
 

 

  
Abstract—Permanence theory provides a mathematical 

framework for investigating long-term species survival where species 
densities are allowed to vary in any way (e.g. equilibrium, chaos, 
etc.) as long as the densities do not remain too close to the boundary 
(zero density) of the state space. We apply permanence theory to an 
intraguild predation model with nonlinear Holling Type II functional 
responses. Intraguild predation is the simplest example of omnivory--
feeding on more than one trophic level--and consists of three species 
interacting through a unique blend of predation and competition.  Our 
analysis shows that three restrictions must be placed on the model 
parameters in order to guarantee coexistence. The biological 
interpretations resulting from the parameter restrictions are also 
included.   
 

Keywords—Functional Response, Intraguild Predation, 
Omnivory, Permanent Coexistence.  

I. INTRODUCTION 
HE long-term survival of species should be of great 
importance to humans since our survival depends upon 

understanding natural systems. We investigate an intraguild 
predation or IGP model in this work. IGP refers to a top 
predator and an intermediate consumer that compete for a 
resource in a similar way, but also engage in direct predator-
prey interactions [1], [2]. The larger classification of 
omnivory has been well documented throughout the literature 
[1]–[3]. 

An IGP model with linear functional and numerical 
responses was investigated by Vance [4] using permanence 
theory. We will use nonlinear Holling Type II functional 
responses because they are more realistic. This is due to the 
fact that predator rates of consumption become saturated as 
victim densities increase. The search for robust mechanisms 
that can explain permanence of tightly linked omnivory 
systems remains an important challenge [5]. We use a lower 
semicontinuous average Lyapunov function to deal with these 
nonlinear responses.      

II. INTRAGUILD PREDATION MODEL 
Omnivorous interactions can be very complex, so we 

restrict ourselves to the asymmetrical classification of IGP as 
given by [2]. The asymmetric classification refers to the fact 
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that the 

consumer (C) does not feed on the predator (P), but the 
predator feeds on the consumer (see Figure 1). Our nonlinear 
response IGP model is given by the following system of 
differential equations: 
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similar to Křivan and Diehl [5].   

Parameter λij is the search rate of species j for species i, eij 
is the efficiency with which species i is converted to new 
offspring of species j, and hij is the time spent by species j 
handling species i. K is the resource carrying capacity and r is 
the intrinsic rate of increase of the resource. The natural 
mortality rates of the predator and consumer are mp and mc 
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Fig. 1 Asymmetrical intraguild predation. Arrows indicate that one 

species (base of arrow) is eaten by another species (point).  
   

TABLE I 
LIST OF VARIABLES AND PARAMETERS 

Symbol Meaning 

P(t) Predator density at time t 
C(t) Consumer density at time t 
R(t) Resource density at time t 

r Resource intrinsic rate of increase 

K Resource carrying capacity 

ije  Efficiency with which species i is converted to 
new offspring of species j 

ijλ  Search rate of species j for species i 

ijh  Time spent by species j handling species i 
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respectively. See Table I for a list of variables and parameters.   

III. KOLMOGOROV MODELS 
Consider a specific form of differential equations that is 

typically used in modeling the population densities of 
interacting species. The n-species Kolmogorov model has the 
form  

nifx
dt
dx

ii
i ≤≤= 1),(                 x         (2) 

where }{ ix=x . Since we are dealing with species densities, 

we will restrict ourselves to the non-negative cone in nR  
denoted }.1,0:{ nixi ≤≤≥∈=+   x nn RR  Then, the 

bounding hypersurfaces are }.0:{ =∈= + ii xH nRx    
 
Definition 1: A region R is invariant for (2) if 0x R∈  and 

x(t) is the solution to (2) with 0 0( )x xt = , then Rt ∈)(x for 

all .0tt >  
 

Clearly, our IGP model (1) is of Kolmogorov type and the 
bounding hypersurfaces are invariant by a result given by 
Vance [4]. This in turn implies that 0)(),(),( ≥tRtCtP  for 
all 0≥t .   

