
Inversion of Complex Valued Neural Networks 
Using Complex Back-propagation Algorithm  

Anita S. Gangal, P.K. Kalra, and D.S.Chauhan 

  
Abstract—This paper presents the inversion of complex valued 

neural networks. Inversion means predicting the inputs for given 
output. We have tried inversion of complex valued neural network 
using complex back-propagation algorithm. We have used split 
sigmoid activation function both for training and inversion of neural 
network to overcome the problem of singularities. Since inversion is 
a one to many mapping, means for a given output there are number 
of possible combinations of inputs. So in order to get the inputs in the 
desired range conditional constraints are applied to inputs. 
Simulation on benchmark complex valued problems support the 
investigation. 
 

Keywords—activation function, back propagation, complex 
valued neural network, inversion 

I. INTRODUCTION 
The complex valued neural networks are those neural 
networks whose weights, threshold values, input and output 
signals all are complex numbers. The complex valued neural 
network is extending its field both in theories and 
applications. Typically signal processing, image processing, 
radar imaging, array antenna, and mapping inverse kinematics 
of robots are the areas where such requirements exist. Neural 
network inversion procedure seeks to find one or more input 
values that produce a desired output response. For inversion 
of real valued neural network researchers have worked with 
many approaches. These inversion algorithms can be placed 
into three broad classes: 
1) Exhaustive Search 
2) Multi-component Evolutionary Method  
3) Single-element Search Method 
  
In choosing among inversion techniques for real valued neural 
networks, Exhaustive Search should be considered when both 
the dimensionality of the input and allowable range of each 
input variable are low. The simplicity of the approach coupled 
with the swiftness in which a layered perceptron can be 
executed in the feedforward mode makes this approach even 
more attractive as computational speed increases. 
Multicomponent Evolutionary method proposed by Reed and 
Marks [1] on the other hand, seeks to minimize the objective 
function using numerous search points in turn resulting in 
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numerous solutions. This method results in population of 
initial points in the search space at a time and    new points are 
generated in the input space to replace existing points so as to 
explore all the solutions. Single element search method for 
inversion of real valued neural network was first introduced 
by Williams [2] and then Kinderman and Linden [3]. They 
used this to extract codebook vectors for digits. This method 
of inversion involves two main steps: first training the 
network and the second step is inversion.  During the training 
neural network is trained to learn a mapping from input to 
output with the help of training data. The weights are the free 
parameters and by finding the proper set by minimizing some 
error criterion, neural network learns a functional relationship 
between the inputs and the outputs. All the weights are fixed 
after training of neural network. After training, the network is 
initialized with a random input vector. Output is calculated, 
compared with the given output. Error is calculated. This error 
is back propagated to minimize the error function and the 
input vector is updated. This iterative process continues till the 
error is less than the minimum set value. Eberhart and 
Dobbins [4] applied it to invert the trained real valued neural 
network for the diagnosis of appendicitis. Jordan and 
Rumelhart [5] have proposed a method to invert the feed 
forward real valued neural network. They tried to solve the 
inverse kinematics problems for redundant manipulators. 
There approach is a two-stage procedure. In the first stage, a 
network is trained to approximate the forward mapping. In the 
second stage, a particular inverse solution is obtained by 
connecting another network with the previously trained 
network in series and learning an identity mapping across the 
composite network.  Behera, Gopal, Chaudhary [6] used real 
valued neural network inversion in the control of multilink 
robot manipulators. They have developed an inversion 
algorithm for inverting radial basis function (RBS) neural 
networks which is based on an extended Kalman filter. Bio-
Liang Lu, Hajime, and Nishikawa [7] have formulated the 
inversion problem as a nonlinear programming problem and a 
separable programming problem or a linear programming 
problem according to the architectures of the real valued 
network to be inverted. 

