
 

 

 
Abstract— A problem of heat conducting and unilateral contact 

of a shell through the heat-conducting layer is formulated. An 
approach consists in considering a change of layer thickness in the 
process of the shell deformation. Three dimensional connected 
equations of the thermoelasticity and the heat conductivity are 
created. These equations take into account change of the conditions 
of heat exchange between the shell and the rigid body during the 
structure deformation and a possibility of close mechanical contact. 
Three dimensional equations of thermoelasticity and heat coduction 
are expanded into a polynomial Legendre series in terms of the 
thickness. The first-approximations, Timoshenko's and Kirchhoff-
Love's equations have been studied. Numerical example of the 
unilateral thermoelastic contact of the cylindrical shells and rigid 
body through the heat-conducting layer is considered. 
 

Keywords—Heat-conductivity, cylindrical shell, heat-conducting 
layer, mechanical contact. 

I. INTRODUCTION 
any elements of machines and structures during their 
exploitation are affected by high temperature and 
mechanical loading. Contact interaction is the most 

common way to transfer load from one body to another. In the 
case if contacting bodies have different temperature between 
them take place heat-contact interactions. Therefore not only 
condition of the mechanical contact, but also conditions of the 
thermal contact have to be considered. Usually perfect thermal 
contact is supposed, i.e. it is supposed that the temperature 
and the thermal flux of the contacting bodies in the contact 
area are the same [1], [4]. In [6], [7] it was shown that in many 
cases these contact conditions are not acceptable because they 
can not take into account physical processes related to 
deformation and heat exchange. In these  publications  it have 
been considered the problem of thermoelastic contact of plates 
and shells thought a heat-conduction layer with considering 
change of the layer thickness during the plates and shells 
deformation. Numerical examples presented there show that in 
many important for science and engineering cases the result 
obtained using a perfect thermoelastic contact conditions and 
the conditions with considering change of the layer thickness 
in the process of deformation are very different. In some cases 
the difference is not only quantitative but also qualitative. 
Therefore it is very important to consider contact conditions 
introduced in [6], [7] in the problems were thin-walled 
structures may have contact though the heat-conducting layer 
in the intensive temperature field. Such kind of problems takes 

place in many important structures, equipment, and devices in 
chemical, airspace, nuclear industries etc.    

The approach developed in [6], [7] have been applied to the 
plates and shells thermoelastic contact problems [11], [12], the 
laminated composite materials with possibility of 
delamination and thermoelastic contact in temperature field in 
[8], [9], and   the pencil-thin nuclear fuel rods modeling [10].  

In this paper some new results related to unilateral 
thermoelastic contact of the thin-walled structures through the 
heat-conducting layer are formulated. The connected 
equations of thermoelasticity and heat conductivity are 
created. These equations take into account change of the 
conditions of heat exchange between the shell-like structures 
and the rigid body during the structures deformation and 
possibility of close unilateral mechanical contact. Numerical 
example of the heat conductivity of the cylindrical shells 
through the heat-conducting layer is considered. The 
thermomechanical effects caused by contact interaction and 
their influence on the thermomechanics parameters were 
investigated. 

II. 3-D STATEMENT OF THE PROBLEM 
Let us consider an elastic homogeneous deformable and 

rigid bodies in the temperature field situated in an initial, 
undeformed state in a distance )(0 xh  apart. There is a heat-
conducting medium in the gap between the bodies. The 
medium does not resist the body deformation, and heat 
exchange between the bodies is due to the thermal 
conductivity of the medium. We assume that gap 0h  is 
commensurable with the body displacements and we assume 
those displacements to be small. 
The thermodynamic state of the deformable body and the 
heat-conducting medium, is defined by the following 
parameters: )(xijσ , )(xijε  and )(xiu  are the components of 
the stress and strain tensors and displacement vector, and 

)(xθ , )(xχ , )(* xθ , )(* xχ  are the temperature and specific 
strength of the internal heat sources at the body and the 
medium respectively.  

