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Abstract—The paper addresses the problem of dating the most 

recent common ancestor of modern humans based on mitochondrial 
DNA record. The applicability of several existing methods which are 
based on coalescence theory is limited to deterministic trajectories of 
population, despite the fact that it is known to be unrealistic. In the 
paper there are described computer simulations which are capable of 
dealing with different population history scenarios, including 
populations evolving stochastically and with changing in time 
environment. Such novel approach arises from comparison of 
O’Connell’s and Fisher-Wright models. Mitochondrial Eve dating 
considered in the paper is based on the genetic material from 
mitochondrial DNA belonging to contemporary humans and 
Neanderthal fossils. Results indicate that the change of the outgroup 
species from chimpanzee to Neanderthals is an important factor in 
terms of reliability and robustness of interferences. 
 
Keywords—Branching processes, coalescent distributions, 

Mitochondrial Eve dating, stochastic computer simulations.  

I. INTRODUCTION 

THIS is a well known fact that results of analysis of genetic 
variation, including such problems as heterozygosity, 

allele distribution, or linkage disequilibrium, are affected by 
population history. Therefore the estimation of the probable 
long-term demographic history of a population has become 
one of the main problems in statistical genetics, and in the last 
decade, with the advances of new numerical methods used for 
estimation of experimental distributions, a lot of research 
work was focused on inferring human population history from 
genetic diversity data [1, 2]. In this broad trend there are 
included studies performed by the author reported in [3], this 
text being the corrected and extended version of the paper. 
The majority of methods were based on the Wright-Fisher 
(WF) model of genetic drift which assumes multinomial 
sampling between generations and thus asymptotically 
Poisson distribution of the number of progeny for any 
individual. Since the assumptions of this model are not always 
fulfilled in reality, there exists a problem of the influence of 

the departure from WF model on the distribution of the 
coalescence time and further analysis of genetic variation. The 
author tries to solve the problem using time-forward, 
numerical simulations of branching processes and numerically 
approximated distribution of coalescence time for a pair of 
alleles. 

It turns out that the coalescent events, i.e. moments of 
finding in the genealogy the common ancestors of two 
individuals, are dependent on many demographical events 
having the stochastic nature. Therefore, to solve this problem, 
there were performed extensive computer simulations, 
numerically estimating the coalescence distribution of a pair 
of alleles. In these simulations there were considered 
populations evolving accordingly to various stochastic 
trajectories. The paper presents how to estimate the time to the 
most recent female common ancestor (MRFCA) of modern 
humans, called Mitochondrial Eve (mtEve), by comparison of 
coalescence time distributions in WF models and in the 
O’Connell (OC) model ([4] corrected in [5]). The genetic 
material from hyper variable region I (HVRI) and hy-per 
variable region II (HVRII) of mitochondrial DNA (mtDNA) 
of H. sapiens and H. neanderthalensis fossils was applied to 
these models. 

To address the problem, there was performed simulation of 
over 105 human population histories evolving for 104 
generations. Assuming the human generation length to be 
approximately 20 years, each simulation history corresponds 
to 200,000 years, comparable to time elapsed from mtEve 
epoch. Simulations of so many trajectories modeling such 
long periods in an unbiased way excluded the use of built-in 
pseudo-random number generator. The reason for that is either 
too short range of generator aperiodicity or failing some 
statistical tests based on overlapping pairs sparse occupancy 
(OPSO) [6]. Therefore there was implemented an advanced 
random number generator being the composition of two other 
generators. The first was Fibbonacci random number 
generator with period 2120 and the second was a generator with 
period 224-1, as described in [7]. The resulting advanced 
generator had the desirable aperiodicity length 2144, moreover, 
it satisfied known statistical tests. The estimates obtained in 
the study based on mitochondrial genetic data reported in [8] 
are very similar to those obtained lately by other researchers 
with the use of phylogenetic trees, which increases reliability 
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of both estimates obtained by conceptually different methods.  