We will need the following lemma on differential 
inequalities throughout this work. This lemma is similar to 
one given by Birkhoff and Rota [6]. 

 
Lemma 1: Let S be a differentiable function on [a,b]. 
Part A:  If S satisfies the differential inequality 

btatStS ≤≤≤   ),()( λ&            (3) 
where λ > 0 is a constant, then  

.)()( )( btaeaStS at ≤≤≤ −   ,λ           (4) 
Part B:  If S satisfies the differential inequality 

btaMtStS ≤≤≤+   ,)()( 1λ&           (5) 
where M1 > 0 and λ > 0 are constants, then  

.)()( )(11 btaeMaSMtS ta ≤≤⎟
⎠
⎞

⎜
⎝
⎛ −+≤ −   ,λ

λλ
    (6) 

Part C: If S satisfies the differential inequality 
btatSeMMtS t ≤≤+≤   ),()()( 21

λ&             (7) 
where M1 > 0, M2 > 0, and λ > 0 are constants, then 

             .)()(
)()( 2

1 btaeaStS
at eeMatM

≤≤≤
−+−

  ,
λλ

λ         (8) 
 

Proof:  The first result is proved similar to the second result 
except for multiplying both sides of (3) by .te λ−  For the 
second result, we multiply both sides of (5) by  teλ  to get  

1][ MeeSS tt λλλ ≤+& .  

 Rearranging, we get       

 .)(][0 1
1
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dMSSe λλλ
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derivative and so in nonincreasing for a ≤ t ≤ b. Therefore, 
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 For Part C, multiply both sides of (7) by 
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1
at eeMatM

eaStS
λλ

λ
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≤  completing the 
proof. 

IV. SOLUTION TO SYSTEM 
In order to investigate long term species survival, we need to 
show the existence and uniqueness of a solution to our 
differential equation model. To do this we specify some initial 
conditions:   

0)0(  ,0)0(  ,0)0( 321 >=>=>= cRcCcP . 
The differential equation with the initial conditions forms an 
initial value problem: 

cg    , xgg
== )0()(

dt
d

               (9) 

on 3R R  ++ ∩=D  with the understood definitions for g, x, 
and c. Since g and its partial derivatives are all continuous 
with respect to P, C, and R for all positive t, P, C, and R by an 
existence and uniqueness theorem [7] our initial value 
problem (9) has exactly one solution in D. 
 Now we show by means of a theorem that this solution 
exists for all 0≥t . 
 
Theorem 1: The initial value problem (9) has a unique 
solution in 3R+  for all 0≥t . 
 

Proof:  Recall from above that P(t), C(t), R(t) ≥ 0 for all t ≥ 
0.  Then, we have the differential inequality  

)./)(1()()( KtRrtR
dt

tdR
−≤     

However, the initial value problem 
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0)0(),/)(1()()( uuKturtu
dt

tdu
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has the unique solution 
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Then, applying a theorem on differential inequalities [8], we 
have that R(t) ≤ u(t) for 0 ≤ t ≤ ∞. If in addition, we let  

},max{ 0max KuK =  then, max)( Ktu ≤  and we have 

max)( KtR ≤  for  0 ≤ t ≤ ∞.      (10) 

Also, )(
)(1
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If we define maxRe RCRCλ=Γ , then by Lemma 1 Part A   

        )0()0()( −Γ≤ teCtC  

 . 2
tec Γ=           (11) 

This exponential function does not reach infinity in finite 
time.   

Finally,  
( ) ( )( ) ( )

1 ( ) ( )
( ) ( )) ( ).           

RP RP CP CP

RP RP CP CP

RP RP CP CP

e R t e C tdP t P t
dt h R t h C t
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λ λ

λ λ

+
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+ +

≤ +
 

Since max)( KtR ≤  and tectC Γ≤ 2 )( , we have that 

2
( ) ( ) ( ).t

CP CP
dP t e c e P t

dt
λ Γ≤ Γ +     

If we define 2ce CPCPλ=Φ  and
Γ
Φ

=Λ , then by Lemma 1 

Part C 

.)( )1(
1

−Λ+Γ Γ

≤
tetectP       (12) 

This exponential function does not reach infinity in finite 
time.   