We denote by V  volume occupied by deformable body and 
by V∂  its boundary. The body, boundary may be presented in 
the forms  

eup VVVV ∂∂∂∂ ∪∪=  and eq VVVV ∂∂∂∂ θ ∪∪= .  
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On the parts pV∂ and uV∂  boundary conditions for 

displacements and traction are prescribed. On parts θ∂V  and 

qV∂  boundary conditions for temperature and heat flux are 

prescribed. On the part of the boundary eV∂  contact of bodies 
takes place. Different parts of the boundary do not intersect:  

∅=∩∩ eup VVV ∂∂∂  and ∅=∩∩ eq VVV ∂∂∂ θ .  

We denote by *V  volume occupied by the heat-conducting 
medium and by *V∂  its boundary. The boundary of the 
medium may be presented in the forms  

eq VVVV ∂∂∂∂ θ ∪∪= *** . 

On parts *
θ∂V  and *

qV∂  boundary conditions for 
temperature and heat flux are prescribed. 

A. Equations of thermoelasticity 
We assume that displacements of the body points and their 

gradients are small and relations between deformations, stress 
and temperature are linear. In this case thermodynamic state of 
the deformable body is defined by linear equations of 
thermoelasticity.  The stress-strain state is described by small 
strain deformation tensor )(xijε . The strain tensor and 
displacement vector are connected by Cauchy relations 

)(
2
1

ijjiij uu ∂∂ε +=             (1) 

The components of the strain tensor must also satisfy the 
Saint-Venant’s relations 

klijilkjkjilijkl εεεε 2222 ∂−∂=∂−∂                     (2) 

     From the balance of impulse and moment of impulse lows 
follow that the stress tensor is symmetric one and satisfy the 
equations of equilibrium 

                  .,0 Vb iiijj ∈∀=+∂ xσ           (3) 

Here and throughout the article the summation convention 
applies to repeated indices.                      
     The stress )(xijσ  tensor, tensor of deformation )(xijε  and 
temperature are related by Hook’s law 

θβσσ ijklijklij c += ,  klijjiklijkl ccc == , jiij ββ =     (4)                        

where ii x∂∂=∂ are partial derivatives with respect to the 

space variables ix , ijklc  and ijβ  are elastic modulus and the 
coefficients of linear thermal expansion. In the isotropic case  

)( kjiljlikklijijklc δδδδμδλδ ++= , ijij αδλμβ )3( +=        (5) 

 
where λ  and μ  are the Lame constants, α  are the 
coefficients of linear thermal expansion.  

The differential equations of equilibrium for the 
displacement vector components may be presented in the form 

0=++ iijij bAuA θ  ,                        (6) 
with  

lkijklij cA ∂∂=  , jijiA ∂= β  ,                        (7) 

iiA ∂+= αλμ )3( ,  jikkijijA ∂∂μλ∂∂δμ )(2 ++= , 

 in anisotropic and isotropic case respectively.  

B. Mechanical boundary and contact conditions 

On the parts pV∂ and uV∂  boundary conditions for 
displacements and traction have the form  

pijijjiji

uii

VuPnp

Vu

∂ψσ

∂ϕ

∈∀===

∈∀=

xx

x

 ,)]([

  
 ,               (8) 

where iϕ  and iψ  prescribed displacements and tractions on 
the boundary respectively.   

The differential operator ijij puP →:  is called stress 
operator.  It transforms the displacements into the tractions. 
For homogeneous anisotropic and isotropic body they have 
the forms  

lkikjlij ncP ∂=  and ( )iknijkiij nnP ∂+∂+∂= δμλ     (9) 

respectively. Here in  are components of the outward normal 
vector, iin n ∂=∂  is a derivative in direction of the vector )(xn  
normal to the surface pV∂ . 

In the area eV∂  unilateral mechanical contact with friction 
may occur. Therefore boundary conditions have form of 
inequalities [2]  

( ) 0 , 0 ,  00 =−≥≥= nnnn qhuqhu            (10) 

ττττττττ λ∂∂ pupup −=→==→< tntn pkpk  ; 0  

where np , nu , τp  and τu  are the normal and tangential 
components of the contact force vector and the displacement 
vector respectively, ττ λ and k are coefficients which depend 
upon the properties of the contact surfaces. 