II. PROBLEM FORMULATION AND METHODOLOGY 

A. Estimation of the Expected Coalescence Time 
This section presents briefly models for calculating the 

distributions of time to coalescence of a pair of alleles. In WF 
models there is used the Bobrowski coalescence distribution 
[9], whereas the analytical asymptotic coalescence distribution 
for population following a slightly-supercritical branching 
process is based on OC model [4]. Next there are presented 
results of simulations for different population scenarios and 
Kolmogorov-Smirnow test performed for equality of 
distributions. There are also given estimates of mtEve time, 
parameterized by genetic diversity data. Applying genetic data 
from HVRI and HVRII of mtDNA sequences belonging to H. 
sapiens and H. neanderthalensis is postponed until section 4.  

Wright-Fisher Model. Let us consider the population of 
haploid individuals, say mtDNA sequences, which at time 
t ≥ 0 has the size Zt. Since WF model of genetic drift assumes 
the multinomial distribution of the number of offspring, two 
individuals at generation t + 1 are descendants of the single 
member of generation t with probability pt = 1/Zt and with 
probability qt = 1 – pt they are descendants of two different 
members. Thus the distribution of the time to coalescence of 
two randomly drawn alleles has the form [9] 
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where T is the number of generations considered and for the 
sake of mathematical consistency q-1 = 0 and p-1 = 1. 

O’Connell Model. For slightly supercritical time-
homogenous Markov branching process with the expected 
number of offspring E(ξ0) = 1 +α/T + o(1/T) and variance 
Var(ξ0) = σ 2 + O(1/T) the probability Px(Zt > 0)  (Px denotes 
probabilities starting the process with x individuals) is given 
by (see also [4]) 
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From this it follows that [10] 
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where Ta = λT is the equivalent of T expressed in years (λ 
years per generation) and Ex denotes the expected value for 
process starting with x individuals. Observe the surprising fact 
of independence of Ex  with respect to x, explained in [10]. 

Distributions of Coalescence Time. Let us denote by DT 
the time of the death of the most recent common ancestor 
(MRCA) of two alleles under consideration, and by Tc the 
time to coalescence of these two alleles, counted from the 
present moment T backwards into the past. If we assume that 
ancestor’s death time is also the moment of offspring birth, 
then Tc = T – DT. In the case of deterministic trajectory of the 
population we deal with WF models and consider special 
cases of the Bobrowski distribution (1). This distribution is 
presented for piecewise constant and for exponential growth 

population scenarios. In the case of stochastic trajectory the 
O’Connell model and Wright-Fisher model are considered. 
Finally, the comparison of the distributions is presented. 

Constant and piecewise constant population size. The 
assumption about constant population size is unrealistic for a 
long term population trajectory, however, a piecewise 
constant trajectory can approximate an arbitrary complex one. 
This approach was utilized in [2] for inference of the 
population scenario in ML-based, matrix coalescence method, 
and it may help to grasp the range of variation of the expected 
coalescent time E(Tc) for hypothetical population sizes Z. We 
have the following distribution of the time to coalescence of a 
pair of alleles: 
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Hence, the expected time to coalescence is 
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As Z → ∞, i.e. practically for Z > 103 and for T < Z, we 
have 
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and therefore, this time can be approximated by 
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Furthermore, for T/Z → 0, (i.e. practically for T/Z < 10-3) we 
can write 

( ) ( ) ( )
Z

TTT
Z

TT
Z

TT
Z

Tt
Z

TE
T

t

T

t
c 2

111
2

11111 1

1

1

1

−
−=






 −

−+
−

=







−+≈ ∑∑

−

=

−

=

(9) 

or 
                                    .

2
11

Z
T

T
Tc −

−≈





E                              (10) 

Exponential growth. In this scenario, even though in 
calculations there is used a purely exponential trajectory, we 
remember that it should be properly rounded to the nearest 
integer value. The model is unrealistic, mainly due to its 
homogeneity in time. Assumption that Zt+1 = R Zt yields the 
following distribution of coalescence time 

           ( ) ( )
( )

