
 

 

  
Abstract— An electrostatic plasma model of a one 

dimensional fluid system was studied for smooth and shock wave 
solutions with only the conservation of mass and continuity 
equations (2 fluid system). In this study the plasma system is 
extended to include the energy equations (3 fluid system). A 
modified Riemann solver free semi-discrete scheme (SD3-
Kurganov-Levy scheme) was modified to include general source 
terms, limiters and boundary conditions for the 3-fluid plasma 
system. For  simple initial density perturbations and shocks of 
the electrons and ions, we illustrate how the method captures the 
formation and evolution of solitons and shockwaves. The SD3 
scheme exhibited stable numerical smooth and shock solutions of 
the electron and ion subsystems with no oscillations. The electron 
and ion sub-solutions exhibited different time scales with the 
electron waves travelling faster than the ion waves.   
 

Keywords—hyperbolic,plasma,semi-
discrete,shocks,solitons.  

I. INTRODUCTION 

Theory, experiments and simulations [3] show that solitons 
and shocks occur both in the laboratory and space. Previously 
we simulated solitons using NNT (modified fully discrete 
Nessyahu and Tadmor ) and SD3 (modified semi-discrete 
Kurganov Levy) schemes to numerically integrate a plasma 
two fluid hyperbolic system [7].The plasma system is now 
extended to include the energy equation for electron and ions 
which is now called plasma three fluid system. However 
another thrust to the study is to examine the impact of the 
extension of the plasma system to include the energy 
equations in terms of smooth and shock wave solutions. The 
SD3 scheme which is Riemann solver free third order scheme 
is nonstaggered was used in [1,8]. One advantage is that it can 
be applied on non-staggered grids and thus ease the 
implementation of boundary conditions. We have adapted the 
SD3 scheme so that it can be applied to systems with stiff 
source and flux terms. The concept of the limiter in a fully 
discrete NNT scheme was blended into the SD3 scheme. 
 

II. THE NUMERICAL SCHEME 
 
The system of equation can be written in conservative form. 
The conservation form of these equations in Cartesian space 
variable is  
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,U  is the field variable, F  is the flux variable and G  is the 
source term with the x -space and t  the time coordinate.   
The SD3 scheme due to Kurganov and Tadmor [1] is applied 
to (1) as outlined in [8]. In applying this method we employ 
uniform spatial and temporal grids with spacing,  
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nn ttt −=Δ +1 (with j  and n  being suitable integer indices) 

together with the semi-discrete scheme (“SD3”) [8], 
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The construction of this scheme is described in detail in [1] 
and [8].We note in particular that the solution is updated by 
fitting on already computed or known cell average values 

{ }n
jU  at time level n , piecewise polynomials of degree two 

on cells of size xΔ  central at jx namely 
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Where the constants are ( ).........jA are specified later. 
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where the forms (4) are respectively the left and right 
intermediate values at 

2
1

+j
x    and (.)ρ denotes the spectral 

radii of the respective flux Jacobian, defining the 
maximum local propagation speeds n

j
a

2
1

±
. 

This scheme has been tested on problems involving 
shock propagation in various gas fluids [8] and is 
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known to give accurate results. Here we are interested in 
applying the SD3 scheme (2), together with a modification 
detailed below.  
 

III. IMPLEMENTATION DETAILS OF THE NUMERICAL 
SCHEME 

  
The SD3 scheme is explicit in time. Thus the implementation 
of it follows closely the prescription given in [1] and [8] 
where in particular we use for the non-oscillatory piece-wise 
polynomial (3) the “CWENO” reconstruction [3] in which 
form (3) is determined by 
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The constants RCL WWW ,,  and are calculated as in [1] and 
involve heuristic factors which have a bearing on the 
sharpness of the slopes near discontinuities. 
In addition, it is required to compute at every time step the 
spectral radii of the Jacobian of the flux terms, which we 
obtained exactly for the case to follow. 
In some cases (at or near discontinuities) we shall find that 
solutions can be improved, by employing the so called non-
linear limiters, in the calculation of the derivative terms. Thus 
we employ the min-mod limiter function  (.)MM given by 
[6,7] 
 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∀<

∀>

=

otherwise

sifs

sifs

ssMM jjj

jjj

 ,0

 0  }max{

 0  }min{

,..),( 21             

                      (8) 
Then using (8) in (6) we obtain the improved form, 
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IV. THE EXTENDED PLASMA FLUID EQUATONS 
 

 The one-dimensional Poisson equations for an unmagnetized 
electrostatic system consist of electrons and ions taken as ideal 
fluids and together with the ideal gas law. 
We set up the system of plasma equations taking into account 
conservation of mass, continuity and energy. The system can 
be written as   

),()(),( φUG
x
UUA

t
txU

=
∂
∂

+
∂

∂
 and       (10) 

),()(),( φUG
x
UF

t
txU

=
∂

∂
+

∂
∂

               (11) 