C. Equations of heat conductivity 
We assume that heat distribute in the body and in the media 

according to Fourier low   

θλ jijiq ∂=                                          (11) 

Here iq  is a vector of thermal flow, ijλ  is the tensor of 
coefficients of thermal conductivity of the body. In the 
isotropic case  

Tijij λδλ = ,                                       (12) 

where Tλ is the coefficients of thermal conductivity of the 
body 
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Then linear equations for heat conductivity for the body 
have the form  

0=− χθ∂∂λ jiij  , V∈∀   x                   (13) 

The temperature distribution within the heat-conducting 
medium is described by the equations of heat conductivity  

0** =−∗ χθ∂∂λ jiij  , ∗∈∀ Vx                  (14)  

Here *
ijλ  is the tensor of coefficients of thermal conductivity 

of the body. In the isotropic case  
**
Tijij λδλ = ,                                 (15) 

where *
Tλ is the coefficients of thermal conductivity of the 

body 

D. Thermal boundary and contact conditions 

On the parts θ∂V  and qV∂  boundary conditions for 

temperature and heat flux have the form 

q
b
ii

b VqqV ∂∂θθ θ ∈∀=∈∀= xx  ,  ,  ,  ,          (16) 

where bθ  and b
iq  prescribed temperature and thermal flux on 

the boundary respectively. 
Boundary conditions on the lateral sides of the heat-

conducting medium will be considered in the form 

( ) 0=−+ b
jijin θθβθ∂λ                     (17) 

where coefficient β  depends on thermal properties of 
surroundings.    

We assume that on the part of the body boundary that is in 
thermal contact with media classical thermal contact 
conditions take place. It means that temperature and thermal 
flux of the body and media on contact area equals. Therefore  
conditions of heat conductivity through the heat-conducting 
medium have the form  

  , ** θ∂λθ∂λθθ nijnij == ∗  ,  eV∂∈∀x    (18)                     

In the area of close mechanical contact the thermal 
conditions are transformed into the form  

( )b
eq θθαθ −=  ,  eV∂∈∀x            (19)                                    

where θq  is the heat flux passing across the close mechanical 
contact area, eα  is the coefficient of the contact surface  
thermal conductivity.  

 
Now problem consists in join solution of the equations of 

themoelasticity (6) with boundary conditions (8) and 
unilateral contact conditions with friction (10), equations of 
heat conductivity for shell (13) and heat conducting medium 
(14) and thermal boundary and contact conditions (16)-19).  
Analysis of the problem encounters mathematical difficulties 

caused by the dimension of the problem, as well as by its non-
linearity. The problem can be partially simplified considering 
thin-walled bodies. In this case we can reduce the dimension 
of the problem   

III. 2-D STATEMENT OF THE PROBLEM 
Let a deformable body be an elastic homogeneous shell of 

arbitrary geometry with 2h thickness. In this case the region 
V  occupied by the body and its boundary V∂  may be 
represented as    

],[ hhV −×Ω= and −+ Ω∪Ω∪=∂ SV . 
Here Ω is the middle surface of the shell, ∂Ω is its boundary, 
Ω+ and Ω- are the outer sides and ],[ hhS −×Ω∂=  is a sheer 
side. 

Let it be assumed that the component parameters, which 
describe the stress-strain state of a deformable body as a three-
dimensional body are sufficiently smooth functions of 3x  

coordinate and may be expanded into Legandre's polynomial 
series. Using the approach developed in [3], [5], they can be 
expressed as  

,)()()(
0
∑
∞

=

=
k

k
k
ii Puu ωαxx ,)()()(

0
∑
∞

=

=
k

k
k
ijij P ωσσ αxx  

 ,)()()(
0
∑
∞

=

=
k

k
k
ijij P ωεε αxx ,)()()(

0
∑
∞

=

=
k

k
k P ωθθ αxx    (20) 

,)()()(
0

** ∑
∞

=

=
n

k
k P ωθθ αxx  

where  

∫
−

+
=

h

h
ki

k
i dxPxu

h
ku 33 )(),(
2

12)( ωαα xx , 

∫
−

+
=

h

h
kij

k
ij dxPx

h
k

33 )(),(
2

12)( ωσσ αα xx , 

∫
−

+
=

h

h
kij

k
ij dxPx

h
k

33 )(),(
2

12)( ωεε αα xx ,           (21) 

∫
−

+
=

h

h
k

k dxPx
h

k
33 )(),(

2
12)( ωθθ αα xx ,

∫
−

+
=

h

h
k

k dxPx
h

k
33** )(),(

2
12)( ωθθ αα xx , 

hx3=ω  is a dimensionless coordinate.  
Then we will get the equations of the problem in terms of 

the coefficients of this expansion. As a result, we obtain a 2-D 
system of equations for coefficients of Legandre's polynomial 
series. 