( ) ( ),1                      

   ,1 ..., ,2 ,1 ,1

1

1

2
12

0

∑

∏
−

=

−−−

=

−

=−==

−=



















−==

T

t
cc

t
T

ttt

k
T

k
c

tTPTTP

TtZRZRtTP          (11) 

and therefore, the expected coalescence time is given by 
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where R = (ZT / Z0)1/T
. 
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O’Connell distribution for the branching process. It is 
assumed that slightly supercritical branching process defined 
in O’Connell model approximates the long-term history of 
human population. Given that the population history starts 
from NT = x individuals having descendants at T and 
expressing the time interval [0,T] of a variable t as a unit 
interval [0,1] of variable r = t/T, the distribution of DT  for 
long times T has the form [4, 5, 11] 
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It is worth to notice that O’Connell distribution is 
continuous, however, in order to compare it with discrete 
empirical distributions described below, it is converted to the 
discretized version, counted only at points r corresponding to 
integer values of t = rT. For the sake of terminological 
simplicity, we will refer to this discretized version of 
distribution as to OC distribution in further text. 

Distributions for time-homogeneous branching processes. 
Let us consider Bobrowski distributions (1) assuming that the 
long-term demographic history is approximated by a time-
homogenous branching process with different offspring 
distributions. The offspring distributions and their 
corresponding probability generating functions (pgfs) 
considered are Poisson (P) distribution 
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Distributions for time-inhomogeneous branching processes. 
By inhomogeneity in time there is understood the process 
evolving with variable in time parameters. This is 
generalization of the time-homogeneous scenario in which 
parameters of a process are constant. Time-inhomogeneity is 
introduced to be able to model the history with variable 
environmental influence on the reproduction abilities of the 
population. In particular some extra-genetic inferences about 
the population growth can be incorporated into this approach 
by applying a deterministic function h(t) to change moments 
of the offspring number distribution in time. 

For the considered problem the most relevant moment of 
the distribution is the mean µ of the offspring number 
distribution. In some cases it can be given by µ (t) = h(t), 
however, the goal of the study was to observe the influence of 
environmental stochastic variability on the shape of the 
coalescence time distribution. Therefore, instead of 
deterministic function h(t) the mean µ was changed in time 

according to the formula: µ (t) =  µ 0+ε (t), where µ 0 is 
constant, ε (t) ∼ N (0,σe) and σe indicates the scale of 
environmental variability. In other words Bobrowski 
coalescence distributions (1) are estimated assuming that 
population trajectories follow random environment branching 
processes. It should be noted that in distributions used for 
offspring number calculation, the change of the mean also 
changes their variance. 

B. Comparison of Distributions 
The influence of different population history scenarios on 

the shape of distributions of time to coalescence is presented 
in Fig. 1.  

a)

Cumulative distributions of coalescence time for constant 
populations
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b)

Distributions of time to coalescence for exponential growths
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c)

Distributions of coalescence time for 200,000 years of 
population history
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d)

Distributions of time to coalescence
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Fig. 1. Distributions of time to coalescence for different population 
scenarios: a) cumulative distribution for constant effective population 
size 105, 104 and103; b) distributions for exponential growth from 1 to 
(from right to left) 109, 108, 107, 106, 105, 104 and 103; c) 
distributions for stochastic time homogeneous growths; d) 
distributions for stochastic time-inhomogeneous growths. 

 
The comparison presented as a difference between chosen 

pairs of distribution is shown in Fig. 2. The formal statistical 
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comparisons of distributions of the time to coalescence were 
done with the use of Kolmogorov-Smirnov distributions.  

 

a)

Difference between O'Connell distribution F1 and F- W type 
distribution F2 (Binary Fission offspring number distribution)
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b)

Difference between O'Connell F1 and F-W type F2 distributions 
(Linear fractional with p=0.5 distribution of offspring number)

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 100 200 300 400 500 600 700 800 900 1000

t

F1
(t)-

F2
(t)

 

c)

 D iffe r e n c e  b e tw . O 'C o n n e ll  d is tr ib .  F 1  a n d  F -W  ty p e  d is tr ib .  F 2   
(P o is s o n  o ffs p r in g  d is tr ib .  b a s e d  o n  1 0 0 0 0  s im u la t io n s ) 

-0 .0 0 2 -0 .0 0 1 0 0 .0 0 1 0 .0 0 2 0 .0 0 3 0 .0 0 4 0 .0 0 5 0 .0 0 6 0 .0 0 7 0 .0 0 8 0 .0 0 9 

