
 

 

  
Abstract—In this paper, second-order explicit Finite Volume 

(FV) Godunov type scheme is applied for water hammer problems 
and the results are analyzed. The developed one-dimensional model 
is based on Reimann solution of continuity equation coupled with the 
momentum equation which includes convective term. The 
implementation of boundary conditions such as reservoirs, valves, 
and pipe junctions in the Godunov approach is similar to that of the 
method of characteristics (MOC) approach. The model is applied to 
two classic problems (systems consisting of a reservoir, a pipe and a 
valve).  The second-order Godunov scheme is stable for Courant 
number less than or equal to unity. The minimum and maximum of 
the computed pressure waves are computed in close agreement with 
analytical solution and laboratory data. 
 

Keywords—Water-Hammer, Unsteady Pipe Flow, Finite Volume 
Method, Second Order Godunov Type Reiman Solver  

I. INTRODUCTION 

In pressurized pipeline, flow disturbance caused by pump 
shutdowns, or rapid changes in valve setting, trigger a series 
of positive and negative pressure waves large enough to 
rupture pipelines or damage other hydraulic devices. Negative 
pressure waves can also result in cavitation, pitting and 
corrosion. Thus accurate modeling of water hammer events 
(hydraulic transient) is vital for proper design and safe 
operation of pressurized pipeline systems. Water quality 
problems can also arise due to intrusion of contaminants 
through cracks and joints. Water quality can be affected 
following a water hammer event as the biofilm on the pipe is 
sloughed off by large shear stresses created by the transient, 
and particulates may be resuspended by the strong mixing of 
the flow inside a pipe. The design of pipeline systems, and the 
prediction of water quality impacts, requires efficient 
mathematical models capable of accurately solving water 
hammer problems. 

Various numerical approaches have been introduced for 
pipeline transient calculation. They include the method of 
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characteristics (MOC), finite difference (FD), wave plan 
(WP), finite volume (FV), and finite element (FE). Among 
these methods, MOC proved to be the most popular among 
water hammer experts. The MOC approach transforms the 
water hammer partial differential equations into ordinary 
differential equations along characteristic lines. The 
integration of these ordinary differential equations from one 
time step to the next requires that the value of the head and 
flow at the foot of each characteristic line be known. This 
requirement can be met by one of two approaches: (i) use the 
MOC-grid scheme; or (ii) use the fixed-grid MOC scheme and 
employ interpolation in pipe direction, that it is impossible to 
make the Courant number exactly equal to one in all pipes. 
This interpolation artificially modifies the wave celerity and 
introduces artificial damping into the solution. The fixed-grid 
MOC is the most widely accepted procedure for solving the 
water hammer equations and has the attributes of being simple 
to code, efficient, accurate, and provides the analyst with full 
control over the grid selection [1].  

Results of solving the water hammer equations by the 
MacCormack, Lambda, and Gabutti explicit FD schemes 
show that these second-order FD schemes produce better 
results than the first-order MOC. 

Finite element methods (FE) are known for their ability to: 
(i) use unstructured grids (meshes), (ii) provide fast 
convergence and accurate results, and (iii) provide results in 
any point of problem domain. However, the computational 
work load of the FE solvers motivates the research works on 
improvement of numerical solvers. For instance, Jovic used 
the combined method of MOC and FE for water hammer 
modeling in a classical system (a system consisting of a 
reservoir, a pipe, and a valve) [2].  

FV methods are widely used in the solutions of hyperbolic 
systems, such as gas dynamics and shallow water waves. FV 
methods are noted for their ability to: (i) conserve mass and 
momentum, (ii) provide sharp resolution of discontinuities 
without spurious oscillations, and (iii) use unstructured grid 
(mesh). The first order FV method for solution of water 
hammer problems was highly similar to MOC with linear 
space-line interpolation [3]. Application of Godunov scheme 
for the second order FV solution of continuity and momentum 
equations without convective term produced accurate results 
for very low Mach numbers [4].   