A.  Equations of thermoelsticity 
In order to obtain 2-D equations of thermoelasticity we 

have to substitute expansion (20) into 3-D equations (1)-(6). 
Expansion of the corresponding derivatives gives us 
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( ) k
ijk

h

h
ij dxP

h
k σ∂ωσ∂ αα =
+
∫
−

32
12 , ( ) k

ik

h

h
i udxPu

h
k

αα ∂ω∂ =
+
∫
−

32
12  

( ) ( )[ ] ( )...12112
2

12 3
3

1
333333 ++

+
−−−

+
=

+ −−−+

−
∫ k

i
k
ii

k
ik

h

h
i h

k
h

kdxP
h

k σσσσωσ∂   

( ) ( )...12
2

12 31
33 ++

+
=

+ ++

−
∫ k

i
k
ik

h

h
i uu

h
kdxPu

h
k ω∂ , 

( ) k
k

h

h

dxP
h

k θ∂ωθ∂ αα =
+
∫
−

32
12 , ( ) k

k

h

h

QdxP
h

k
3332

12
=

+
∫
−

ωθ∂  

Then the differential equations of thermoelasticity (3) are 
transformed into its 2-D form  

( ) ( ) 0101
0

313212111 =+−−++∑
∞

=

kkk

l

lklkklkl puLuLuL θθ∂βτ   

( ) ( ) 0202
0

323222121 =+−−++∑
∞

=

kkk

l

lklkklkl puLuLuL θθ∂βτ (21) 

( ) ( ) ( )

( ) 0...
2

122 3
3

0
31

0
1

021
0

333232131

=+−+−
+

+

+−++++

−−−−

∞

=
∑

kkkkk

kk

l

lklkklkl

p
h

k

kkuLuLuL

θθθθβ

θθβ

τ

τ

    

where ( )[ ] k
ii

k
i

k
i bpp

h
kp −−−
+

= −+ 1
2

12 . 

As the result instead of 3-D system of the differential 
equations we get infinite system of 2-D differential equations. 
For some specific types of shells geometry and for plates 
analytical expressions for differential operators kl

ijL  may be 
found in [3], [5], [6].  

B. Mechanical boundary and contact conditions 
The boundary conditions at the sheer side (4) and (7) easy 

can be transformed into 2-D form. Applying expansion into 
Legandre's polynomial series we obtain boundary conditions 
for coefficients of the expansion in the form   

u
k
i

k
ip

k
i

k
i up Ω∈∀=Ω∈∀= ∂ϕ∂ψ xx   ,  ;  ,  .         (22) 

Surface forces and displacements on upper and lower sides 
of the shell are calculated in the form  

( )∑ ∑
∞

=

++
∞

=

+ Ω∈∀=−=
0 0

    , 1 , 
k

i
k

k
i

k
i

k
i uupp x       (23) 

( )∑ ∑
∞

=

−−
∞

=

− Ω∈∀==−
0 0

   ,  , 1
k

i
k

k
ii

k
i

k uupp x  

We used here relations for Legandre's polynomial  
1)1( =kP , k

kP )1()1( −=−  
The contact conditions (10) can not be formulated for the 

coefficients of Legandre's polynomial series because of their 
nonlinearity. They are transformed into 2-D form with 
considering the representations for surface forces and 
displacements on contact surface using (23).  

