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Revisit Controlled Lagrangians for Spherical
Inverted Pendulum

Guangyu Liu, Subhash Challa, and Longguang Yu

Abstract— Recently, passivity based control theory (energy
approaches) has undergone a breakthrough in dealing with
underactated mechanical systems with two successful and similar
tools, controlled Lagrangians and controlled Hamiltanians (IDA-
PBC). Because of the complexity, successful case studies are lack-
ing, for example, MIMO, underactuated and unstable systems.
The seminal paper of controlled Lagrangians proposed by Bloch
and his colleagues presented a benchmark example–a simplified
spherical inverted pendulum on a cart but the detailed design
and its verification were neglected. To compensate this ignorance,
the note revisits their design idea by addressing explicit control
functions for a similar device motivated by real applications.
Some observations are given through computer simulation. At
the courtesy of the original idea, the case study is known to be
the first MIMO, underactuated and unstable system stabilized in
full state space via energy approaches.

Index Terms— Full energy shaping, spherical inverted pendu-
lum, MIMO

I. INTRODUCTION

THE method of controlled Lagrangians (CL) is a construc-
tive approach to the derivation of stabilizing control laws

for Lagrangians mechanical systems. The theory originated
from [1] and was systematically introduced in [2], [3]. Various
supplementary and additional results were also presented in the
literature (e.g., [4]). The method of controlled Lagrangians was
developed in two salient phases: (i) the kinetic energy shaping
[2]; (ii) the full energy shaping [3]. The latter had advantages
over the classical potential shaping [5] in dealing with under-
actauted systems. Meanwhile, there was a development of its
Hamiltonian counterpart, port-controlled Hamiltonians [6], [7].
Two methods were equivalent for simple mechanical systems
[8], [9].

The full energy shaping [3] claimed to be able to solve the
full stabilization of the spherical inverted pendulum but the
detailed design and its verification were ignored. Here, we
elaborate the control idea from [3] and verify its effectiveness
trough computer simulation for a slightly general mechanical
system (see Figure 1) motivated by real-life applications: a
vector thrusted body hovering in certain altitude and personal
transports. To the best of our knowledge, it is the first MIMO,
underactuated and unstable system that is stabilized in full
state space via energy approaches as is inherit from [3].

Guangyu Liu is with VRL, NICTA and Department of Electrical & Elec-
tronic Engineering, The University of Melbourne, Parklike, 3010, Victoria,
Australia. Email: guangyu.liu@nicta.com.au

Subhash Challa is with VRL, NICTA and Department of Electrical & Elec-
tronic Engineering, The University of Melbourne, Parklike, 3010, Victoria,
Australia. Email: subhash.challa@nicta.com.au

Longguang Yu is with Jilin University, Changchun, 130041,China.
Email: zswylz@sina.com

x

y

z

X

Y

Z
2L

(X,Y,0)
(x,y,0) mg

Fx

Fy
O

C

Fig. 1. The spherical inverted pendulum

Several controllers for the stabilisation and tracking of the
spherical inverted pendulum were proposed in [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19]. A swung-up strategy
was given in [10]. Although partial feedback linearization was
incorporated, using the first approximation in [11] made the
controller a local stabilizing result. By exploring the forward-
ing structure, adding nested saturating levels to the linear one
led to a nonlinear controller that yielded a “global” domain
of attraction (see [12] and its improved versions [15], [16]).
The controller in [13] (see also [17]) that relied on singular
perturbation idea yielded a “semi-global” stability region. The
associated “strong” Lyapunov function could be used as a
controlled Lyapunov function (c.l.f) to obtain the total stability
of the perturbed closed loop system. So, robustness was
implied. Similar to the energy ideas (e.g., [3]), the controller
in [14] used a “weak” Lyapunov function to derive (non-
local) asymptotic stability of the nominal closed loop system
based on LaSalle’s invariance principle. Because the “weak”
Lyapunov function that could not be used directly as c.l.f, the
robustness was not ensured. Way-point tracking and nonlinear
output tracking controllers were given respectively in [18],
[19].

