Grid FTP: is a “high performance, secure, reliable
data transfer protocol optimized for high bandwidth
wide – area networks”. It is based on the File
Transfer Protocol (FTP). It allows parallel data
transfer and partial file transfer, using GSI for
authentication.

3. Grid security infrastructure (GSI): allows secure
authentication an communication over the networks.
It provides services such as secure communication,
security services across organizational boundaries
and support “single sign – on” for users of the grid.
It is based on the public key encryption, X.509
certificates, and the Secure socket layer (SSL)
protocol.

Since with the best averaging strategy proposed in [3] the
authors obtained a correct classification rate of 0.96 that is
better than the classification rate we obtained by quantizing
the similarity matrix, it is advisable to use a grid
implementation of the algorithm instead of an approximation
of the classification algorithm. The exact optimization strategy
remains useful to improve both space and time performance of
the grid algorithm.

VII. CONCLUSION AND FUTURE WORK
This paper proposed several optimization strategies of the

Kohonen-like algorithm which take advantage from the
sparsity of the input matrix.

The algorithm has been applied in a similarity space, but the
same considerations can be made for the feature one.

Several exact optimization strategies have been presented in
both time and space. Moreover, the approximate optimization
strategies have been evaluated with respect to the
classification errors.

From the analysis the following conclusions can be drawn:
• The use of a compressed notation for the similarity matrix

can lead to a drastic drop in space requirements. This also
gives a time improvement due to less virtual memory
allocation time necessary.

• Optimization strategies which take advantage from the
sparsity of the input matrix can drop the time requirement
by a factor of ten or more.

Non exact optimization strategy can lead to a further time
improvement of 15% with respect to the previous case but
with a correct classification rate of 0.92.

This work also presented some early considerations of the
introduced time and space requirements reduction on a grid
implementation of the proposed Kohonen like algorithm.

The space and time complexity reduction is important also
in a grid infrastructure since if we store the input sparse
matrix in a compact way, the memory requirements on the
slave are less demanding. In such situation the resource
allocation process becomes more feasible.

This is particularly true for massive classification tasks, as
in bio-informatics field, where reducing memory resource and
computational time for each computational element becomes a
duty. Since each computational elements should have a
suitable sample of the input elements, hence an adequate
number of elements to be classified, time and space reduction
techniques could improve performances and resource
requirements for the computing elements.

It could be useful to apply the proposed algorithm to other
dataset to evaluate the time and space requirements even if it
is expected that the improvements depend on the grade of

sparsity of either the feature or the similarity space.
Studies are planned to find an optimization strategy which

takes advantage, in computing the distance between the input
element and the winning neuron by equation (1), from the
expected correlation of subsequent elements and the expected
locality of the winning neuron between one phase and the
successive one.

We plan to study the influence of different similarity
measures on the classification results and to further investigate
the performance improvements for grid implementations.

IX. ACKNOWLEDGMENT
This work was supported by the program “ICT per

l’Eccellenza dei territory - Intervento 1 – Piano ICT per
l’Eccellenza del settore Hi-Tech nel territorio Catanese (ICT-
E1)” promoted by the Italian Ministry of Innovation and by
Catania Municipality

REFERENCES
[1]. Y. Zhao, G. Karypis, “Data clustering in life science”, Molecular
Biotechnology, vol. 31, no. 1, 2005, pp. 55—80
[2]. R. Xu, D. Wunsch “Survey of clustering algorithms”, IEEE Transactions
on Neural Networks, vol. 16, no. 3, 2005
[3]. A. Faro, D. Giordano, F. Maiorana: “Unsupervised parallel clustering on
Grid: performance evaluation and case study". Internal Report Università di
Catania Dipartimento di Ingegneria Informatica e delle Telecomunicazioni.
[4]. A. K. Jain, R. C. Dubes: “Algorithms for clustering data”. Prentice Hall,
Englewood Cliffs, 1988
[5]. S. M. Youssef, M. Rizk, M. El-Sherif: “Dynamically adaptive data
clustering using intelligent swarm-like agents”. International Journal of
Mathematics and computers in simulation, Issue2, Vol.1, pp. 108 – 118, 2007
[6]. J. R. Quinlan: “C4.5: Programs for machine learning. Morgan Kaufmann,
San Matteo, 1993.
[7]. H. Azzag, G. Venturini, A. Oliver, C. Guinot: “A hierarchical ant based
clustering algorithm and its use in three real word applications”. European
jaournal of operational research, Vol. 179, pp. 906-922, 2007
[8]. N. P. Lin, C. I. Chang, N. Jan, H. Chen, W. Hao: “A deflected grid based
algorithm for clustering analysis”. International Journal of Mathematical
Models and methods in applied sciences, Issue 1, Vol. 1, pp. 33 – 29, 2007.
[9]. S. Cha: “ Comprehensive survey on distance/similarity measures between
probability density functions. International Journal of Mathematical Models
and methods in applied sciences, Issue v, Vol. 1, pp. 300 – 207, 2007.
[10]. T. Kohonen, “Self organizing maps”, Springer 1995
[11]. S. Kaski, J. Kangas, T. Kohonen, “Bibliography of self organizing map
(SOM) papers: 1981 – 1997, Neural Computing Survey, vol. 1, no. 3, 1998,
pp. 102—350
[12]. M. Oja, S. Kaski, T. Kohonen, “Bibliography of self organizing map
(SOM) papers: 1998 – 2001 Addendum, Neural Computing Survey, vol. 3, no.
1, 2003, pp. 1—156
[13]. M. Cottrel, J. C. Fort, P. Letremy, “Advantages and drawbacks of the
batch Kohonen algorithm”, 10th European Symp. On Artificial Neural
Network. Bruges (Belgium), 2005, pp. 223—230.
[14]. A. Faro, D. Giordano, F. Maiorana, “Discovering complex regularities
by adaptive Self Organizing classification”, Enformatika, vol. I, 2005, pp. 27-
-30
[15]. A. Faro, D. Giordano, F. Maiorana, “Discovering complex regularities
from tree to semi – lattice classifications”. International Journal of
Computational Intelligence, vol. 2, no. 1, 2005, pp. 34—39
[16]. E. C. Vargas, R. Francelin Romero, K. Obermayer, “Speeding up
algorithms for SOM family for large and high dimensional databases”,
Proceedings of the Workshop on Self Organizing Maps Hibikino (Japan),
2003, pp. 167-172.
[17]. R. D. Lawrence, G. S. Almasi, H. F. Rushmejer, “A scalable parallel
algorithm for Self organizing maps with applications to sparse data mining