II. INVERSION OF REAL VALUED NEURAL NETWORK USING 
BACK-PROPAGATION ALGORITHM       

Inversion is finding a set of input vectors for given output; 
which when applied to a system will produce the same output. 
The search is initialized with a random input vector . The 
iterative inversion algorithm consists of two passes of 
computation first, the forward pass and second, the backward 
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pass. In the forward pass the output is calculated for the 
randomly initialized inputs using trained network. The error 
signal between the given output and the actual output is 
calculated. In the backward pass, the error signal is back 
propagated to the input layer through the network layer by 
layer, and the input is adjusted to decrease the output error.  
If   is the ith component of the input vector after ‘t’ 
iterations, then gradient descent suggests the recursion 
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Where, η is the learning rate constant. Iteration for inversion 
can be solved as 
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The neuron derivative jδ  in “(3)” is solved in a backward 

order from output to input similar to the standard back 
propagation algorithm. 

III. COMPLEX VALUED NEURAL NETWORK 
The complex plane is very much different from real line. 
Complex plane is two dimensional with respect to real 
numbers and is one dimensional with respect to complex 
number. The order that existed on the real numbers is absent 
in the set of complex numbers hence, no two numbers can be 
compared as being big or small with respect to each other but 
their magnitudes can be compared which are real values. The 
complex numbers have a magnitude associated with them and 
a phase that locates the complex number uniquely on the 
plane. The generalization of real valued algorithms cannot be   
simply done as complex valued algorithm. Complex version 
of back-propagation (CVBP) algorithm made its first 
appearance when Widrow, McCool and Ball [8] announced 
their complex least mean squares (LMS) algorithm. Kim and 
Guest [9] published a complex valued learning algorithm for 
signal processing application.  Georgiou and Koutsougeras 
[10] published another version of CVBP incorporating a 
different activation function and   have shown if real valued 
algorithms be simply done as complex valued algorithm then 

singularities and other such unpleasant phenomena may arise.  
In the complex back propagation algorithm suggested by 
Leung and Haykins [11], the nonlinear function maps the 
complex value without splitting it into the real and imaginary 
part 
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The function f(z) is holomorphic complex function. But 
according to the Liouville’s theorem, a bounded holomorphic 
function in the complex plane C is a constant. So the attempt 
to extend the sigmoidal function to complex plane is met with 
the difficulty of singularities in the output. To deal, with this 
difficulty A Prashanth [12] suggested that the input data 
should be scaled to some region in complex domain. Although 
the input data can be scaled but there is no limit over the 
values the complex weights can take hence it is difficult to 
implement it. To overcome this problem split activation 
function is used both for training and inversion of complex 
valued neural network (CVNN). An extensive study of CVBP 
was reported by Nitta [13]. Decision boundary of a single 
complex valued neuron consists of two hyper-surfaces which 
intersect orthogonally, and divide a decision region into four 
equal sections. If both the absolute values of real and 
imaginary parts of the net inputs to all hidden neurons are 
sufficiently large, then the decision boundaries for real and 
imaginary parts of an output neuron in three layered complex 
valued neural network intersect orthogonally. The average 
learning speed of complex BP algorithm is faster than that of 
real BP algorithm. The standard deviation of the learning 
speed of complex BP is smaller than that of the real BP. 
Hence the complex valued neural network and the related 
algorithm are natural for learning of complex valued patterns. 
The complex BP algorithm can be applied to multilayered 
neural networks whose weights, threshold values, inputs and 
outputs all are complex numbers. In split activation function, 
nonlinear function is applied separately to real and imaginary 
parts of the aggregation at the input of the neuron 
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Here sigmoid activation function is used separately for real 
and imaginary part. This arrangement ensures that the 
magnitude of real and imaginary part of f(z) is bounded 
between 0 and 1. But now the function f(z) is no longer 
holomorphic, because   the Cauchy-Riemann equation does 
not hold i.e. 
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So, effectively the holomorphy is compromised for 
boundedness of the activation function. 
 