Although some controllers (e.g., [15], [16], [17]) have some
advantages, motivated by their physical insight, the energy
approaches (e.g., [3]) are of practical interest of many people.

The remaining of the paper is organized as follows: Section
II and III review respectively the theory [3] and the model
[15]; the explicit control law is given in Section III; computer
simulation is carried out in Section V; final observation is
given in Section VI.

II. PRELIMINARIES

A. The Notations

◦ Q = S×G is a n-dimensional manifold with the coordinates
q = (xα, θa) ∈ Rn, where xα ∈ S with index α going
from 1 to n − r are the shape variables and θa ∈ G, with
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index a going from 1 to r are the group variables and
the corresponding S, G are called the shape space and the
Abelian group respectively. TQ denotes tangent bundle to
Q.

◦ T j1,...,jr

i1,...,is
is a tensor of type (r, s) with r covectors and s

vectors. gab represents a m × n matrix with index a going
from 1 to m and b going from 1 to n, gab denotes the inverse
of the matrix gab if n = m. τ b

δ,α = ∂τb
δ

∂α denote the partial
derivative. The summation convention over repeated indices
is implied to the tensor product.

◦ xe with a subscript e is the equilibrium.

B. Lagrangians and Controlled Lagrangians
The Lagrangians L : TQ → R of the mechanical system is

defined as

L
(
xα, ẋβ , θa, θ̇b

)
=

1

2
gαβ ẋαẋβ + gαaẋαθ̇a +

1

2
gabθ̇

aθ̇b − V (xα, θa) (1)

where gij is the metric tensor, 1
2gij q̇

iq̇j is the kinetic energy
and V (q) is the potential energy. Hence, the controlled Euler-
Lagrange equations are

d

dt

∂L
∂ẋα

− ∂L
∂xα

= 0,
d

dt

∂L
∂θ̇a

− ∂V

∂θa
= ua, (2)

where the controls ua only act in the θa directions.
The controlled Lagrangians L̃ involves changing the metric

tensor and potential energy by introducing quantities τ, σ, ρ, ε
that is denoted by

L̃ 4
= L

(
xα, ẋβ , θa, θ̇a + τa

αẋα
)

+
1

2
σgabτ

a
ατ b

β ẋαẋβ

+
1

2
(ρ− 1)gab

(
θ̇a + gacgαcẋ

α + τa
αẋα

)

×
(
θ̇b + gbdgβdẋβ + τ b

β ẋβ
)
− Vε(x

α, θa). (3)

where Vε is a new function. The controlled Lagrangians
implies a new potential energy function V ′(xα, θa) =
V (xα, θa) + Vε(xα, θa). Quantities τ, σ will be defined by
the matching conditions and the values σ, ρ, ε are determined
by stability theorems which is reviewed next.

We summarize the simplified matching conditions in [2],
[3]:

SM-1: σab = σgab for a constant σ;
SM-2: gab is independent of xα;
SM-3: τ b

α = −(1/σ)gabgαa;
SM-4: gαa,δ = gδa,α;
SM-5: ∂2V

∂xα∂θa gadgβd = ∂2V
∂xβ∂θa gadgαd.

This leads to a control law ucon
a . To achieve asymptotic

stability, a dissipative control udiss
a is added such that

ua
4
= ucon

a +
1

ρ
udiss

a . (4)

is the desired control law. Euler-Lagrange equations in terms
of L̃ are

d

dt

∂L̃
∂ẋα

− ∂L̃
∂xα

=

(
− 1

σ
+

ρ− 1

ρ

)
gadgαdudiss

a

d

dt

∂L̃
∂θ̇a

− ∂L̃
∂θa

= udiss
a . (5)

The assumption SM-5 can be replaced by similar ones after
introducing a new coordinate chart

