
 

 

  
Abstract—This paper presents a variation of a Kohonen self 

organizing feature map. From the proposed algorithm possible 
performance improvements are investigated in terms of time and 
space complexity taking advantage from a sparse input data set. The 
proposed variation has been tested on different datasets coming from 
case studies in the field of bioinformatics. The improvements make 
the application of the algorithms feasible to massive document 
collections. The application of the proposed improvements for grid 
implementations could be beneficial to reduce the computing element 
demand 

Keywords— algorithm, Kohonen  Self Organizing Map, Space 
and Time complexity, performance improvements.  

I. INTRODUCTION 
LUSTERING algorithms are playing a central role in data 
analysis and exploration. This is true in almost all fields 

of science. In fact,  nowadays the amount of data produced 
and stored is surprisingly increasing especially  in life science 
and in gene expression  data  collected by microarray 
experiments [1], [2].  

To overcome the increasing computational demand coming 
from the exponentially rising volume of data generated and, 
eventually, by the change in space representation (from 
feature to similarity space representation) the paper proposes 
and evaluates some performance improvements in terms of 
computational time and space by developing exact algorithms 
that don’t introduce any error in the classification algorithm. 
These improvements are more effective on sparse datasets. 
The results in terms of execution time reduction and 
concordance between the clusters obtained by the improved 
algorithms against the Kohonenn algorithm without 
performance improvement, which has been taken as reference 
point, are presented and evaluated. 

We also envisage the application of this algorithm in a grid 
infrastructure. A faster algorithm can lead to less computing 
element demand, which could be beneficial in situation where 
the computational elements are local resources not spread all 
over the word.  

We also compared the classification error of the best 
 

Manuscript received January 7, 2009.  
F. Maiorana is with the University of Catania, Department of Computer 

Engineering and Telecomminications, Viale A. Doria, 6, 95127, Catania, Italy, 
phone: + 39 95; fax: +39 95; e-mail: fmaioran@ diit.unict.it).  

 

Kohonen algorithm for a grid infrastructure proposed in [3] 
and the classification error in a fast but approximate version of 
the Kohonen algorithm proposed in this paper. The results 
show that the grid algorithm has the better correct 
classification rate with respect to the approximate one.  
Moreover, it has the possibility to use several computing 
elements thus scaling the computational complexity of the 
algorithm to a feasible level even for massive document 
collections. 
The paper is organized as follows: section 2 briefly  review 
clustering techniques, section 3 recalls  the Kohonen self 
organizing feature map algorithms; section 4 revises the 
literature about fast implementation of the Kohonen 
algorithms; section 5 describes some implementations of fast 
Kohonen algorithms and compares the results for  exact and 
approximate algorithms; section 6 presents some implications  
of the proposed improvements for a grid implementations, 
section 7 draws some conclusions and  feature works. 

II. REVIEW OF CLUSTERING TECHNIQUES 
Among various clustering techniques we recall: 

• partitioning algorithms 
• hierarchical algorithms 
• grid based. 

We will focus on a particular partitioning algorithm. 
Partitional clustering algorithms start either with a cluster 

containing all the elements and find subsequent clusters by a 
sequence of repeated bisections or with a set of k cluster that 
are refined by the process. The number of clusters is usually 
predetermined by the user but can also be automatically 
derived.  Partitioning algorithms can be viewed as optimizing 
algorithms that try to optimize at each iteration a function 
usually given by a combination of intra-cluster similarity and 
inter-cluster dissimilarity. The best known  partitioning 
algorithms is  K-means. A survey of the most significant 
variations of K-means can be found in [4].  New techniques 
represented by bio-inspired algorithms such as ant clustering 
algorithms belong also to this category. These algorithms are 
based on ant based agents and do not require knowledge of the 
initial number of clusters. In [5] the authors present an 
overview of ant clustering algorithms and an interesting 
variation  based on a dynamically adaptive particle swarm-like 
agent approach.  
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Hierarchical clustering  constructs a tree like partition. This 
method can be either agglomerative or divisive. The 
agglomerative techniques start with a class for each element, 
and then proceed by merging the most similar pair of clusters. 
The divisive techniques start with one class containing all the 
elements and then try to divide the initial class in subclasses. 
The criterion used aims at optimizing a performance index. 
With this method the elements that are merged (divided) will 
remain merged (divided) until the end of the classification 
process. One of the most relevant hierarchical algorithms is 
the C4.5 [6]. Hierarchical ant-based algorithms also exist in 
literature such as the one proposed in [7]. 