We have tried the inversion of a three layered complex valued 
neural network shown in Fig. 1 
 
 

 
Fig. (1) complex valued neural network 

 
 
In this complex valued neural network: 
L        number of input layer neurons 
M      number of hidden layer neurons 
N       number of output layer neurons 
xi      output value of input neuron i (input) 
zj        output of hidden layer neuron j 
ok     output of the output neuron k  
wji     weight between input layer neuron i and hidden layer   

neuron j 
vkj     weight between hidden layer neuron j and output layer          

neuron k 
 θj     threshold / bias of hidden layer neurons 
  γk    threshold / bias of output layer neurons 
 
Training is done with a given set of input and output data to 
learn a functional relationship between input and output. 
 
Internal potential of hidden neuron j :   
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Internal potential of output neuron k: 

]Im[]Re[)(
1

kkkj

M

j
kjk siszvs +=+= ∑

=

γ                   (10) 

Output of output neuron k: 
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For real time application the cost function of the network is 
given by 
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∗(.)  denotes the complex conjugate. 
 x1 w21 v11 o1 
‘E’ is a real-valued function, and we are required to derive the 
gradient of Ep w.r.t. both the real and imaginary part of the 
complex weights 
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Fig 2 weight update during training 

 
The training process of neural network is shown in Fig. 2. 
During training the network cost function E is minimized by 
recursively altering the weight coefficient based on gradient 
descent algorithm, given by  

Etwtwtwtw
jiwjijijiji �ή)()()()1( η−=Δ+=+                          (16) 

 Where ‘t’ is the number of iterations and ‘η’ is the learning 
rate constant. Once the network is trained for the given 
training data, all the weights are fixed.                                                          
 

IV. INVERSION OF COMPLEX VALUED NEURAL 
NETWORK 

Once the network is trained, the weights are fixed. Inversion 
is the procedure that seeks to find out the inputs which will 
produce the desired output. We have used complex back-
propagation algorithm for inversion. The input vector x0 is 
initialized to some random value. The output of this trained   
network is calculate with this initialized input vector and is 
compared with the desired output. The error between actual 
output and the desired output is calculated. This error is back 
propagated to minimize the error function and the input vector 
is updated as shown in Fig. 3. 
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Fig 3 input update for inversion 

 
This iterative process is continued till the error becomes less 
then the minimum defined error according to the following 
equation 
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Cost function E is a scalar quantity which is minimized by 
modifying input. 
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From “(8)” internal potential of hidden neuron j: 
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From “(18)" the input update is given by, 
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The partial derivative of the cost function w.r.t. Re [ui] is: 
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From “(9)” we get               
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Similarly, the partial derivative of the cost function w.r.t. 
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Once again from “(9)” we get                     
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[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
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k

k

k

j

k

k

k

j

k

zIm

sIm

sIm

eRe
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sRe

sRe

eRe

zIm

eRe

∂

∂

∂

∂
+

∂

∂

∂

∂
=

∂

∂
 

From “(11)” and “(12)”, we get 

               
[ ]
[ ]

0
sIm

eRe

k

k =
∂

∂
 

 
[ ]
[ ]

[ ] [ ]( ) [ ]{ kjkk

j

k vImyRe1yRe
zIm

eRe
−−−=

∂

∂ }         (26) 

                 [ ] [ ]( ) [ ]kjkk vImyRe1yRe −=  

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]j

k

k

k

j

k

k

k

j

k

zIm

sIm

sIm

eIm

zIm

sRe

sRe

eIm

zIm

eIm

∂

∂

∂

∂
+

∂

∂

∂

∂
=

∂

∂
 

                 [ ] [ ]( ) [ ]kjkk vReyIm1yIm −−=                (27) 

 
Substituting these values from “(26)”, “(27)” in “(25)” we 

get 

[ ]
[ ] [ ] [ ]( ) [ ]

[ ] [ ] [ ]( ) [ ]kjkk

N

1k
k

kjkk

N

1k
k

j

vReyIm1yImeIm

vImyRe1yReeRe
zIm

E

−−

−=
∂

∂

∑

∑

=

=
 

Therefore from “(24)” 