The objective of this article is to apply the Godunov type 
for FV solution of transient continuity equation coupled with 
momentum equation without dropping the convective term 
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(which is essential for the cases in which the Mach number is 
not very low) and investigate the accuracy of the developed 
method.  

The article is organized as follows. First, the governing 
equations of water hammer are given. Second, the FV form of 
the governing equations is provided, and then, first- and 
second-order Godunov schemes for the FV fluxes are 
formulated. Third, the time integration of the equations is 
derived. Fourth, the schemes are tested using single pipe 
systems. Finally, the results are summarized in the conclusion 
section.  

II. GOVERNING EQUATIONS 

Unsteady closed conduit flow is often represented by a set 
of 1D hyperbolic partial differential equations [5]: 
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Where, t: time; x:distance along the pipe centerline; H=H(x,t): 
piezometric head; V=V(x,t): instantaneous average fluid 
velocity; g: gravitational acceleration; θ : the pipe slope; J: 
friction force at the pipe wall and a: wave speed defined as, 
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Where, K: bulk modulus of elasticity of the fluid; E: Young’s 
modulus of elasticity for the pipe; ρ : density of the fluid; and 

e: thickness of the pipe. 
The nonlinear convective terms xHV ∂∂ / and xVV ∂∂ /  

are included in Eqs. (1) and (2). These terms, although small 
for the majority of water hammer problems, are not neglected 
in this paper. Maintaining the convective terms in the 
governing equations makes the scheme applicable to a wide 
range of transient flow problems.  
 

III. FINITE VOLUME FORMULATION 

The computational grid involves the discretization of the x 
axis into reaches each of which has a length xΔ  and the t axis 

into intervals each of which has a duration tΔ . Node (i,n) 

denotes the point with coordinate xix Δ−= )]2/1([  and 

tnt Δ= . A quantity with a subscript i and a superscript n 
signifies that this quantity is evaluated at node (i,n).  

 
Fig 1. Finite Volume Stencil 

 
The ith control volume is centered at node i and extends 

from i-1/2 to  i+1/2. That is, the ith control volume is defined 
by the interval [(i-1) xΔ ,i xΔ ]. The boundary between 
control volume i and control volume i+1 has a coordinate 
i xΔ  and is referred to either as a control surface or a cell 
interface. Quantities at a cell interface are identified by 
subscript such as i-1/2 and i+1/2 (Fig.1) . 

The Riemann-based FV solution of Eqs. (1) and (2) in the 
ith control volume entails the following steps: (a) the 
governing equations are rewritten in control volume form; (b) 
the fluxes at a control surface are approximated using the 
exact solution of the Riemann problems; and (c) a time 
integration to advance the solution from n to n+1 [6]. 

Eqs. (1) and (2)  can be rewritten in non-conservative form, 
as, 
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of V to be specified later. Setting 0=V , the scheme reverts 
to the classical water hammer case where the convective terms 
are neglected. 

The mass and momentum equations for control volume i is 
obtained by integration Eq. (4) with respect to x from control 
surface  i-1/2 to control surface  i+1/2. The results is: 
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Eq. (5) is the statement of laws of mass and momentum 

conservation for the ith control volume. Let iU =mean value 

of u in the interval  [i-1/2,i+1/2]. Eq. (5) becomes 
                                                        

∫
+

−

+−

Δ
+

Δ
−

=
2/1

2/1

2/12/1 1 i

i
ii dx

xxdt
d sffU

               (6)  