In the grid based clustering algorithms the basic idea is to 
partition the input space by a grid structure in order to divide 
the space in cells of the same dimension. Among the created 
cells the algorithm selects the cells that contain a significant 
number of input elements, and groups the others to the nearest 
selected ones..  

Variation of such scheme, such as the one proposed in [8] 
compare the classification result in the original grid structure 
and in a deflected one to obtain a final clustering solution. 

It is important to notice that the clustering results depend on 
the distance or similarity measure used. A comprehensive 
survey can be found in [9]. 

All the classification algorithms can work either on the 
feature space represented by the original input matrix, or in 
the similarity space. In this case a similaritry matrix is 
computed which stores a similarity value of each element 
against all the others. This is a symmetric square matrix whose 
size is equal to the number of input elements squared. The 
classification is then performed over the similarity space.  

. 

III. BRIEF REVIEW OF THE SOM ALGORITHM 
Kohonen Self Organizing Maps (SOM)  are often used to 

cluster datasets in an unsupervised manner [10] – [12]. This 
paper deals with on–line SOM since the batch version has 
some disadvantages  such as the fact that  it often represents 
an approximation of the on–line algorithm [13]. 

In the on–line version the weights are updated after the 
presentation of each input vector. In order to do this, the 
distance (usually the Euclidean distance) is computed between 
the input vector and each weight vector as in (1).  
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where no is the number of output neurons.  
In the second step the algorithm searches for the winning 

neuron, dw,, i.e., the neuron that best matches the input  being 
characterized by the minimum distance from the input vector 
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In the third phase the algorithm updates the weights of the 

winning neuron and of the neurons that lie in a user defined 
neighborhood as follows 
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where α(t) is the learning rate that modulates the  weight 

update, and hkw is the neighborhood function that depends, 
given a time t, on the winning neuron w and the neuron under 
consideration k.  Usually the output neurons are arranged in a 
bi-dimensional array as showed in fig. 1a.  
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Fig. 1: SOM architecture: two dimensions (a); one 

dimension (b). 
 

However, some implementations have been proposed, 
which adopt a different topology of the network where  the 
output neurons are arranged along a single layer (SL 
configuration) [14], [15] as shown in fig.1b.  



 

 

In the SL configuration the network topology is composed 
of an input layer with as many nodes as the number of 
components of the input element and an output layer with as 
many nodes as the number of classes.  

This means that if, at the final cycle,  the winning neuron 
mostly activated by the ith item is the jth neuron, then the input 
object belongs to the class j.  

In this scheme there is no topological similarity among 
output neurons since adjacent output neurons do not 
necessarily represent similar classes.  

Let us note that in the SL configuration the updating 
formula (3) is replaced by a neighborhood function that 
chooses the winning neurons and the ones (usually two o three 
neurons) that are mostly activated by the current input object. 
The neighborhood function is not a topological  but a logical 
one that finds the output neurons closer to the input vector. 

As neighborhood function the following one has been 
proposed in [14]:  
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where ord (k) is the rank of weight vector k in the ordered 

vector of distance computed with formula 1). 
The SL clustering algorithms work on both the feature and 

the similarity space as proposed in [14], [15]. If the similarity 
space is considered,  the algorithm has  to perform a final step 
to find for each class both the most relevant features  common 
to the majority of the class elements, called positive features, 
and the features not present in the majority of the class 
elements, called negative features.  