[ ] [ ]
[ ] [ ]( ){ }jj

ji

zIm1zIm
zIm

E

uIm

E
−

∂

∂
=

∂

∂
 

[ ] [ ]( )
[ ] [ ] [ ]( ) [ ]

[ ] [ ] [ ]( ) [ ]
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−

−
−=

∑

∑

=

=

kjkk

N

1k
k

kjkk

N

1k
k

jj

vReyIm1yImeIm

vImyRe1yReeRe
zIm1zIm

  (28) 

Substituting the values of [ ]iuRe�έ

E�έ
 from “(23)” and 

[ ]iumI�έ

E�έ
 from “(28)” in “(20)” we get 
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[ ] [ ]∑
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⎬
⎫
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∂
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∂
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[ ] [ ]( )
[ ] [ ] [ ]( ) [ ]

[ ] [ ] [ ]( ) [ ]

∑

∑

∑

=

=

=∗

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩
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⎪
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⎪
⎩

⎪
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⎧
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−

−
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M

j

N

k kjkkk

kjkkk
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N
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vyye

zz

i
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1

1

1

ReIm1ImIm

ImRe1ReRe

Im1Im

ImIm1ImIm

ReRe1ReRe

Re1Re

η

 
                                                                                       (29) 

∆xi is the input update.  Hence new inputs are calculated at 

each iteration by the following relation 

 
xinew =  xiold  +  ∆xi                                                   (30) 
 

With these new values of inputs the outputs are calculated. 
This output is compared with desired output and error is 
calculated. When this error is less than the minimum set error 
value, iterative process is stopped and the inversion is 
completed. This final value of the input vector ‘x’ is the actual 
value of input by inversion of complex valued neural network. 
 
EXPERIMENT 1 
We have a taken 3 layered neural network with 2 inputs, 5 
hidden layer neurons and one output neuron. First we trained 
the network for the input and output data of complex valued 
XOR gate given in table I.  Once the network is created by 
training on the given data, the functional relationship between 
inputs and outputs is set. The complex valued target outputs 
are given in table II for which we have done inversion. We 
predicted the inputs by inversion of complex valued neural 
network. For this trained network the inputs are initiated to 
some random values. The outputs are obtained for these 
random input values. These actual outputs are compared to the 
target outputs and the error is calculated. This error is back-
propagated and the new values of inputs are calculated by 
updating the inputs using “(29)” and “(30)”. With these new 
input values once again the outputs are calculated, compared 
with the target outputs, and then the error is calculated and 
back-propagated to correct the inputs to further new values. 
This process is repeated till the error is minimized and 
becomes less then the assumed minimum value of the error. 
Finally with these predicted inputs we found the actual 
outputs as given in table III. The actual outputs obtained from 
the predicted inputs are nearly   the same to the target outputs.  

 
 
 
 

 
Table I 

Training data for experiment 1 (Complex XOR gate) 
Input 

x1; (a1+ib1) 
Input 

x2:(a2+ib2) 
output 

0 0 1 
0 i i 
i 0 0 
i i 1+i 
i 1 i 
1 1 1+i 

1+i i i 
1+i 1+i 1 
0 1 i 
0 1+i 0 
i 1+i 0 
1 0 0 
1 i i 
1 1+i 0 

1+i 0 0 
1+i 1 i 

 
Table II 

Target outputs, desired inputs and corresponding actual inputs 
from inversion 

Desired 
 inputs  

Actual Inputs 
by inversion 

 
X1 

 
X2 

 
X1 

 