So, by a global existence and uniqueness lemma [9] and 
inequalities (10), (11), and (12) a unique solution for the 
initial value problem (9) exists for all 0 ≤ t ≤ ∞. This 
completes the proof.   

V. PERMANENT COEXISTENCE 
In this section we show that our IGP model with nonlinear 

Holling Type II responses is permanently coexistent under 
certain parameter restrictions. Several definitions of 
permanent coexistence or permanence have been used 
throughout the literature [10]–[15]. We use the definition 
given by Hutson [16]. 

 
Definition 2: We say that an orbit of (9) is ultimately in 

3R+⊂M  if and only if there exists T(x) < ∞ such that 

Mt ∈)(x for t ≥ T(x). Also, we use the notation A - B to 
denote set difference for two sets A and B.  
  
 The following definition will also be using in our analysis. 
 
Definition 3: An equilibrium point x  is saturated if 

0≤)(fi x  for all i with .0=ix  
 
Note that every equilibrium point in the interior of the state 
space is saturated. For an equilibrium point on the boundary, 
saturated means that the dynamics do not “call for” the 
missing species [15]. 
 
Definition 4: The system (9) is permanently coexistent if and 
only if there exists a compact set 3R+⊂M  such that orbits 

are ultimately in M for all 3R+∈x . 
 
Our proof on permanent coexistence will be based on the 
following theorem from Hutson [16] which is an extension of 
a result by Hofbauer [17]. 
 

Theorem 2: Let 3R +⊂B  be compact and S a 
compact subset of B. Assume that S and B - S are invariant.  
Suppose that there is a 1C  function +→ RBP : which is 
such that 0)( =xP  if and only if S∈x . Take 

)(/)()( xxx PP&=Ψ  and assume that )(xΨ  is bounded 
below on B - S. Define its lower semi-continuous extension to 
S, still denoted by )(xΨ , by setting  

)()(inflim)(
,

S
SByxy

∈Ψ=Ψ
−∈→

x       yx
 

 

and assume that for  

.0))((sup),(
0

>ΨΩ∈ ∫
≥

dttS
t

x       x
0t

   (13) 

Then there is a compact invariant set M with d(M,S) > 0 
which is such that every orbit generated by (9) with 3R+∈x  
is ultimately in M. That is, the system (9) is permanently 
coexistent.   
 

The function P is known as an Average Lyapunov function 
[16]. Note that (13) holds if 0>Ψ  on )(SΩ . Also, note 
that the function )(xP  should not be confused with the state 
variable P(t). 

We begin our analysis by showing that system (1) has 
uniformly bounded orbits and enters a compact region of 3R+ . 

 
Theorem 3: Provided that RCCPRP eee < , all solutions of the 

system (1) that initiate in 3R +  are uniformly bounded and 
enter a certain region B defined by  

}0:),,{( MRCPRCPB <++<∈= +
3R  
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Proof:  Recall that we have already stated that the 
components of all solutions of the system that initiate in 3R +  
are bounded below by zero. Now, define  

     PCeReetS CPRCCP ++=)( . 
Taking the time derivative along a solution of the system we 
have the following inequality fulfilled for each 0>λ : 
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since RCCPRP eee <  and we choose },min{ PC mm<λ . 
Because the right hand side is a parabola that opens 

downward, it is bounded for all 3R+∈),,( RCP .  

Specifically, the right hand side is bounded by 1M . Thus, we 

find an 1M >0 with 1)()( MtStS ≤+ λ& . Applying Lemma 
1 Part B, we obtain 

teMPCPSMS λ

λλ
−⎟

⎠
⎞

⎜
⎝
⎛ −+≤≤ 11 ))0(),0(),0((0  

and as ∞→t , λ/0 1MPCeRee CPRCCP ≤++≤ . 