An automatic strategy to find the optimal number of classes 
is also proposed in [14], [15].  

IV. REVIEWS OF PERFORMANCE IMPROVEMENTS OF THE 
KOHONEN SOM ALGORITHMS 

Some algorithms  belonging to the Kohonen family (here 
on referred to as Kohonen–like algorithms) can be 
summarized by the following three phases:  

Phase D aiming at computing the distance between input  
and weight vector by equation (1); 

Phase W: dealing with  the computation of the winning 
neuron by equation (2) 

Phase U which updates the weight by equation  (3) using 
equation (4) for the neighbourhood.  

The computational complexity of each iteration of above 
mentioned version of the on-line Kohonen algorithm without 
any optimization is :  

1. Phase D: O(N2 * no) 
2. Phase W : O(N * (no * log (no))) since the vector of 

distances must ordered if all the output neurons 
should be updated  according to their rank. 

3. Phase U:  O (N2 * no) 
where N is the number of  input elements, and no is the 

number of classes or output neurons. The analysis is 

performed for a classification step involving the similarity 
matrix that has a dimension of  N x N. 

In literature several  studies concerning performance 
improvements of the Kohonen like algorithm can be found.   

In [16] the authors propose the use of spatial indexing 
method such as R-Tree in order to speed up  the search of the 
winning neuron to reduce  the cost from O(no) to O(logm (no)) 
where m is the node size.  
In [17] the authors propose a fast implementation for a batch 
version of the standard Kohonen algorithm.  The optimization 
they propose has the following computational complexity for 
the various phases of the Kohonen algorithm: 

1) Phase D: O(no* (N * fnon zero) 
2)  

2) Phase W: O ( no) 
3) Update weight O (no * N * fnon zero

 ) 
where fnonzero  is the percentage of elements different from 

zero in the input matrix. Their implementation takes 
advantage from the batch implementation and from a different 
arrangement of equation (1) so that in computing the distance 
in equation 1 only the elements of x different from zero are 
taken into consideration. 

This is possible since in the batch version the weights are 
updated only at the end of an epoch , i.e., after the 
presentation of all the input elements, so allowing the weights 
to be pre-computed at the beginning of each epoch.  

In [18] the author proposes an on-line implementation of 
the Kohonen-like algorithm with the following computational 
complexity:  

1) Phase D, computes Distance: O(no* N2 * fnon zero))  
2) Phase W, computes Winning neuron: O (N * no) 
3) Phase U, Updates weights: O (no * N2 * fnon zero

 ) 
To achieve this result a normalized set of weight zk  is used 

such that wk = βkzk. This set of weight zk  can be updated at a 
cost proportional to the number of non-zero elements of the 
input vector. The algorithm does not update all the normalized 
weights after each presentation of an input vector, but only the 
weights corresponding to elements of the input vector 
different from zero, reducing the overall computational cost.  

The drawback is that in the update steps it is  necessary to 
update the normalized weights and two constant (βk and  ηk in 
the paper) with a computational cost proportional to the 
number of input components different from zero.  

Another drawback is that if the value of βk drops below a 
predefined threshold (0.01) the updating equations change 
with a computational cost that is no longer determined by the 
sparsity of the input matrix.  

In [19] the author uses an early stopping strategy in 
computing the distance between the input element and the 
output ones. In summing up the squared difference between 
the components of the ith input element and the weight vector 
ones, he stops when the summation is above the current 
minimum. In the paper it is suggested to try to start from the 
output neuron with the expected smallest distance.  

The observation that in many applications, such as speech 
recognition and image processing, successive vectors exhibit 
strong correlation, leads to the conclusion that  the best 



 

 

matching node (BMN) found for the last input can be the best 
candidate for the BMN for the successive input. The author 
reports a percentage of CPU time saved ranging from 51.3 % 
to 56.2 % on real speech data composed of 17,179 weighted 
cepstrum vectors with a dimension of 12 components for a 
map size ranging from 10x10 to 20x20. .  