(xα, ηa)
4
= (xα, θa + ha(xα)), (6)

where the function h : U → g for an open subset U in S is the
solution of the first order partial differential equation ∂ha

∂xα =(
ρ−1

ρ − 1
σ

)
gacgαc with ha(xe) = 0. Two extra assumptions

are:
SM-5’: The potential V (xα, θa) is of the form V (xα, θa) =

V1(xα)+V2(θa) where V1 has a maximum at (xα) =
(xα

e ) ((SM-5’) is a particular case of (SM-5)).
SM-6: The matrix (gaα(xα

e )) is one-to-one (injective).
In the new coordinates (xα, ηa), V (xα, θa) = V1(xα) +

V2(θa)) becomes V (xα, ηa) = V1(xα) + V2(ya − ha(xα)).
Then, the solution Vε is given by

Vε = −V2(y
a − ha(xα)) + Ṽε(η

a), (7)

where Ṽε(ηa) is an arbitrary function and the total modified
potential energy function is given by

V ′
ε (xα, ηa) = V1(x

α) + Ṽε(η
a), (8)

We express the kinetic energy as follows

K̃ =
1

2
Aαβ ẋαẋβ +

1

2
ρgabζ̇

aζ̇b (9)

where ζ̇a = ẏa + (1/ρ)gabgαbẋ
α and Aαβ = gαβ − (1 −

1/σ)gαdg
dagαβ . The controlled energy, Ẽ, is written in new

coordinates as

Ẽ = K̃ + V1(x
α) + Ṽε(η

a). (10)

In the new coordinates (xα, ẋα, ηa, η̇a), the controlled La-
grangians takes the form

L̃ 4
=

1

2

(
gαβ −

(
ρ− 1

ρ
− 1

σ

)
gabgαagβb

)
ẋαẋβ +

gαaẋαη̇a +
1

2
ρgabη̇

aη̇b − V1(x
α)− Ṽε(η

a) (11)

and the Euler-Lagrange equations are

d

dt

∂L̃
∂ẋα

− ∂L̃
∂xα

= 0,
d

dt

∂L̃
∂η̇a

− ∂L̃
∂ηa

= udiss
a . (12)

LaSalle’s invariance principle gives the asymptotic stability
of the equilibrium as follows.

Theorem 2.1: (Asymptotic Stabilization-Specific Case [3]):
Assume that conditions (SM-1)-(SM-4), (SM-5’) and (SM-6)
hold. Let (xα

e ) be the maximum point of V1 of interest. Then,
there is an explicit feedback control such that (xα

e , θa
e , 0, 0)

becomes an asymptotically stable equilibrium such that
d

dt
Ẽ = cb

agbdη̇aη̇b ≥ 0 (13)

and the total control law (4) is written as follows

ua = −κ

(
gβa,γ − gδaAδα

(
gαβ,γ − 1

2
gβγ,α−

(1 + κ)gαdgdagβa,γ

))
ẋβ ẋγ + κgδaAδα ∂V

∂xα

+κgδaAδα 1

ρ
gαdgdb

(
−∂V ′

∂θb
+ udiss

b

)

+
ρ− 1

ρ

∂V

∂θa
− 1

ρ

∂Vε

∂θa
+

1

ρ
udiss

a (14)

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 1, 2007                                                                  210



3

where κ
4
= −1/σ, Aαβ

4
= gαβ − (1 + κ)gαdg

dagβa, udiss
a =

cd
agbd

(
ρ−1

ρ − κ
)

gacgαcẋ
α with cd

a a positive definite matrix
and parameters to satisfy the following three conditions: (1)
Vε(ηa) should have a maximum at ηa

e = θa
e ; (2) ρ < 0; (3)

κ > max
{
λ| det(gαβ − λgαagabgbβ)|xα=xα

e
= 0

}− 1.