C. Equations of heat conductivity 
In order to obtain 2-D equations of heat conductivity we 

have to substitute expansion (20) into 3-D equation of heat 
conductivity (13). Expansion of the second derivatives of the 
temperature with respect to 3x  gives us 

( ) ( )[ ] ( )...12112
2

12 3
3

1
3333

2
3 ++

+
−−−

+
=

+ −−−+

−
∫ kkk

k

h

h

QQ
h

kQQ
h

kdxP
h

k
ωθ∂

Then the 3-D differential equation of heat conductivity (13) is 
transformed into 2-D form  

( )[ ] [ ]++
+

−−−
+

+Δ −−−+ ...121
2

12 3
3

1
3330

kkkk QQ
h

kQQ
h

kθ  

( ) 0
0

321 =+++
λ
χ kkQkk               (24) 

The 2-D equations of heat-conductivity for the layer have 
more complicate form. It is because of the layer thickness is 
variable, i.e. )(x+h  and )(x−h  are functions of coordinates. 
Therefore expansion of the corresponding derivative gives us 
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Then 2-D equations of heat-conductivity for the layer are 
transformed into 2-D form 

( ) ( )−∇⋅∇+∇⋅∇+Δ+Δ+Δ ∗∗∗∗∗∗∗
kkkkk ThThThhT 12120θ  

( )[ ] ( )+⋅∇+Δ−+Δ
+

− ∗
−

∗
−
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∗
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kk hhhk
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( ) ( )[ ]−−−
+

+⋅∇+ −+
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h
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As the result instead of 3-D system of the differential 
equations we get infinite system of 2-D differential equations. 
The equations of heat conductivity for the layer (25) are 
complicate because it contains information about deformation 
of the shell.   

 
The equations thermo-elasticity and heat conductivity are 

written in coordinates related to the principal curvatures of the 
shell surfaces. Here αA  are coefficients of the first quadratic 
form, and αk are principal curvatures.  

D. Thermal boundary and contact conditions 
The boundary conditions (4) and (7) can be transformed 

into 2-D form in the same way like it was done in (22). As 
result we have 

q
k
i

k
i

k
b

k Qq Ω∈∀=Ω∈∀= ∂∂θθ θ xx   ,  ;  ,      (26)                                                        

The thermal contact conditions are transformed into 2-D form 
considering the surface temperature and heat flux on upper 
and lower sides of the shell     
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Then contact conditions (18) will be presented in the form 
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The coefficients of Legandre's polynomial series for 
temperature and its derivative with respect to 3x  are related 
by equation  

31212
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iθ , ),...,1( nk =  

Now instead of one 3-D boundary value problem for 
equations of thermoelasticity and heat conductivity we have 
infinite set of 2-D boundary value problems for coefficients of 
the Legandre's polynomial series expansion.  In order to 

simplify the problem we have construct approximate theory 
and keep only finite set of members in (20).  

IV. APPOXOMATE EQUATIONS  
As it was mentioned earlier, we consider a deformable body 

be an elastic homogeneous shell of arbitrary geometry with 2h 
thickness. In developed here approach the shell is substituted 
by its middle surface and it thermodynamical state is 
described by infinite system of differential equations (21), 
(24), (25). Using regular approximation theorem, we can use 
only finite number of members in Legandre's polynomial 
series (20). Order of the system of equations depends on 
assumption regarding thickness distribution of the 
thermodynamical parameters. The thickness is relatively small 
in comparison with other dimensions of the shell.  Therefore 
following [3], [5] we can use only two members in polynomial 
expansion (20). In this case we will get first approximation 
equations of shell and heat conductivity.  

We will consider here the first approximation shell 
equations, which usually refer as Vekua’s shell theory, 
Timosheko’s shell equations, Kirchhoff-Love’s shell 
equations, and equations of heat conductivity with linear 
distribution of temperature along the thickness.  

A. Vekua’s shell equations  
In the first approximation, the shell theory considers only 

the first two terms of the Legendre polynomials series [3], [5]. 
In this case the thermodynamic parameters, which describe the 
state of the shell, can be presented in the form 

( ) ( ) ( ) ( ) ( ) 1
1

0
0 ωσωσσ νν PP ijijij xxx +=  , 

 ( ) ( ) ( ) ( ) ( )   1
1

0
0 ωω νν PuPuu iii xxx += ,             (29) 

( ) ( ) ( ) ( ) ( ) 1
1

0
0 ωεωεε νν PP ijijij xxx +=  ,  

Then the 2-D equations of thermo-elasticity for the shell 
can be obtained substituting these parameters into 3-D 
equations (1)-(6) or directly from (21). They have the form  

( )
( ) 0

0
11

0
11111010

00
0

00101000

=+−++

=+−++

iijijjij

iijijjij

bLuLuL

bLuLuL

θθ

θθ
              (30) 

 We obtain system of six differential equations for unknown 
coefficients 0

ju  and 1
ju  of the displacements vector. The 

operators 00
ijL , 00

ijL , 00
ijL  and 00

ijL  are second–order and first–

order differential operators, the operators 0
iL  and 1

iL  are first–
order differential operators. Their expressions are given in [3], 
[5] for some types of shell geometry.  