In [20] the author finds, for a given input vector, the new 
winner (at phase t + 1) in the vicinity of the old one (at phase 
t)  by storing the old winner in a table containing, for each 
training vector, a pointer to the winner.  

This is particularly true when the SOM is already smoothly 
ordered although not yet asymptotically stable. In searching 
for the winning neuron at phase t + 1 the author suggests to 
locate the winner for phase t in the table and to perform a 
local search for the winner in the neighbourhood around the 
located unit.  If the best match is found at the border of this 
neighbourhood, the  search is continued in the surround of the 
preliminary best match. This principle can be used in both on-
line and batch version of the SOM.   

The author also suggests to estimate the initial value of a 
map on the basis of the asymptotic values of a map with a 
much smaller number of units.  

In [21] the authors compare the performance of a 
conventional SOM algorithm and a modification proposed by 
one of the authors. The modification consists in:  

a)  selecting the first 2m +1 neurons (Nw) which best match 
the input vector; 

b)  correcting the weight in the set Nw by equation 3)  
c)  exchanging the weight vectors of BMU’s  neighbors 

with the neurons in Nw, so that all the winning neurons 
will be clustered together as neighbors with BMU at 
the centre.  

In their implementation they chose m = 2. The new 
approach is faster but less stable since the original neighbors 
around the BMU are forced to leave the original class and thus 
may disrupt the harmony elsewhere in the map. They report a 
speed up improvement ranging from 9.68 % to 30.3 % on 
different datasets with a performance improvement that tends 
to increase along with the dimensionality of the input data. 

In [22] several optimization strategies are proposed for 
similarity batch self organizing maps, e.g.,  the possibility to 
use pre computed values, a monitoring of the clusters that 
change and an   early stopping strategy in computing  equation 
1), (they stop in computing when the partial sum is above the 
minimum). 

This last optimization however is dependent on the dataset 
and on the order of presentation of the input elements. To 
reduce this dependency they propose to first compute the 
distance of the elements which are the best candidate winning 
neurons. 

In [23] the authors extend the optimization technique by 
applying the branch and bound principle to reduce the 
expected cost of the minimization problem by avoiding an 
exhaustive search. The method introduces some 
approximations.  

The results show, as reported by the authors, that the branch 

and bound principle reduces a lot the search burden; the 
speeding up along with the number of classes increases 
although  the speeding up decreases along with the number of 
elements since the search phase has not a dominant 
computational cost. 

In [24] the authors compared several classification 
techniques that deal with large datasets by approximation 
techniques, by sampling the data sets, by randomized search in 
the solution space, or by a probabilistic parallel randomized 
search strategy implemented by genetic algorithms.  

In [25] the author proposes, for a batch dissimilarity SOM,  
to work on a random sample of the original data set instead of 
working on the entire one. The random sample will fit in main 
memory and will be much smaller than the original data set. 
The author uses the Chernoff  bounds to calculate the 
minimum sample size for which the sample contains, with 
high probability, at least a significant fraction  of every 
cluster.  

If the clustering algorithm on the reduced dataset finds 
small clusters, new representations for these clusters are 
searched among the remaining data. 

In [26] the authors suggest a batch learning algorithms that 
update the weights after processing 15% of the training 
examples, not only after processing all the training examples 
as requested by the batch algorithm. The proposed algorithm 
achieves about half of the acceleration of the batch algorithm 
without showing its negative effects in term of correct 
classification rate. 

V. KOHONEN SOM IMPROVEMENTS 
This paper uses the Kohonen-like algorithm proposed in 

[14], [15] as reference point, whereas a sparse dataset of 3,528 
rows and 262 columns  used in [27] to discover and evaluate 
hopefully new gene-disease relationships from MEDLINE 
abstracts has been chosen to give a realistic basis to the 
results. This dataset represents a vector space representation 
of the chosen set of abstracts. 