III. MODELLING

With reference to Figure 1, we consider the spherical in-
verted pendulum be a slender rigid body sliding on a horizontal
plane (see [15]), which is more realistic than that in [3].
The configuration space is denoted by Q = S × G with
Cartesian coordinates (x, y) ∈ G the local coordinates for
translational coordinates and Cartesian coordinates (X, Y ) ∈
S the projections of the center of mass in the horizontal plane.
(Fx, Fy) denotes a planar control signal acting on the base of
the pendulum in the horizontal plane. Thus, q = (x, y,X, Y ) ∈
Q is the vector of the generalized coordinates. The kinetic
energy is given by

T = 1
2
gij q̇

iq̇j ,

where gij =




m 0 m 0
0 m 0 m

m 0 4m
3

L2−Y 2

L2−X2−Y 2
4m
3

XY
L2−X2−Y 2

0 m 4m
3

XY
L2−X2−Y 2

4m
3

L2−X2

L2−X2−Y 2


 is the

metric tensor. The total potential energy is given by 1

V
4
= mg(

√
L2 −X2 − Y 2 − L). (15)

We define the Lagrangians of the pendulum L : TQ 7→ Q

L = K(ẋ, ẏ, X, Y, Ẋ, Ẏ )− V (X, Y ), (16)

which is independent of (x, y), the cyclic variables.
Then, applying Euler-Lagrange equations (2) to (16) gives

the equations of dynamics, xα with index α going from X to
Y , θa with index a going from x to y and ua with index α

going from x to y, that is, (ux, uy)
4
= (Fx, Fy).

IV. CONTROL DESIGN

First, we apply Theorem 2.1 to the spherical inverted
pendulum to obtain a control law. Then, we estimate the
stability region of the closed loop system.

Checking matching conditions: As we can seen from the
kinetic energy T = 1

2gij q̇
iq̇j in (15), we read the sub-matrices

of the metric tensor gij as follows gab =
(

m 0
0 m

)
, gαa =

gaβ =
(

m 0
0 m

)
, gαβ =

(
4m
3

L2−Y 2

L2−X2−Y 2
4m
3

XY
L2−X2−Y 2

4m
3

XY
L2−X2−Y 2

4m
3

L2−X2

L2−X2−Y 2

)
.

So, we can define the controlled Lagrangians as (3). All
matching conditions (SM-1)-(SM-4), (SM-5’) and (SM-6) in
Theorem 2.1 are satisfied:
(SM-1) is satisfied if we define σab

4
= σgab = σmδab where

σ is constant and δab is the Kronecker δij =
{

0 i 6= j
1 i = j

.

(SM-2) is satisfied because gab is constant matrix, which is
independent of (X,Y ).
(SM-3) is satisfied if we define τ b

α
4
= −(1/σ)gabgαa such that

1Noting that we do not use the same potential energy as [3] and the potential
energy in our formulation is non-positive in order to make the closed loop
energy function a Lyapunov candidate.

τx
X = τy

Y = −(1/σ), τx
Y = τy

X = 0.
(SM-4) is satisfied because gXx,Y = ∂m

∂Y = 0, gY x,X = ∂0
∂X =

0, gXy,Y = ∂0
∂Y = 0 and gY y,X = ∂m

∂X = 0.
(SM-5’) is satisfied because V = V1(xα) + 0 =
mg(

√
L2 −X2 − Y 2 − L) and V1 has a maximum at the

equilibrium (X, Y ) = (0, 0).
(SM-6) is satisfied since the mapping gαa(xα

e ) =(
m 0
0 m

)

(X,Y )=(0,0)

evaluated at the equilibrium is injective.

Modifying the potential energy: To modify the potential
energy, we introduce the new coordinate chart. The solu-
tions of the partial differential equations ∂hx

∂X = ρ−1
ρ − 1

σ ,
∂hx

∂Y = 0, ∂hy

∂Y = ρ−1
ρ − 1

σ and ∂hy

∂X = 0 with boundary
conditions hx|(X,Y )=(0,0) = 0 and hy|(X,Y )=(0,0) = 0 in this
case are simple to obtain, which are hx =

(
ρ−1

ρ − 1
σ

)
X ,

hy =
(

ρ−1
ρ − 1

σ

)
Y . We define the new coordinate chart

(ηa, xα) = (ηx, ηy, X, Y ) according to (6), where ηx =
x +

(
ρ−1

ρ − 1
σ

)
X , ηy = y +

(
ρ−1

ρ − 1
σ

)
Y.