B. Timoshenko’s shell equations 
Timoshenko's theory of shells is based on assumptions 

concerning the nature of the stress-strain state of the shell. 
Thus, according to those assumptions 033 =σ  and 033 =ε . 
In this theory the thermodynamic state of shells is determined 
by quantities specified on the middle surface. The stress state 
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is characterized by the normal ααn  , tangential αβn  ( βα ≠ ) 

and shear 3αn  forces, as well as the bending ααm  and 

twisting αβm  ( βα ≠ ) moments. The components of the 

stress tensor are given by the equations  

( ) ( ) ( )
3

33
2 h

xm
h

n ναβναβ
αβσ

xx
x += ,                 (31) 

( ) ( )
h

n
2
3

3
να

ασ
x

x = , ( ) 033 =xσ  

The components of the stress tensor are  

( ) ( ) ( ) 3xe ναβναβαβ κε xxx +=  ,                    (32) 

( ) ( )νααε xx 33 e=  , ( ) 033 =xε  , 

where ieα  characterize the deformation that is uniform 
throughout the thickness of the shell and is associated with the 
extension and the compression at the middle surface and the 
displacement in the perpendicular planes, while αβκ  is 
associated with bending and twisting at the middle surface [3], 
[5].  

The components of the displacement vector are given by 
the equations  

( ) ( ) ( ) 3xvu ναναα γ xxx +=  , ( ) ( )νxx 33 vu =      (33) 

where iv  is the displacement of the points on the middle 

surface and αγ  is the angle of rotation of the middle surface.  
Differential equations of thermo-elasticity for shells 

according to Timoshenko's theory have the form 

( )
( ) 0

0
1
0

111110

0
0

000100

=+−++

=+−++

ααβαβ

ββ

θθγ

θθγ

mLLvL

bLLvL

jij

iiijij            (34)                                        

where ib  and αm  are external loads acting on +Ω  and −Ω  
and reduced to the middle surface, 00

ijL , 01
βiL  , 10

jLα  , and 11
αβL  

are second–order and first–order differential operators, 0
iL  

and 1
αL  are first–order differential operators. Their 

expressions are given in [3], [5] for some types of shell 
geometry.  

C. Kirchhoff-Love’s shell equations 
In the classical Kirchhoff-Love's theory of shells in addition 

to the assumptions of the Timoshenko's theory it is assumed 
that 03 =αε  and that the angles of rotation of the normal to the 
middle surface vector become dependent and are given by the 
equations 

( ) ( ) ( ) ( ) ( )νανανα
να

να ∂γ xxx
x

x vkv
A

+−= 3
1      (35) 

The inconsistencies of the classical Kirchhoff-Love's theory 
of shells resulting from these hypotheses are well known [3], 

[5]. Nevertheless differential equations of thermo-elasticity for 
shells in this case have simple form 

( )

( )

( )∑

∑

∑

=

=

=

=+−+++

=+−+++

=+−+++

1

0
303333232131

1

0
202323222121

1

0
101313212111

0

0

0

k

kkk

k

kkk

k

kkk

bLvLvLvL

bLvLvLvL

bLvLvLvL

θθ

θθ

θθ

            (36). 

where ib  are external loads acting on +Ω  and −Ω  and 

reduced to the middle surface, ijL are differential operators of 

the order up to four, k
iL  are differential operators of the order 

up to two Their expressions are given in [3], [5] for some 
types of shell geometry.  