                    
The fluxes at cell interfaces can be determined from the 

Godunov schemes that requires the exact solution of the 
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Riemann problem. Godunov schemes are conservative, 
explicit, and efficient. The formulation of a Godunov scheme 

for the mass and momentum flux 2/1+if  in Eq. (6) for all i and 

for  ],[ 1+∈ nn ttt requires the exact solution of the following 

Riemann problem: 
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where n
LU = average value of u to the left of interface i+1/2 

at n; and n
RU = average value of u to the right of interface 

i+1/2 at n. The exact solution of Eq. (7) at i+1/2 for all 

internal nodes i and for ],[ 1+∈ nn ttt is as follows: 
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Using Eq. (8), the mass and momentum fluxes at i+1/2 for 

all internal nodes and for ],[ 1+∈ nn ttt are as follows: 
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The evaluation of the right-hand side of Eq. (9) requires 

that 2/1+iA , n
LU , and n

RU  are approximated. To estimate 

2/1+iA , the entry associated with the advective terms, 2/1+iV , 

needs to be approximated. Setting 0=V  is equivalent to 
neglecting the advective terms from the governing equations. 

In general, an arithmetic mean be used to evaluate 2/1+iV . 

The explicit evaluation of Eqs. (8) and (9) requires that n
LU  

and n
RU  are written in terms of known nodal values.  

 

A. First-Order Godunov Scheme  
The first-order Godunov approximation is giving  
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Inserting Eq. (10) into Eq. (9) completes the formulation of 

the first-order Godunov scheme: 
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B. Second-Order Godunov Scheme  
In general, the numerical dissipation in first-order scheme is 

more than in second-order scheme. Limiters increase the order 
of accuracy of a scheme while ensuring that results are free of 
spurious oscillations.  

Using MINMOD limiter, an approximation for n
LU and n

RU  

that is second order in space and time is obtained by 
application of following stages at every time step [4]: 
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At the second stage: 
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Fّinally, the second order scheme is approximated as:  
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Inserting Eq. (18) into Eq. (9) can give Godunov second-

order scheme for the solution of Eq.(4). 

IV. BOUNDARY CONDITIONS 

The implementation of boundary conditions is a important 
step in solving partial differential equations. The boundary 
conditions in this model are: 
 

A. Upstream Head-Constant Reservoir  
 
The flux at an upstream boundary (i.e., i=1/2) can be 

determined from the Riemann solution. The Riemann 
invariant associated with the negative characteristic line is: 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 1, 2007 352



 

 

                                                           

nn V
g
aHV

g
aH 112/12/1 −=−                           (19)  

                                            
Coupling this Riemann invariant with a head-flow 

boundary relation determines: 
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For an upstream reservoir where res
n HH =2/1 , the flux at 

the upstream boundary is: 
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B. Fully Closed Downstream valve 
The flux at a downstream boundary can be determined from 

the Riemann solution. The Riemann invariant associated with 
the positive characteristic line is: 
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Downstream boundary condition is valve closure in Tc . 

Head-flow boundary relation determines: 
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As a result, the flux at the boundary is determined as 

follows: 
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V. TIME INTEGRATION 

The previous section provided a first- and second-order 
scheme for the flux terms. In order to advance the solution 
from n to n+1, Eq. (6) needs to be integrated with respect to 
time. In the absence of friction, the time integration is exact 
and leads to the following: 
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In the presence of friction, a second order Runge-Kutta 

solution is used and results in the following explicit 
procedure: 
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The time step should satisfy the Courant-friedrichs-Lewy 

(CFL) condition for the convective part   
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Although another stability condition should be used for the 

updating of a source term, it is found that the CFL condition is 
sufficient for the cases where the magnitude of the source 
term is small. 

VI. VELOCITY DEPENDENT FRICTIONS 

In this paper, the wall friction is modeled using the 
following formula [7]: 
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where D: pipe diameter; f : Darcy- Weisbach friction factor, 

and k: unsteady friction factor.  

VII. NUMERICAL RESULTS 

The objective of this section is to compare the accuracy and 
efficiency of FV solver developed using Godunov scheme in 
solving transient continuity and equation of motion for water 
hammer problems. First, the analytical solution and MOC 
results for a frictionless case are used for assessment of the Cr. 
Number on the accuracy of the results. Then, the computed 
results for a case with considerable pipe roughness are 
compared with laboratory measurements. 