Next, we define the potential V ′
ε for the controlled La-

grangians. To this end, we define a negative definite function
as Ṽε(ηa)

4
= −εmg

(
(ηx)2 + (ηy)2

)
which has a maximum at

the equilibrium (ηx, ηy) = (0, 0) when ε > 0. As shown in
(8), the potential V ′

ε for the controlled Lagrangians in the new
coordinates is given by

V ′
ε
4
= mg(

√
L2 −X2 − Y 2 − L)

−εmg
(
(ηx)2 + (ηy)2

)
. (17)

Computing a control law: Applying the general formula (14)
provides an explicit stabilising control law

ux
4
= F̃x(q, q̇, κ, ρ, ε), uy

4
= F̃y(q, q̇, κ, ρ, ε) (18)

which is given in next page and where κ, ρ and ε are
determined by applying Theorem 2.1. We choose ε > 0 such
that the appended potential energy function Ṽε is negative
definite. We also check that the following conditions are
satisfied.
(1) Ṽε(ya) has a maximum at the equilibrium (θa

e ) =
(xe, ye) = (0, 0) because the equilibrium (xα

e ) ∈ Q/G, i.e.,
(X, Y ) = (0, 0), are the maximum point of V1 according to
(SM-5’) and the constructed function Ṽε(ya) have a maximum
at the equilibrium (ya

e ) = (0, 0).
(2) We assign ρ to be a negative real number.
(3) We assign a positive real number for κ that satisfies
κ > 1/3. Consequently, we have κ > 1/3, ρ < 0 and ε > 0.

Next, we show that a non-local (but not global) domain of
attraction is yielded by the closed loop system. The function
h : U → R is valid for U = {(X,Y ) ∈ R2|√X2 + Y 2 < L}
which corresponds to the upper space as the case that the
pendulum is above the horizontal plane. We use R2 × U ⊂
Q as a domain of a local chart on Q and the new local
chart on TQ is given as: (x, y, X, Y, ẋ, ẏ, Ẋ, Ẏ ) ∈ (R2 ×
U) × R4. Likewise, for the new local chart (xα, ηa) on
R2 × U ⊂ Q, its corresponding local chart on TQ is given
as: (x, y,X, Y, ẋ, ẏ, Ẋ, Ẏ ) 7→ (ηx, ηy, X, Y, η̇x, η̇y, Ẋ, Ẏ ) ∈
(R2×U)×R4. By (10), the energy function in the new chart
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Explicit formula for (18) and κρ
4
= ρ−1

ρ
+ κ.

ux =
mκ

L2(1− 3κ) + 3(X2 + Y 2)(1 + κ)

(
−3gX

√
L2 −X2 − Y 2 − 4(Y 2 − L2)XẊ2 + 4(X2 − L2)XẎ 2 − 8X2Y ẊẎ

L2 −X2 − Y 2

+3

(
L2 −X2

ρ
+

3Y 2(1 + κ)

ρ(1− 3κ)

) (
2εg (x + κρX) + cx

x

(
ẋ + κρẊ

)
+ cy

x

(
ẏ + κρẎ

))
+

12XY

ρ(1− 3κ)
×

(
2εg (y + κρY ) + cx

y

(
ẋ + κρẊ

)
+ cy

y

(
ẏ + κρẎ

)))
+

m

ρ

(
2εg (x + κρX) + cx

x

(
ẋ + κρẊ

)
+ cy

x

(
ẏ + κρẎ

))
.

uy =
mκ

L2(1− 3κ) + 3(Y 2 + X2)(1 + κ)