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

t 

F 1
(t) -
F 2
(t) 

 

d)

Difference between O'Connell distrib. F1 and F-W type distrib. 
F2 (Poisson offspring distrib. based on 100,000 simulations)
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e)

Difference between cumulative distributions for time 
homogeneous and inhomogeneous branching processes 
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f)

Difference between cumulative distributions for time 
homogeneous and time inhomogeneous branching processes
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Fig. 2. Pairwise comparison of coalescence time cumulative 
distributions: a) O’Connell vs. WF type with BF; b) O’Connell vs. 
WF type with LF; c) O’Connell vs. WF type with P based on 104 
simulations; d) O’Connell vs. WF type with P based on 105 
simulations; e) WF type with P time-homogeneous vs. WF type with 
P time-inhomogeneous σe = 0.09×µ; f) WF type with P time-
homogeneous vs. F-W type with P time-inhomogeneous σe = 0.27×µ 

(lower curve) and vs. F-W type with P time-inhomogeneous 
σe = 0.09×µ (upper curve). 
 

The null hypothesis H0 stated that Bobrowski distribution 
PB-P, obtained from n non-extinct simulations of time 
homogenous branching process with Poisson offspring 
distribution was equal to the theoretical O’Connell 
distribution denoted below as PC. The test versus alternative 
hypothesis H1: PB-P ≠ PC for the statistics 

                          
CPB FFnd −= −sup                                     (19) 

was then performed. The obtained value d = 0.235 
compared to critical value 0.35 of one-sample Kolmogorov-
Smirnov distribution at significance level 0.05 indicates that 
there is no reason for rejecting H0 at 0.05 significance level. 
This result is obtained for n = 1929 non-extinct branching 
processes (out of total 105). Similar tests for Bobrowski 
distributions with BF or LF distributions of offspring 
indicated that they are significantly different from OC 
distribution. Note that the expected time to coalescence in the 
case of binary fission offspring distribution is shorter than 
analogous time for OC distribution. The opposite is true for 
linear fractional offspring distribution (with p = 0.5). This is 
the effect of different variances of BF, P and LF distributions. 

Similar tests were conducted for equality of coalescence 
time distributions PH and PINH resulting from time 
homogenous and inhomogenous branching processes 
respectively. However, since comparison of two empirical 
distributions was performed based on numbers of non-extinct 
simulations n1 and n2 respectively, this time the testing 
statistics had to be changed into 
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The inhomogeneity was introduced by random walk of the 
expected number of offspring with σ1e = 0.09×µ and 
σ2e = 3σ1e = 0.27×µ. For the first, smaller standard deviation 
σ1 the null hypothesis H0: PH  = PINH can be rejected at 
significance level 0.05, but not at 0.025, since d = 0.372. For 
larger value of standard deviation σ2e the same null hypothesis 
can be rejected even at significance level 0.001 since 
d = 6.731 and appropriate 0.1% point of the Kolmogorov-
Smirnov distribution is 0.949. So with the increase of 
stochastic environmental variation, the difference between 
resulting coalescence time distribution and analogous 
distribution for constant in time environmental influence is 
also growing. These results contribute to conclusion that 
completely random environmental changes have influence on 
the coalescence time distribution similar to that caused by 
decreased (with respect to Poisson) variance of offspring 
distribution, however spanned over longer time (compare plot 
(a) with plots (e) and (f) in Fig. 2). It is because environmental 
stochasticity, contrary to demographic one, is not eliminated 
by enlarging the size of population. 

III. PARAMETERIZED ESTIMATES OF MITOCHONDRIAL EVE 
The average genetic distance in a sample of n sequences 
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denoted by davg and the genetic divergence rate denoted by δ, 
for n << ZT are related by the formula 
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In WF models E(Tc /T | N0=1) can be numerically obtained 
from simulations and in OC model required parameters α and 
T can be simultaneously estimated from (3) and (22). Table 1 
presents estimates of relative time of coalescence with respect 
to total population history length T. In the next section genetic 
data is incorporated to these parameterized estimates. 