 

A. Test Case I 
This test case consists of a simple reservoir-pipe-valve 

configuration. The geometrical and hydraulic parameters for 
this frictionless test case are given in Table 1.  
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Table 1.  Geometrical and hydraulic parameters for test case I 

0.5 Pipe diameter (m) 
1000 Pipe length (m) 
0.00 D.W friction factor 
0.00 Unsteady friction factor 
1000 Wave speed(m/s) 

0 Reservoir head-upstream (m) 
1.02 Initial mean velocity(m/s) 

Downstream instantaneous 
fully valve closure 

Cause of transients 

 
This problem is solved by previous workers using a 

Godunov scheme for solving the continuity equation and 
momentum equation in which the convective term is omitted 
[4].  

Analytical solution [4] and [8], and MOC results [1] and [9] 
are used to investigate the accuracy of proposed model which 
uses Godunov scheme for FV solution of the continuity 
equation coupled with momentum equation which includes the 
convective term.  

Figure 2 shows the comparison of the results computed by 
present FV method with analytical solutions and results of 
MOC for the variations in hydraulic head at the valve as a 
function of time. As expected, the head traces results by both 
schemes (MOC and FVM) exhibit numerical dissipation for 
Cr=0.1, but the numerical dissipation in FVM is considerably 
less than the MOC. It worth noting that, the finite volume 
solution using Godunov scheme corresponds to the analytical 
solution when Cr=1.0. But for Courant number less than one, 
the minor numerical dissipations appear in the solution results 
(Fig.3). 
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Fig 2. Variations in hydraulic head at the valve (Test I) for 

MOC, FVM and analytical solution  
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Fig 3. Pressure head traces at valve  
(Test I) for various Cr No.(FVM) 

 

B. Test Case II 
In this test case, laboratory data [10] for a sudden closure of 

a valve downstream of a pipe with wall roughness are used to 
investigate the accuracy of the FV scheme. The geometric, 
kinematics, and dynamic parameters of this test are 
summarized in Table 2. 
 

Table 2. Properties for the test case 2 

 
In figure 4 the results of present FV and MOC solvers and 

are compared with laboratory measurements. As can be seen 
in figure 4, although the time period of the pressure waves are 
computed reasonably by both numerical models, the finite 
volume scheme produce much better pressure values 
distribution than the MOC.  

0.022 Pipe diameter (m) 
37.20 Pipe length (m) 
0.034 D.W friction factor 
0.00 Unsteady friction factor 
1319 Wave speed(m/s) 
32.0 Reservoir head-upstream (m) 
0.114 Discharge(Lit/s) 
1000 Density(kg/m3) 
1.02 Viscosity(m2/s) 

Downstream valve closure in 
0.009 seconds 

Cause of transients 
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Fig 4. Variations in hydraulic head at the valve (Test II) for 

MOC and FVM and laboratory data (Cr=0.5) 
 

VIII. CONCLUSION 

In this paper, second-order explicit Godunov-type finite 
volume scheme for coupled solution of transient continuity 
equation and momentum equation (with convective term) is 
formulated and applied for numerical investigations. The 
results of present FV solver are compared with numerical data 
produced by a MOC model, analytical solution (for 
frictionless case) as well as measured data reported by other 
researchers (for rough pipe). The results of present 
investigations are as follows. 
-Inclusion of the nonlinear convective terms to the 
mathematical equations does not disturb the results of solution 
water hammer problems by present model. 
- The maximum and minimum of the pressure waves 
computed by FVM are in close agreements with analytical and 
experimental data. 
- Numerical dissipation in Godunov-type FV method is less 
than MOC, and therefore, the Godunov-type FV solver 
produces  considerably more accurate than the MOC for a 
Courant number less than or equal to one. 

The present Godunov-type FV solver can be used for the 
transient pipe flow problems in which the convection effect is 
not neglegible. 
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