From this vector space model representation the similarity 
space model  has been built. This representation is based on 
the similarity matrix: a symmetric matrix where the element at 
row i and column j contains the similarity between the ith  and 
the jth element. In this paper it has been adopted a similarity in 
a broad sense defined by the sum of the minimum of each pair 
of vector components.   

The similarity matrix obtained is normalized between zero 
and one. Let us note that a strict similarity measure may be 
obtained by normalizing each row in such a way that the sum 
of its  elements is equal to one.   

The similarity matrix used for classifications has a 
dimension of 3,528 X 3,528. The total number of ones  is 
1,900, 992  out of 12,446,784 elements equal to 15.27% of 
ones.  

The weighted average number of ones for each column 
(row)  is 539 elements.  Fig. 2 shows the number of columns 
with different number of ones. 



 

 

The first implementation of the Kohonen-like algorithm 
was carried out with the possibility of using different metrics 
to compute the distance between the input elements and the 
model and many other features.  

The first step was to optimize this implementation by using: 
only one distance, a prior check of elements that can be 
eliminated since equal to other elements, some optimization 
techniques to compute the winning neuron, some short-cuts in 
the implementation of the algorithms such as avoiding the  use 
of function. Moreover the implementation avoids , when 
possible, the  use of power in favour of multiplications, or 
multiplications in favour of additions, and the  use of 
intermediate variables and so on.  

In the second step a compact representation of the similarity 
matrix is done. This representation consists in maintaining for 
each row the list of elements greater than zero, storing for 
each row the column numbers and the values different from 
zero. A count of the elements greater than zero for each row 
will allow a compact memorization of the matrix and a faster 
searching inside this one.  

The above mentioned representation allows us to consider 
only the element in the similarity matrix different from zero. 
The space complexity to store the similarity matrix, with this 
representation, drops from O (N2) to O ((N * fnon zero)2).  The 
similarity matrix can be pre-computed and used in all the 
cycles of the Kohonen-like  algorithm. 

Moreover, the compact representation of the similarity 
matrix implies also a time improvement. For example, if  
50,000 documents are considered and the similarity matrix is 
stored as double, its allocations requires more or less 20 G. 

The time required for its allocation, on an Apple  with Intel 
Xeon Dual Core 2 GHz 64 bit, RAM 4 GB DIMM DDR2 667 
MHz, 300GB hard disk, with MacOs X 10.4 operating system 
was 35 minutes. 

Using the compact representation, since the numbers of 
ones in the original similarity matrix is around 15% of the 
total number of elements, the space requirement drops to 3 GB 
thus reducing the virtual memory allocation requirements and 
hence the overall allocation time becomes insignificant (less 
than five seconds).  

The best optimization in terms of computational time can be 
obtained if the computation of  equation (1) is performed by 
taking in consideration only the value of the similarity matrix 
that are different from zero.  

Passing to the phase U, let us note that equation 1)  can be 
rewritten as:  

 

)5()())(2)()(()(
0 1

2∑ ∑
≠ =

+−=
ix

N

i
kikiiik twtwtxtxtd

 
 
In equation (5) the first summation is computed over the 

elements of the input matrix that are different from zero thus 
reducing the complexity from O (N2 * no) to O (N2 * fnon zero * 
no). The second summation can be pre-computed and updated 
during Phase U. The overall running time to compute equation 

(5) remains O (N2 * fnon zero * no) multiplied by a small 
constant since only 2 * xi(t) * wki(t) must be computed in each 
iteration.  The other computations can be done using pre-
computed values, only at the beginning of the algorithm, for 
xi(t)2; and pre-computed values,  during the update phase, for  
wki(t)2.  

 

 
Fig. 2. Number of columns with different number of ones. 
 