 
X2 

Targe
t  

output 

i 0 0.9731i 0.056 0 

0 1 0.2345 0.8834 i 

1+i 1+i 0.9834+0.8765i 0.8976+0.9821i 1 
i i 0.8976i 0.9231i 1+i 

 
Table III 

Target outputs and actual outputs calculated from 
inputs obtained by inversion 

Target outputs Actual  outputs 

0 0.1381+0.0671i 

i 0.0057+0.8405i 

1 0.8692+0.1094i 
1+i 0.8979+0.9014i 

 
The main problem in inversion using complex back 
propagation algorithm is to find the inverse solution lying 
nearest to a specified point. For this we have used nearest 
inversion approach which is a single element search method. 
Given a function f(i), a target output level t, and an initial base 
point i0. We try to find the point i* that satisfies f(i*)=t and is 
closest to i0 in some sense. Nearest inversion is a constrained 
optimization problem. This constrained problem is solved by 
minimizing E=i-i0 subject to f(i)=t. 
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EXPERIMENT 2 
 
In this experiment we have tried the inversion for similarity 
transformation. We have taken a three layered neural network 
with architecture (1-5-1). The complex input pattern is scaled 
down by 0.5. The scaling is in terms of magnitude only the 
angle is preserved. The training input pattern consists of a set 
of complex values represented by star signs and 
corresponding output pattern data points are represented by 
diamond sign as shown in Fig.5. Once the network is created 
by training on the given data, the functional relationship 
between inputs and outputs is set. This trained model of 
CVNN for similarity transformation is used for inversion. The 
network is presented with the target output points shown by 
diamond symbols arranged in the shape of a rectangle as 
shown in Fig. 6. For this trained network the inputs are 
initiated to some random values. The outputs are obtained for 
these random input values. These actual outputs are compared 
to the target outputs and the error is calculated. This error is 
back-propagated and the new values of inputs are calculated 
by updating the inputs using (29) and (30). This iterative 
process is continued till the error is minimized and becomes 
less then the assumed minimum value of the error.  

 
Fig. 5: similarity transformation: training input 
points (star signs) and training output points 
(diamond signs) 

Fig. 6 inversion results for similarity 
transformation showing target outputs by 
diamonds expected inputs by stars actual 
inputs obtained from inversion by plus signs 

 
In Fig. 6 desired inputs are indicated by stars and the 
plus signs denote the actual inputs obtained from the 
inversion of the network. As seen in the figure the 
inputs from inversion are very close to the expected 
inputs. Thus inversion of complex valued neural 
network is successfully done. 
 

EXPERIMENT 3 
 In this experiment we have taken (1-7-1) neural network. The 
network is trained for rotational transformation data in counter 
clockwise direction. The training input data points are 
represented by stars and the corresponding output data points 
are represented by diamonds in Fig. 7. After training the 
weights of the neural network are fixed. We have tried the 
inversion on some different values of outputs in the same 
range. 
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y 
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Fig. 7 training data for rotational transform in complex 
plane: stars showing inputs and diamond symbols 
showing corresponding outputs   

 
Fig. 8 showing target outputs by plus sign, desired 
inputs by star symbols and the inputs predicted by 
inversion by diamond symbols for rotational transform 
in complex plane 
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For inversion the target output points are shown in Fig. 8 by 
plus signs. These target data points are arranged in the shape 
of English letter ‘z’. Inputs are initiated with some random 
values.  Then the inversion of this neural network is done by 
using complex back-propagation algorithm. Inputs obtained 
by the inversion of the trained neural network are represented 
by diamond signs and the expected inputs are represented by 
the star signs as shown in Fig. 8. As clear from the figure that 
the inputs obtained from inversion are nearly the same as to 
the expected inputs. Hence inversion is done successfully for 
rotational transformation. 

V. CONCLUSIONS 
Inversion of complex valued neural network is still a 
relatively low explored field and there are many aspects which 
can be further studied and explored. Some other inversion 
algorithms of real domain can be expanded to complex 
domain. In most researches conducted on the complex valued 
neural networks, the learning constant used is real valued. In 
principle a complex learning constant could be employed. In 
this approach, we have used complex Quadratic error function 
for optimization. The other real domain error functions 
extended to complex domain can be applied for optimization 
during inversion. 
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