 
Table 1. Estimation of relative time to coalescence of a pair of 

alleles for different population trajectories. Apart from constant 
population size, the history starts with 1 individual and ends with 
number indicated in 5th column. The 1st column defines the 
population scenario. 

 
 

Population  
trajectory  

γ =  
E(Tc /T | N0=1) 

 
σ 

Final  
population 

size 

Equal to 
 O’Connell

distribution?
O’Connell 0.801 0.159 107  –     

WF, P offspring distr. 0.802 0.159 107 Yes 
WF, BF offspring distr  0.735 0.17 0.5×107 No 
WF, LF offspring distr 0.844 0.156 2×107 No 

WF, P, time inh. σe1  0.794 0.17 107 Not sure 
WF, P, time inh. σe2 0.699 0.269 2×107 No 
WF, const. pop. size 1 0 109 No 
WF, const. pop. size 0.995 0.057 106 No 
WF, const. pop. size 0.95 0.174 105 No 
WF, const. pop. size 0.632 0.359 104 No 
WF, const. pop. size 0.1 0.1 103 No 

WF, exp. growth 0.674 0.062 109 No 
WF, exp. growth 0.627 0.07 108 No 
WF, exp. growth 0.565 0.079 107 No 
WF, exp. growth 0.482 0.092 106 No 
WF, exp. growth 0.366 0.1 105 No 
WF, exp. growth 0.216 0.097 104 No 
WF, exp. growth 0.066 0.05 103 No 

 

IV. APPLYING GENETIC DATA TO MODELS: RESULTS 
Until recently, the estimates of the divergence rate could 

only rely on time of separation of human and chimpanzee 
lineages. However, due to relatively long time to that event, 
all estimates were inaccurate, yielding results from 4 to 9 
million years. Therefore estimates of time to mtEve could not 
be accurate, ranging from 200,000 to 300,000 years ago for 
methods based on phylogenetic trees. For other methods, 
including OC method, they were even larger, reaching up to 1 
million years. So, these estimates were not only dependent on 
inaccurate inference about human-chimpanzee divergence 
time. They depended also on the method applied for inferring.  

Fortunately, in 1997 when for the first time the mtDNA 
from H. neanderthalensis dated about 40,000 years ago [12] 
was sequenced [13], the situation changed. Despite the fact 
that only fewer than 400 base pairs were sequenced and hence 
any estimates based on this data were not very reliable, the 

next successful sequencings of Neanderthal mtDNA in 1999 
[8] and 2000 [14, 15] confirmed the accuracy of the first 
experiment and qualitatively changed the situation in 
problems of estimating the last female common ancestor of 
modern humans. At present, divergence rate no longer has to 
be guessed basing only on problematic dating of human-
chimpanzee split. Since it is evident from genetic data [8] that 
H. neanderthalensis did not contribute any detectable mtDNA 
to modern humans, the time of mtEve can be reasonably 
placed after H. sapiens – H. neanderthalensis separation. For 
the sample of almost 700 modern humans the average 
pairwise number of segregating sites in DNA taken from 
HVRI and HVRII was equal to 35.3 ± 2.3 [8]. Since the 
analyzed sequences have the total length equal to 600 
nucleotides, the average genetic distance davgM-N, being the 
parameter in the model studied, is equal to 5.9 %. 

The average number of segregating sites in analyzed 
regions within contemporary human population was 
10.9 ± 5.1 [8], and therefore the average genetic distance 
among contemporary humans davg can be estimated to a value 
1.8 %. The ratio of estimates of davgM-N and davg indicates that 
the average genetic difference between Neanderthals and 
modern humans is about 3 times greater than that counted 
within contemporary humans. Since it is still small enough, it 
is possible to ignore reverse mutations occurring on both 
lineages from the time of their divergence Td some 500,000 
years ago [8]. In the infinite allele model (where no reverse 
mutations are allowed), the parameter called rate of 
divergence δ  can be estimated as equal to davgM-N/Td, and 
therefore its approximate value is 0.06/500,000 = 1.2 × 10-7. 
This estimate is within the confidence interval [5.9 × 10-8, 
1.4 × 10-7] reported in [16]. Using this value of rate of 
divergence, the time to the most recent female ancestor of 
contemporary humans expressed in years is Ta = λT. The 
estimates of this time, assuming  δ = 1.2 × 10-7

 and 
davg = 0.018 for different population histories are presented in 
the Table 2 and in the Table 3 for stochastic and deterministic 
population scenarios, respectively. 