In the above , 
TuuuuuuU ],,,,,[ 654321=    is the 6-

vector of conserved quantities (densities, momentum and 
energies), )(UF   is the flux vector function with )(UA  its 
Jacobian and ),( φUG  the vector function of the RHS.  
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The index k=e(i) denotes electrons (ions) respectively and 

kmkykpkvkn ,,,, EkEkq ,,  are the respective 
component densities, flow velocities, partial pressures, 
adiabatic indices (=1 for electrons and =3 ions),particle 
masses,charges, Energy, Electric field and φ  is the electric 

potential.The 
i

e
m m

m
R =  is the electron to ion mass ratio. The 

electric field (E) and potential field (φ ) is calculated using the 
Poisson’s  equations is given by 
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To write the Jacobian of the plasma system as electron and ion 
submatrices we write the systems as:  
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Due to the Relative mass ratio mR  the electron subsystem 
can be described as being a stiff system. The ion subsystem is 
a nonstiff system.  
 
The Jacobian matrix is given by  
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 where eevnm =1  and  iivnm =2  and 
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The eigenvalues  for the electron subsystem are: 
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The eigenvalues for the ion subsystem are:  
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The electron subsystem will have real eigenvalues providing 
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Similarly the ion subsystem will have real eigenvalues 
providing   

22222 22 ρρ EmE <<−                (25) 
The negative values in (24) and (25) are significant in that 
momentum of the electrons and ions can be negative. There 
are six real and unequal eigenvalues associated with the 
plasma system providing that (24) and (25) are satisfied. In 
equation (4) we use the above eigenvalues as characteristic 
speeds.The system is hyperbolic if the above condition is 
satisfied. Furthermore the electron and ion subsystems are 
Euler. The system will be expected to exhibit a contact 
discontinuity and shock discontinuities as in a Riemann gas 
situation described in [5]. 
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V. GRID AND COMPUTATIONAL SPECIFICATION 
 
The coupled 3-fluid-Poisson equations are solved as a system. 
For the numerical integration we employ a system length 

,256 dexL λ= with the number of grid points per Debye 

length 10=pxN , giving 1.0=Δx , 02.0=mR  and 

001.0=Δt . This choice satisfies the CFL condition [4] for 
linear stability given in terms of the spectral radius mΛ   of 

the Jacobian ( )UA , 1≤
Δ
Δ

Λ
x
t

m  where mΛ  is taken from 

eigenvalues of (22) and (23). In our application, we illustrate 
how solitons can be generated from an initial Gaussian density 
perturbation of the form 
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where cx  is the system centre and xL  is its length. The initial 
velocities of the ions and electrons are set to zero for all x and 
reflective boundary conditions are employed [2]. 
The initial conditions for both the electron and ion subsystems 
shock waves are: 
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The Rim 3 initial conditions satisfies (24) and (25) above.  
 
To determine CPU times (s) for the SD3 and SD3 with limiter 
computational time the solitons were computed for 20000 
time units. The results are indicated in the table below.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

VI. DISCUSSION 
Using the initial conditions for the SD3 scheme as above and 
using equations (5-9) in the CWENO reconstruction in the 
SD3 we allowed the system to evolve from the initial 
equilibrium state, with a Gaussian density profile as given 

above. In figures 1 and 2 the SD3 scheme with limiter shows 
stability over a long time period. The non physical oscillations 
have been considerably reduced in the SD3 limiter scheme as 
compared to previous studies [7]. These results agree in the 
physics with previous simulations and no dissipation over 
long integration times 
In the figure 1 below we observe the situation when some 
4000 time steps have been reached. Two effects that are 
noticeable are that there is no significant dissipation in the 
soliton structures. In previous studies inherent dissipation was 
noted in [6] of such schemes, an effect which manifests when 

( )2~ xt ΔΔ  as is the case here. It is thus expected that the 
SD3 scheme with limiter will be of great advantage in the 
numerical investigation of other non-linear 3-fluid plasma 
structures. An interesting observation in Fig 1 is that a density 
hump of the electron wave remains stationary at the center 
whilst the ion wave density at the center remains constant. 
This phenomenon was not observed in the plasma two fluid 
system in [7].   
 
Furthermore in figures 1 and 2 we have demonstrated how the 
modified SD3 scheme maybe used to solve a plasma fluid and 
electrostatic filed equations. The subsystems of electron and 
ion are Euler equations the solutions as depicted in figure 1 
and 2 reveal real non-linear waves. In figures 1 and 2 the 
smooth and shock solutions of the electron evolve faster than 
the ion waves indicating that two different time scales. The 
momentum graphs in figure 1 exhibit negative and positive 
momentum due to conditions (24) and (25). As time 
progresses the amplitudes decreases.In figure 2 the shock 
wave solution exhibit shockwaves and contact shockwaves as 
in the Eulerian gas in [8]. However the ion shockwaves takes 
a longer time to form into shock waves. 
In the Table above the CPU times for SD with limiter scheme 
is 8% larger than SD3 schemes indicated that the SD3 scheme 
with limiter is more expensive. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Scheme Time(s) 
SD3 718.40 
SD3 with 
limiter 

778.81 
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