problems”, Data Mining and Knowledge Discovery, vol. 3, no. 171, 1999, pp
171 – 195.
[18]. R. Natarajan, “Exploratory data analysis in large sparse datasets”, IBM
Research Report RC 20749, IBM Research, Yorktown Heights, NY, 1997.
[19]. Z. Zhao, “Improvements to Kohonen self-organising algorithm”,
Electronics Letters, vol. 30, no. 6, 1994, pp. 502 – 503.
[20] .T. Kohonen, T. “Speedup of SOM computation”
[21]. B. K. Y. Chan, W. W. S. Chu, L. Xu, “Empirical comparison between
two computational strategies for topological self-organization”, Intelligent
Data Engineering and Automated Learning (LNCS), vol 2690, Springer,
2003, pp. 410-414
[22]. B. C. Guez, F. Rossi, A. E. Golli, “Fast algorithm and implementation of
dissimilarity self organizing maps”, Neural Networks, vol. 19, 2006, pp. 855 –
863.
[23]. B. C. Guez, F. Rossi, “Speeding up the dissimilarity Self Organizing
Maps by branch and bound”, Computational and Ambient Intelligence
(LNCS), vol. 4507, Springer, 2007, pp 203-210.
[24]. C. Wei, Y. Lee, C. Hsu, “ Empirical comparison of fast partitioning-
based clustering algorithms for large data sets”, Expert Systems with
applications, vol 24, 2003, pp. 351 – 363.
[25]. A. El Golli, “Speeding up the self organizing map for dissimilarity data”,
Proceedings of International Symposium on Applied Stochastic Models and
Data Analysis, Brest, France, 2005, pp. 709-713.
[26]. M. Nocker, F. Morchen, A. Ultsch, “An algorithm for fast and reliable
ESOM learning”, Proceedings of 14th European Symposium on Artificial
Neural Networks, Bruges, Belgium, 2006, pp. 131-136
[27]. A. Faro, D. Giordano, F. Maiorana, C.Spampinato, “Discovering Genes–
Diseases Associations from Specialized Literature using the GRID”, to
appear on IEEE Transaction on Information Technology in Biomedicine
[28]. I Guyon.: “ Design of experiments for the NIPS 2003 variable selection
benchmark”. Technical Report. (2003)
http://www.nipsfsc.ecs.soton.ac.uk/papers/Datasets.pdf.
[29]. I. Foster, “Globus Toolkit Version 4: software for service-oriented
systems”, IFIP International Conference on Network and Parallel
Computing, Springer-Verlag LNCS 3779, pp 2-13, 2005.
[30]. I. Foster, C. Kesselman, “Globus: A metacomputing infrastructure
toolkit”, Intl J. Supercomputer Applications, vol. 11, no. 2, 1997.
[31]. I. Foster, “A Globus toolkit primer”, 2005.
[32]. I. Foster, C. Kesselman, S. Tuecke, “ The anatomy of the Grid: enabling
scalable virtual organizations”, International J. Supercomputer Applications,
vol. 15, no. 3, 2001.
[33]. I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The physiology of the Grid:
an open Grid services architecture for distributed systems integration”, 2002.

F. Maiorana received is B.S. degree in communication engineering from the
University of Catania, Italy in 1990.

He worked as a visiting scientist at the International Computer Science
Institute, Berkeley, California in 1991, and at the Multimedia Center at the
New York University Courant Institute of Mathematical Science, Ney York,
New York until 1994.

After some years as information system consulting he joined the University
of Catania in 2000 as contract professor and researcher.

Some of his recent research interest are on data mining, Knowledge
discovery from text and grid computing where he published some researches.