It has also been tried to avoid a pre-computation of the 

second summation in the update phase and to compute it on 
the fly in the distance phase using an early stopping strategy. 
Moreover. it has been implemented the possibility, in the 
computation of equation 5, of starting from the winning 
neuron of the previous phase for the same input elements, in 
order to improve the gain in the early stopping strategy. This 
optimization however is dependent on the dataset, and 
requires some extra computations.   

It is important to notice that all the proposed optimizations 
are exact optimizations that do not produce any classification 
errors with respect to the original algorithms. 

The computational time required by the algorithm can be 
further reduced by considering, in the computation of the 
neighborhood function, only the first three neurons with the 
smallest distance from the examined input vector.  

With the chosen neighborhood function the contribution of 
the third element is 1/9, to be multiplied by the leaning rate 
that is less than one thus further reducing the overall 
contribution.  In this case the computational complexity of the 
update phase decreases to O (6 N2), where  the constant 
derives from the fact that three columns of the weight vector 
and its squared components must be updated. This case has  
the advantage to lose the proportionality with the number of 
classes, which increases along with the number of documents 
to be classified. This optimization makes the pre computation 
of the second summation of equations 5) still more appealing.  

Various simulations have been performed for different 
number of documents (ranging from 500 to 5,000 in steps of 
500) and different number of classes (ranging from 20 to 100 
in steps of 20) of the optimized brute force classification 
(without any advantage of the sparsity of the matrix), the 
optimized version of the classification algorithms by equations 



 

 

5) with pre computed values for the second summation; the 
brute force algorithm with a neighborhood of three elements 
and the optimized version by equation 5) with a neighborhood 
of three elements.  

This choice of the optimization strategy makes the 
comparison not dependent on the dataset. The results are 
summarized in fig. 3 and fig. 4. 

All the classifications were performed on laptop computer 
with an AMD Turion 64 bit Mobile Technology ML – 30 1.6 
GHz with 2 GB DDR2 RAM  with Windows XP 32 bit 
operating system. The classification algorithms were 
developed in Java. No virtual memory was required in order 
to run the algorithm 

From the figures the optimization gained with the proposed 
algorithms can be observed: the time required in the optimized 
version is halved, and in the optimized version with reduced 
neighborhood is almost reduced to 1/14. The gain increases 
with   the number of elements to be classified  or with the  
number of classes. 

. 

 
          (a) 
  

 
          (b)  
Fig. 3. Execution time for different number of documents 

and classes: a) brute force; b) optimized version 
 

 
             (a) 
 



 

 

 
                      (b) 
Fig. 4. Execution time for the classification algorithms with 

reduced neighborhood for different number of documents and 
classes: a) brute force; b) optimized version. 

 
The proposed algorithms were also tested on the Dexter 

dataset [28]. This is a dataset for a two-class classification 
problem. 

The task is to filter texts about “corporate acquisitions” 
hence in the text domain.  

This kind of text applications is becoming important in 
bioinformatics such as the automatic discovery and clustering 
of scientific literature abstracts. 

The original dataset is a subset of the Reuters text 
categorization benchmark with 9,947 features. To this 10,053 
probe features were added for a total of 20,000.  

The input matrix is sparse integer and contains, for each 
document, the word indexes with the frequencies of the words 
in the documents.  

This dataset was one of the five datasets used in the NIPS 
2003 feature selection challenge. The training and validation 
datasets are composed of 150 positive and 150 negative 
examples. The test dataset contains 1,000 positive and 1,000 
negative examples.  

The dataset is available at 
http://www.nipsfsc.ecs.soton.ac.uk/dataset and at the 
University of California Irvine Machine Learning Repository 
at http://archive.ics.uci.edu/ml/datasets. We used the test 
dataset. 
The initial dataset is very sparse: only 192, 449  elements out 
of 40,000,000 are different from zero.  

Fig. 5 shows the number of rows for different number of 
elements greater than zero. 