Now let 2M  be defined as above, then  

        20 .P C R M≤ + + ≤  

Thus, there is a compact neighborhood 3R+∈B  such that 

for sufficiently large ),,( 321 cccTT = , (P(t),C(t),R(t)) is in 

B for all Tt ≥ , where (P(t),C(t),R(t)) is a solution to (1) that 
initiates in 3R+ . This completes the proof.   

Since we have global existence and uniqueness of a 
solution, 3R+  and the compact set B from Theorem 3 are 

invariant. Now define the set 3R+∂∩= BS .   
  

Lemma 2: The sets S and B - S are invariant.   
 
Proof:  Assume that 0x S∈ and )(tx is a solution of (1) 

with 0 0( )x xt = . Since B and 3R+∂  are invariant, then 

Bt ∈)(x  and 3R+∂∈)(tx  for all 0tt > . Thus, 
3R+∂∩= BS  is invariant.  

Now assume that 0x B S∈ −  and )(tx  is a solution of (1) 

with 0 0( )x xt = . Since S and B are invariant we have global 

existence and uniqueness of solutions, then Bt ∈)(x  and 

St ∉)(x  for all 0tt > . Hence, B - S is invariant, completing 
the proof. 

Now we show that the Ω-limit set of every orbit in 3R+∂  is 
an equilibrium point. The zero equilibrium is unstable due to 
the fact that r and K are positive. Also, it is well known that 
solutions to the logistic equation quickly reach the fixed 
carrying capacity K [18]. However, for the predator-prey 
subsystems, there may be periodic orbits.  

We use a lemma from Hsu [19] which is based on an 
application of the Poincaré-Bendixson Theorem and the Dulac 
Criterion [20] to show that a positive stable equilibrium of a 
predator-prey system is globally stable, thus eliminating the 
possibility of periodic orbits. Consider the predator-prey 
model 

])([

)()(

yxy mxpey
dt
dy

xypxxg
dt
dx

−=

−=
     (14) 

where y represents the predator density and x represents the 
prey density and 

( ) 1

( ) .
1

xy

xg x r
K

x
p x

x
λ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

=
+

 

To investigate global stability, we compute the variational 
matrix evaluated at the positive equilibrium ),( ∗∗ yx ,  

 
( ) '( )( ) '( ) ( ) .

( )
x g x p xH x x g x g x

p x

∗ ∗ ∗
∗ ∗ ∗ ∗

∗= + −  

Then the equilibrium is (locally) asymptotically stable if 
0)( ≤∗xH  [19]. Graphically, this means that if the prey 

isoline 
)(
)(

xp
xxgy =  is decreasing at ∗x , then ),( ∗∗ yx  is 

asymptotically stable. To give conditions under which local 
stability of ),( ∗∗ yx  implies global stability of ),( ∗∗ yx  we 
give the following Lemma without proof from Hsu [19]. 
 
Lemma 3: Assume the equilibrium ),( ∗∗ yx of (14) is stable 

and 
2

2

( ) 0, 0
( )

 d xg x x K
dx p x

⎛ ⎞
< ≤ ≤⎜ ⎟

⎝ ⎠
. Then ),( ∗∗ yx  is 

globally stable.   
 

So we prove the following lemma on the Ω-limit set of 
every orbit in 3R+∂ . 
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Lemma 4: Let the conditions of Lemma 3 hold for the two 
equilibria ),( RC  and ),( RP  of the appropriate 
subsystems of (1), that is  
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respectively, where   

RCCRC hme −=1ξ  

RPPRP hme −=2ξ . 

Then for the system (1), the Ω-limit set of every orbit in 3R+∂  
is an equilibrium point.  
 

Proof:   From the above comments, we see that the Ω-limit 
set of every orbit on each axis is an equilibrium point. Since 
the above conditions hold, each stable equilibrium in the 
bounding hyperplanes is globally stable. That is, the Ω-limit 
set of every orbit in each bounding hyperplane is an 
equilibrium point. This completes the proof.   