(
−3gY

√
L2 − Y 2 −X2 − 4(X2 − L2)Y Ẏ 2 + 4(Y 2 − L2)Y Ẋ2 − 8Y 2XẎ Ẋ

L2 − Y 2 −X2

+3

(
L2 − Y 2

ρ
+

3X2(1 + κ)

ρ(1− 3κ)

) (
2εg (y + κρY ) + cy

y

(
ẏ + κρẎ

)
+ cx

y

(
ẋ + κρẊ

))
+

12Y X

ρ(1− 3κ)
×

(
2εg (x + κρX) + cy

x

(
ẏ + κρẎ

)
+ cx

x

(
ẋ + κρẊ

)))
+

m

ρ

(
2εg (y + κρY ) + cy

y

(
ẏ + κρẎ

)
+ cx

y

(
ẋ + κρẊ

))
.

is written as

Ẽ =
1

2

(
Ẋ

Ẏ

)T

Aαβ

(
Ẋ

Ẏ

)
+ (19)

1

2
mρ

(
(η̇x)2 + (η̇y)2

)− εmg
(
(ηx)2 + (ηy)2

)

−mg(L−
√

L2 −X2 − Y 2).

where Aαβ =
(

α1 −m(1 + κ) α2

α2 α3 −m(1 + κ)

)
with

α1 = 4m
3

L2−Y 2

L2−X2−Y 2 , α2 = 4m
3

XY
L2−X2−Y 2 and

α3 = 4m
3

L2−X2

L2−X2−Y 2 . Theorem 2.1 implies the following
result.

Corollary 4.1: Suppose that all conditions in Theorem 2.1
are satisfied. For any compact subset Ũ ∈ U , there exists a
κ∗ > 1/3 such that for κ > κ∗, the controlled energy (19)
is negative definite and the corresponding Lyapunov function
V = −Ẽ is positive definite for all states

(ηx, ηy, X, Y, η̇x, η̇y, Ẋ, Ẏ ) ∈ (R2 × Ũ)× R4.

Furthermore, let the set Ωc = {(xα, ηa, ẋα, η̇a) ∈ TQ|V ≤
c} ⊂ (R2× Ũ)×R4 be a positively invariant set for some c ∈
R. Let the set E = {(xα, ηa, ẋα, η̇a) ∈ Ωc|η̇a = 0 or d

dt Ẽ =
0} and M is the largest invariant subset of E . Then, Ωc is an
estimate of domain of attraction and M = (xa

e , ẋa
e , ηα

e , η̇α
e ) =

(0, 0, 0, 0).
Proof: Our argument is based on the result for the general
case in [3] where the LaSalle’s invariance principle is used to
establish the stability. The proof is carried out in two steps: at
step one, we find κ∗ such that for κ > κ∗, the energy function
is negative definite; at step two, we show that the set Ωc is an
estimate of domain of attraction.

At the first stage, we try to make the energy (19) negative
definite and zero at zero.

We check that:
(1) −mg(L − √L2 −X2 − Y 2) ≤ 0 for (X, Y ) ∈ U where
the equality holds if and only if X = Y = 0;
(2) −εmg

(
(ηx)2 + (ηy)2

) ≤ 0 for (ηx, ηy) ∈ R2 where the
equality holds if and only if ηx = ηy = 0;
(3) 1

2mρ
(
(η̇x)2 + (η̇y)2

) ≤ 0 where the equality holds if and
only if η̇x = η̇y = 0.

To make the energy function (19) negative definite, Aαβ

must be negative definite, that is, α1 − m(1 + κ) < 0 and

(α1 −m(1 + κ))(α3 −m(1 + κ))− α2
2 < 0 are satisfied. To

this end, we let κ satisfy

κ >
1

3
, κ >

‖α1‖∞
m

− 1

κ > 2m
(‖α1‖∞ + ‖α3‖∞ +

(‖α1‖2∞ + 4‖α2‖2∞+

‖α1‖∞‖α3‖∞ + ‖α3‖2∞
)1/2

)
− 1 (20)

simultaneously where we introduce infinity norm ‖ · ‖∞ such
that αi ≤ ‖αi‖∞, i = 1, 2, 3 for all (X, Y ) ∈ Ũ ⊂ U . We
define κ∗ = infκ∈R+{κ satisfies (20)}.