The classification was performed on the feature space and 
on the similarity space.  
 On the feature space the effect of time and space reduction 
is still more evident since the grade of sparsity is increased. 

On the similarity space, with the proposed similarity 
measures the number of zero is less than fifteen.  

 

 
Fig. 5: number of rows for different number of elements greater than 
zero. 
 

Fig. 6 shows the simulation results on the Dexter dataset.  
 

 
Fig. 6. Time requirements for the brute force algorithm and 

the reduced neighborhood one for different number of classes. 
 
The figure shows the time required for the brute force 

algorithms and the reduced neighborhood one  in the 
similarity space for different number of classes.  

No space reduction can be implemented in this case.  
We report the simulation result in this case to show the 

performance improvements due to the reduced neighborhood. 
From the figure it is possible to observe that the time 

reduction due to the reduced neighborhood is about one third.  
It has also been designed and implemented  an approximate 

version which quantizies the values in the similarity matrix 



 

 

and in the weight matrix in 10 classes or quantizied ranges 
starting from 0.1 to 1 with 0.1 quantization steps. 

This quantization allows us to pre-compute the number of 
elements in each quantizied range.  The knowledge of the 
number of elements in each interval allows us, in the distance 
and update phases, to perform an operation per quantization 
interval, by multiplying the changes by the number of 
elements in the considered interval.  

When the matrices are quantizied, a performance 
improvement of  12.7 % over the optimized version has been 
observed, but the price paid is a correct classification rate of 
0.92 when compared with the exact algorithm.  

From the data it is possible to conclude that, for massive 
document collections, when a grid infrastructure is not 
available, the quantization of the input or the similarity matrix 
gives a performance improvement with a reasonable 
classification error 

VI. IMPLICATION FOR A GRID IMPLEMENTATION 
The proposed algorithm can be implemented on a GRID 

infrastructure.  
In a Grid Infrastructure there is a master node that is 

responsible for the coordination of the operation. It assigns 
tasks to the slaves or Computing Elements (CE)  and collects 
their results.  

Several strategies for the Kohonen like algorithm can be 
implemented. Among these the data partitioning scheme is the 
simplest and most effective.  

The method consists in dividing the input matrix among the 
CE; each CE performs the classification on its data and send 
back the results, usually expressed as the weight of the 
connection between the input and the output neurons. Each 
CE works with the same network topology.  

The master collects the results, and eventually computes a 
new starting weight matrix, common to all the slaves, to 
iterate the process.  

The proposed methodology is illustrated in fig. 7. 
With this strategy it is reasonable that he number of CE 

cannot increase  without limit since each computing element 
will have a too restricted vision of the dataset.  

As reported in [27] a good threshold estimation is 10%: 
each CE should not have less than 10 % of the input elements. 
For large input matrix it becomes important to speed up the 
execution of the classification process and to reduce the space 
requirements.  

In such scheme for an input matrix of size N x M and S 
slaves, each slave receives as input a matrix of size N/S x M.  

For a C class classification problem the weight matrix is of 
size M x C.  

If for example we must classify 105 elements in the 
similarity space, with the previously stated criteria each slave 
will receive 10% of the input elements.  

So the input matrix for each slave will have 104 x 105 = 109 
elements. If each element is a double stored in 8 bytes the 
memory requirement is  equal to 8G that represents a 
demanding amount of resources and the necessity to use only 
CE with a 64 bits processor and operating system.  

If the input matrix is sparse the proposed storing 
methodology could save space if the grade of sparsity is high.  
 

 
Fig. 7.  Architecture of the parallel Kohonen algorithm 
 

In order to be convenient, in the input matrix the number 
of elements different from zero must not exceed 30 % of 
elements if with the proposed storing methodology the 
indexes of the elements different from zero could be saved 
in three bytes.  

If the indexes of the elements different from zero require 
four bytes, the number of elements different from zero must 
be less than 25  %.  