D. Equations of heat conductivity 
In the first approximation approach it is assumed that 

temperature linearly distributed along the thickness. Therefore 
we considers only the first two terms of the Legendre 
polynomials series. Temperature in the shell and heat-
conducting layer can be presented in the form 

( ) ( ) ( ) ( ) ( )   1
1

0
0)( ωθωθθ νν PPq xxx += ,         (37) 

( ) ( ) ( ) ( ) ( )   1
1
*0

0
** ωθωθθ νν PP xxx +=  

Then the 2-D equations of heat-conductivity for the shell 
have the form  

( ) ( )

( ) ( ) 0
2
3

0
2
1

0

1
1
32133

1
0

0

0
0
32133

0
0

=+++++Δ

=+++−+Δ

−+

−+

λ
χθ

λ
χθ

QkkQQ
h

QkkQQ
h

       (38)                  

where  
( )  

2
3

4
3 0

33 h
T

h
QQ k

θθ ++=− +−+
 , ( )kT

h
 Q −= +θ

2
10

3 ,     (39)                         

( )
h

T
h

QQ k 2
5

2
3 1

33
θθ −−=+ +−+

 , ( )
h

T
h

Q k 2
3

2
3 1

1
3

θθ −+= +
                      

( )( )
( ) huh

huh
Tk

∗

−
∗

+

+−
+−+−

=
λλ

θλθθθλ

300

10
300

9
1063

      
(40)

 
We will consider only one term in the Legendre 

polynomials series for *θ . Then the 2-D equations of heat 
conductivity for the layer have the form  

( ) ( )+Δ+Δ−∇⋅∇+Δ+Δ ∗∗
−
∗

+
∗

+
∗∗

∗
∗∗ hhhh θθθθθ

2
1000

0  

( ) +−+⋅∇+
−∗+∗∗ )(

2
1

33
0
2 QQ

h
h Q               (41) 

( ) 0
0

0
321 =+++

∗

∗

λ
χQkk  
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In this case the differential equation (41) is not depend on 
(38) and also differential for shell (30), (34), (36).   See [6] for 
details. 

V. NUMERICAL EXAMPLES 
Let us consider axisymmetrical cylindrical shell placed 

inside of the cylindrical hole in the rigid body with gap 
)(0 xh . The heat is transferred from the body to the shell 

though heat conducting layer. The possibility for unilateral 
mechanical contact is also taken into account.  

Differential equations of thermo-elasticity and heat-
conductivity for the axisymmetrical cylindrical shell in the 
classic Kirchhoff-Love's theory have the form  

( )qp
Ddx

dw
dx

wd
−=−−+

14 2

12

1
0

0
4

4

4 θβθββ  ,      (42)                                                         

00
02

02

02

=+− F
dx

d θεθ
 , 01

12
12

12

=+− F
dx

d θεθ
,  

where 

2120
15 ,3
hh

== εε  , ( )
22

2
4

4
13

rh
νβ −

=  , 
( )

rh 20
13 ταν

β
−

= , 

( )
h

ταν
β

+
=

1
 1  , ( )2

3

13
2

ν−
=

EhD  

and 

( ) ( )−− −+= θθε kk T
hr

TF
2
1+5.0 00  , 

( ) ( ) 1
11

3-
2
3+5.0 θθθε

hr
T

hr
TF kk

−− +−=    

In [8], [9], [11] it was shown that the differential equations 
(42) can be transformed into the integral equations of 
Hammerstein's type  

( ) ( ) α
αα θ=∫

l

dyyFyxG ,  ,                     (43)  

( ) ( ) ( )[ ] ( ) wdyyFyqyp
D

yxW
l

=
⎭
⎬
⎫

⎩
⎨
⎧ −−∫ 30

1, β , 

where the kernels in these integral equations are fundamental 
solutions for corresponding differential operators of the form  

( ) ( ) 0,1=  , 2/exp, iyxyxG iii εε −−=  ,         (44) 

( ) ( ) ( ) ( )[ ]yxyxyx
D

yxW −+−−−= βββ
β

sincosexp
8

1, 3

 and  ( )  - 0
0

12
1113 θβθεβ += FF . 