For κ > κ∗, the controlled energy (19) is negative definite
with a maximum at (0, 0, 0, 0, 0, 0, 0, 0) ∈ (Ũ × R2) × R4.
We conclude that the corresponding Lyapunov function V is
positive definite at a domain (R2 × Ũ) × R4. Seeing from
(20), we conclude that as κ∗ →∞ implies ‖αi‖∞ →∞ and√

X2 + Y 2 → L, the set Ũ expands to U .
At the second stage, we show that Ωc is an estimate of

domain of attraction by applying LaSalle’s invariance princi-
ple. Here, we relax the conditions in [3] for general cases.
Specifically, we do not shrink Ωc as the domain of attraction.

In the last step, V is positive definite in a domain R2 ×
Ũ ×R4. By Theorem 2.1, the time derivative of the Lyapunov
function satisfy dV̇

dt ≤ 0. So, Ωc is a positively invari-
ant set such that (xα(0), ηa(0), ẋα(0), η̇a)(0) ∈ Ωc implies
(xα(t), ηa(t), ẋα(t), η̇a(t)) ∈ Ωc for t ≥ 0.

The set E is a subset of Ωc where dV
dt = 0. As M

is the largest invariant subset of E , we suppose z(t) =
(xα(t), ηa(t), ẋα(t), η̇a(t)) ∈ M for all t ≥ 0 and then,
in M, we have ηa(t) = ηa(0) = ηa

e = 0, η̇a(t) = 0,
gacgαcẋ

α = 0 (i.e., ẋα = 0) for all t ≥ 0, where we use
some results: equations (40) and (43) in [3, page 1563]. So, we
have z(t) = (xα(t), 0, 0, 0) ∈ M for all t ≥ 0. Substituting
these conditions into Euler-Lagrange equations (12) for xα

variables, we know that z(t) = (xα(t), ηa
e (t), 0, 0) ∈ M

complies with the following equation (the general form is
given by equation (45) in [3, page 1563]):

(
Ẍ

Ÿ

)
=




3gX
√

L2−X2−Y 2

4L2

3gY
√

L2−X2−Y 2

4L2


 . (21)

In [3], the authors shrink Ωc to study the linearized dy-
namics of the general form which includes (21) to conclude
a general stability result. Here, we directly investigate the
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nonlinear dynamics (21). Since 3g
√

L2−X2−Y 2

4L2 > 0 in U ,
there is only one equilibrium (xα, ẋα) = (Xe, Ye, Ẋe, Ẏe) =
(0, 0, 0, 0) of the dynamics (21) such that any trajectory
(X(t), Y (t), Ẋ(t), Ẏ )(t) starting in U ×R2 will escape from
U × R2 except when the trajectory is the equilibrium. Thus,
we have the invariant equilibrium z(t) = (0, 0, 0, 0) ∈ M.
The above argument implies that the largest invariant set in E
is the origin: M 4

= (xα
e , ẋβ

e , ηa
e , η̇b

e) = (0, 0, 0, 0).
Then, we conclude that any states starting in Ωc approach

an invariant set M which contains only the origin as t →∞.
ut

V. COMPUTER SIMULATION

To ease the visualization of the projections: X and Y , we
give the total projection of the pendulum in the horizontal
plane, that is, 2r = 2

√
X2 + Y 2. Let the pendulum length

be 2L = 0.6 (m), mass m = 0.35 (kg) and the gravitational
acceleration g = 9.8 (N/s2). The dimension of all forces: both
control inputs and disturbnaces are Newton (i.e., N ). These
imply appropriate dimensions for other parameters which are
omitted for brevity.