 
Table 2. Estimates of the time to mtEve E(Ta). In models assuming 

stochastic scenarios homogeneous in time, letters P, BF and LF state 
for Poisson, Binary Fission, and Linear Fractional offspring 
distributions, respectively. In stochastic time inhomogeneous growth 
models the Poisson offspring distribution was used with the mean 
(and thus variance) equal to σe1  and σe1 = 3×σe2  respectively. The 
numbers in the bottom row of a table are expressed in thousands of 
years units. 

 
Stochastic growth 
WF time-

homogeneous 
WF time-

inhomogeneous
 

OC 
model P BF LF σe 1 σe 2 
187 187 204 178 189 215 

 
By comparison of the Table 2 with 95 % confidence 

interval [111 × 103, 260 × 103] [8] it can be concluded that all 
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predictions under stochastic models fall into it, even though 
particular coalescence time distributions (see Table 1) are not 
equal to OC distribution according to Kolmogorov-Smirnov 
test. Therefore, the predictions of the WF models are not 
sensitive to actual departures from assumption about 
multinomial sampling, despite their statistically significant 
influence on the coalescence time distributions. 

 
Table 3. Estimates of the time to mtEve E(Ta). In deterministic 

growth scenarios the label PS109 denotes the final population size 
equal to 109 individuals, and identical notation is applied to labels 
PS108 PS107 and PS106. 

 
Deterministic growth 

WF exponential growth  
OC    

model 
PS109 PS1108 PS107 PS106 

187 223 239 266 311 
 

V. DISCUSSION AND CONCLUSIONS 
One of the goals of this paper was to implement time-

forward numerical simulations of a population following 
branching processes and to compute experimental 
distributions of coalescence. The second purpose was to 
compare distributions of the time to coalescence of a pair of 
alleles under various population scenarios. For stochastic 
trajectories the distribution was approximated by more than 
105 simulated trajectories over time period of 2 × 105 years.  
In simulations there was considered environmental influence 
on the number of offspring both constant and randomly 
changing in time. Resulting WF coalescence time distributions 
for different offspring distributions were compared with OC 
coalescence time distribution. 

The Kolmogorov-Smirnov test indicated at significance 
level 0.05 that WF based distributions are equal to OC 
distribution only if the offspring number follows Poisson 
distribution. However, by application of advanced numerical 
methods for computing coalescence distributions it was 
determined that the expected time to coalescence for any 
reasonable departures from these requirements is not very 
sensitive to these departures. This is an important result, since 
it validates WF models also for population histories not 
satisfying all assumptions of the model. Having in mind this 
robustness, considered approach is more general than OC 
model, as it is applicable to calculate coalescence time 
distribution for populations evolving both stochastically and 
with variable in time environmental impacts. 

Finally, presented approach was used to estimate the age of 
mtEve based on the genetic material from contemporary 
humans and Neanderthal fossil. For all stochastic trajectories 
the resulting time falls into 95% confidence interval of the 
estimate based on phylogenetic trees. However, presented 
results, with the average of 193 × 103 years, indicate a 
systematic shift of 30 × 103 years towards the past compared 
to phylogenetic tree based estimates. Since this is not much, 

the study also showed that after changing the outgroup from 
chimpanzee to Neanderthals, stochastic genetic models with 
different assumptions tend to give similar predictions, and 
therefore these predictions are much more reliable as 
compared to estimates obtained before sequencing of the 
hyper variable region II locus in mitochondrial DNA of 
Neanderthal fossils. 

The computer program designed and written by the author 
is applicable for numerical computations of coalescence time 
distributions. Such experimentally obtained distributions were 
used in considered mtEve study, as well as in a paper dealing 
with a problem of estimating the upper limit of possible 
Neanderthal admixture in mtDNA of early H. sapiens [11]. 
The program is available at: the location:  

http://www.stat.rice.edu/~kimmel/software/coalescence. 
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