Stresses in the axisymmetrical cylindrical shell are 
calculated by formulas 

⎥
⎦

⎤
⎢
⎣

⎡
+−

−
=

h
zz

dx
wdE

tx 2
)1(

1
1

2

2

2 θαν
ν

σ  ,      (45) 

⎥
⎦

⎤
⎢
⎣

⎡
+−

−
+−=

h
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dx
wdEE

r
Ew

tt 2
)1(

1
1

2

2

2
0 θανν

ν
θασθ  

Substituting expression for the second derivative of the 
displacements into (45) we obtain 

 += ∫
l

x d
dx

xGdbx
0

2

2
0

0
),()()( ξξξθσ                   (46)    

[ ]∫∫ −+−
ll

d
dx

xGdqpbxbdxGb
0

2

2

3
1

2
0

1
1

),()()()()(),( ξ
ξ

ξξθξξθξ    

[ ]zxxE
r

xEwxx tx )()()()()( 10 θθανσσθ +−+=  

where 
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0 1
3
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ν
α

+
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0
23
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1 4
)1(3

 
hh

zrE
b ταν+
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2 )1(
 

hh
zrE
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ν
ατ
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0
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3 2
3

hh
zrb = , 20

3
h

Erztα
β =  , 

( )
2

2

1
13

h
zErtαν

β
−

=  , 3

2

3 8h
zr

=β . 

Mizes stresses are calculated by the equations   

2
00

2 )())(()( −−−−− ++= σσσσσ xxi  ,           (47) 
2

0
22 )()()(

2
1 qq xxxi ++−+−= +++++ σσσσσ  

Algorithm for the problem solution consists in iterative 
process of the integral equations of Hammerstein's type solution 
and in the case if unilateral contact take place additional 
iterative algorithm is used. Algorithm has been elaborated in 
[6], [7]. In the problems under consideration algorithm is 
convergent and convergence is enough fast. 

We will consider here thermomechanical state of the shell 
which arise due to two factors: a. no homogeneous distribution 
of external temperature load; b. presence of macro roughness 
on the rigid body, which can be described by no homogeneous 
initial gap.      

     Calculation have been done for the data:, geometrical 
parameters mr 5.0= , m.h= 010 , , hh 5.00 = , rlb = , 

material properties: MPa 105.2 5⋅=E , 0.25=ν  
Co1105.2 5−⋅=τα  , CmV o21 =λ  , CmV o1=∗λ   

Example 1. We consider axisymmentrical cylindrical shell 
of infinite length placed into the rigid stirrup with 
homogeneous initial gap.  

Temperature on the stirrup surface of is equal to  

bbm lxTTxT /sin)( π+=+ , CT o
b 600= CT o

m 100= . 
On the shell surface act homogeneous load MPaxp 10)( = , 

and temperature CT o0=− .  

In the Fig.1. are presented: Mizes stresses on external +σ  
and internal −σ  surfaces of the shell, force of contact 
interaction q , normalized bending 0/ hwW =  and 
temperature on contact surface kT . The dashed lines 
correspond to solution for perfect thermal contact without 
counting influence of the shell deformation on the heat 
exchange and the solid lines correspond the presented here 
solution. 
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Fig 1. 
 

Analysis of these data shows, that no homogeneous 
temperature distribution cause significant shell deformations 
and close mechanical contact with rigid stirrup. As result in 
the shell significant stress occur. Calculations with 
considering perfect thermal contact lead to significant 
inaccuracy, which is not only quantitative but also qualitative.   

 
Example 2. Here we consider axisymmentrical cylindrical 

shell of infinite length placed into the rigid stirrup with no 
homogeneous initial gap. The gap is given by the function  

bbo lxhhxh /sin)(* π+= , hh 5.00 = , 2/0hhb = . 

In the Fig.2. are presented: Mizes stresses on external +σ  
and internal −σ  surfaces of the shell, , normalized bending 

0/ hwW =  and temperature on contact surface kT . The 
dashed lines correspond to solution for perfect thermal contact 
without counting influence of the shell deformation on the 
heat exchange and the solid lines correspond the presented 
here solution. 

 

 
Fig 2. 

 
Analysis of these data shows, that no homogeneous initial 

gap cause significant shell deformations. As result in the shell 
occur significant no homogeneous stress and temperature 
distribution. Calculations with considering perfect thermal 
contact lead to significant inaccuracy. Some values of 
thermomechanical parameters differ twice. 

VI. CONCLUSION 
The results presented here and in previous our publications 

show that the in thermoelastic contact problems for thin-
walled structures mutual influence temperature and 
deformation may be significant and it have to be taken into 
account  in engineering design.   
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