The necessity for a compact representation becomes 
more important with an increasing number of documents. It 
is important that all the slaves can perform their task 
without the necessity to use the virtual memory, since this 
greatly increase the execution time.  

The  proposed speed up makes feasible the execution of 
the classification task in the slaves: an increased amount of 
time needed for the execution increases the probability of 
failure of the submitted task.  

The space and time complexity reduction is hence 
important also in a grid infrastructure.  

The implementation of the parallel algorithm has been 
carried out in [3] by using a grid infrastructure based on the 
Globus toolkit.  4 [29] – [33]. 

Among the various components of the Globus toolkit 4 
architecture we used the following components:  

1. The Grid Resource Allocation and Management 
(GRAM) service that provides “a single interface for 
requesting and using remote system resources for the 
execution of "jobs".  

2. Grid FTP: is a “high performance, secure, reliable  
data transfer protocol optimized for high bandwidth 
wide – area networks”. It is  based on the File 
Transfer Protocol (FTP). It allows parallel data 
transfer and partial file transfer, using GSI for 
authentication. 



 

 

3. Grid security infrastructure (GSI): allows secure 
authentication an communication over the networks. 
It provides services such as secure communication, 
security services across organizational boundaries 
and support “single sign – on”  for users of the grid. 
It is based on the public key encryption, X.509 
certificates, and the Secure socket layer (SSL) 
protocol.  

Since with the best averaging strategy proposed in [3] the 
authors obtained a correct classification rate of 0.96 that is 
better than the classification rate we obtained by quantizing 
the similarity matrix, it is advisable to use a grid 
implementation of the algorithm instead of an approximation 
of the classification algorithm. The exact optimization strategy 
remains useful to improve both space and time performance of 
the grid algorithm. 

VII. CONCLUSION AND FUTURE WORK  
This paper proposed several optimization strategies of the 

Kohonen-like algorithm  which take advantage from the 
sparsity of the input matrix.  

The algorithm has been applied in a similarity space, but the 
same considerations can be made for the feature one.  

Several exact optimization strategies have been presented in 
both  time and space. Moreover, the approximate optimization 
strategies have been evaluated with respect to the 
classification errors.  

From the analysis  the following conclusions can be drawn:  
• The use of a compressed notation for the similarity matrix 

can lead to a drastic drop in space requirements. This also 
gives a time improvement due to less virtual memory 
allocation time necessary. 

• Optimization strategies which  take advantage from the 
sparsity of the input matrix can drop the time requirement 
by a factor of ten or more. 

Non exact optimization strategy can lead to a further time 
improvement of 15% with respect to the previous case but 
with a correct classification rate of 0.92. 

This work also presented  some early considerations of the 
introduced time and space requirements reduction on  a grid 
implementation of the proposed Kohonen like algorithm. 

The space and time complexity reduction is important also 
in a grid infrastructure since  if we store the input sparse 
matrix in a compact way, the memory requirements on the 
slave are less demanding. In such situation the resource 
allocation process becomes more feasible.  

This is particularly true for massive classification tasks, as 
in bio-informatics field, where reducing  memory resource and 
computational time for each computational element becomes a 
duty.  Since each computational elements should have a 
suitable sample of the input elements, hence an adequate 
number of elements to be classified, time and space reduction 
techniques could improve performances and resource 
requirements for the computing elements.  

It could be useful to apply the proposed algorithm to other 
dataset to evaluate the time and space requirements even if it 
is expected that the improvements depend on the grade of 

sparsity of  either the feature or the similarity space. 
Studies are planned to find an optimization strategy which 

takes advantage, in computing the distance between the input 
element and  the winning neuron by equation (1), from  the 
expected correlation of subsequent elements and the expected 
locality of the winning neuron between one phase and the 
successive one.  

We plan to study the influence of  different similarity 
measures on the classification results and to further investigate 
the performance improvements for grid implementations.  
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