By trials and errors, we start with all absolute values of
parameters, 1 and then change those values with increasing
some values or decreasing some values and finally select the
design parameters as κ = 100, ρ = −0.02, ε = 1× 10−4, and
cx
x = cy

y = 0.01, cy
x = cx

y = 0.
Remark 1: Admittedly, one has the freedom to tune the

parameters in the control function (18) such as κ, ρ, ε, cx
x, cy

y ,
cy
x and cx

y . The design process is, however, not systematic and
the tuning rules are lacking to optimize the design parameters.
Many of our choices lead to oscillatory trajectories. For
example, with an increase in ε = 1 × 10−3 and other design
parameters as before, the trajectory oscillates heavily before
converging to the origin (see Figure 2).

Case 1: Let the exogenous disturbance and unmodelled
dynamics be zero. Figure 3 shows the simulation result with
the initial values

(x, ẋ, y, ẏ, X, Ẋ, Y, Ẏ ) = (20, 2,−20, 2, 0.1, 0.1,−0.1, 0.1).

which indicates a large domain of attraction.
Analytically, there exists a compact set Ωc ⊂ U , the domain

of attraction for the given parameters. However, it is unclear
how the domain of attraction increases with those design pa-
rameters. Here, we approximately estimate some projections of
the domain of attraction associated with the nominal controlled
system based on the (quantitative) simulation study. To reduce
the complexity of analysis, let (ẋ(0), ẏ(0), Ẋ(0), Ẏ (0)) =
(0, 0, 0, 0) be initial conditions for the rates. Figure 4 shows the
projections in two scenarios: first, let (x(0), y(0)) = 0 and all
initial angles inside the outer layer converge to the origin and
diverge outside the outer layer; second, let

√
x(0)2 + y(0)2 =

570(m) (this implies many cases for (x(0), y(0))) and only
initial angles inside the inner layer, a very small neighborhood
about the origin, converge to the origin. Therefore, the method
of controlled Lagrangain yields some bounded (non-local)
domain of attraction.
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Fig. 2. The oscillatory trajectory results from inappropriate design parameters

Case 2: Introduce an exogenous input to the system (2)
such that its right hand side becomes (−CXẊ, −CY Ẏ , ux−
Cxẋ, uy−Cy ẏ), where Cx = Cy = 10−4 (N ·s/m) and CX =
CY = 5×10−4 (N ·s/m). Figure 5 shows the simulation result
with the initial values

(x, ẋ, y, ẏ, X, Ẋ, Y, Ẏ ) = (2, 0, 2, 0, 0, 0, 0, 0),

where the pendulum falls over eventually. The controlled
Lagrangian design yields poor robustness for this set of design
parameters.

However, our claims in the domain of attraction and the
robustness are based on a simulation study and should be
interpreted tentatively since we have not explored all degrees
of freedom in the simulations. A better alternative would be
to analytically analyze robustness but the the best of our
knowledge this problem remains open in the literature.

Remark 2: Controlled Lagrangians and controlled Hamilto-
nians solve the matching conditions for an open loop system
without physical damping. It has been shown that physical
damping can affect stability in the closed loop because when-
ever the kinetic energy is modified, physical damping terms
do not always enter as dissipation with respect to the closed
energy function [20], [21].

Remark 3: The approach is also summarized in [22] which
is tentatively compared with other approaches [11], [15], [17]
based on computer simulation.

VI. CONCLUSION

Motivated by the physical insight from those energy or
passivity based control tools, an explicit controller using the
idea of controlled Lagrangians [3] is computed to stabilize
the spherical inverted pendulum in full state space. The
associated closed loop yields a non-local stability region based
on LaSalle’s invariance principle. This is verified through
computer simulation. However, due to the lack of tuning rules
and tools like control Lyapunov functions, robustness is an
open issue and further research on the general energy ideas is
required.
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Fig. 3. Simulation results in Case 1
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