Notice that conditions on the curvature are trivially satisfied 
for our system (1) because we assume 0,,, >RPRCKr λλ . 

Now, we use Theorem 2 to determine conditions that 
guarantee permanent coexistence of the system (1). 
 
Theorem 4: Assume that the following conditions hold: 
(H1) The solutions of (1) in 3R+  are uniformly bounded. 

(H2) The Ω-limit set of every orbit on 3R+∂  consists of 
equilibrium points. 

(H3) No boundary equilibrium is saturated. 
Then the system (1) is permanently coexistent.  The 
conditions for no saturated boundary equilibria are:   

1) a, b, b’, c and d hold or         
2) a, b, and d hold, but not b’ or       
3) a, b’, and c hold, but not b        

where 
a) r > 0                      (17) 

b) 0
1
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+ P
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and 

RCCRC hme −=1ξ  

RPPRP hme −=2ξ  

        CPPCP hme −=3ξ  

        RCCPCPCRPRP ehrmh λλυ += . 
 

Proof:  We break the proof up into two parts.  In Part I, we 
find the equilibria of system (1). For Part II, we use Theorem 
2 to show permanence.  

Part I:  From the form of the equations in (1), we see that 

0 (0,0,0)F T=  is a boundary equilibrium point in 3R+  . The 

only possible one species equilibrium is (0,0, )F T
R K= .  

The two species equilibria involve the resource and consumer, 
FRC , and the resource and predator, FRP : 

1
2 2

1 1

( )0, , (0, , )
( )

F
T

TRC RC C C
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RC RC

re K m m C R
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with the understood definitions of , , ,PP C R  and .CR  
The equilibrium with the resource absent is never positive and 
thus does not exist. Notice that boundary equilibrium FRC  

exists in 3R+  if and only if b' holds. This is due to the fact that 

0
1

>−
+ C

RCRC
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Kh

Ke
λ

λ
 

          .1
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RCCRC hm

K
hme >⎟⎟
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⎜⎜
⎝

⎛
+>⇒

λ
 

Similarly, boundary equilibrium FRP  exists in 3R+  if and 
only if b holds. 

Part II:  Let TtRtCtPt ))(),(),(()( =x and  

    .)()( 21321
321 εxxxxxP ppp +=x        (22) 

Clearly, 0)( =xP  for 3R+∂∈x  and 0)( >xP for 

)int( 3R+∈x . Also,  
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in int( )+
3R . 

However, the last term in Ψ  does not admit a continuous 
extension to the 3x -axis. To correct this, we take the lower 
semicontinuous extension and the last term in (23) becomes 

3 1 3 2 3(0,0, ) min( (0,0, ), (0,0, )).x f x f xεΨ =      
By (H2), condition (13) reduces to  

( ) 0xΨ >           (24) 

for all equilibrium points in +∂ 3R  for a suitable choice of 

1 2 30, , , 0.p p pε ≥ >  For FRC  and FRP , (24) becomes,  

1 1

2 2

(0, , ) 0
( ,0, ) 0

C

P

p f C R
p f P R

>

>
        (25) 

respectively. But, we assumed that no boundary equilibria are 
saturated. That is 1( )FRCf  equals condition c) and 2 ( )FRPf  
equals condition d). Thus, we have that (25) holds for any 

1 2, 0.p p >  

At 0F  and FR , (25) yields: 

1 1 2 2

3 3 1 2

0 ( ) ( )
( ) min( ( ), ( ))

0 0
     0 0 0

p f p f
p f f fε

< +
+ +

        (26) 

1 1 2 2 3 3

1 2

0 (0,0, ) (0,0, ) (0,0, )
min( (0,0, ), (0,0, )).     

p f K p f K p f K
f K f Kε

< + +
+

  (27) 

Since r > 0 we have that 0F  is not saturated. In order for FR  

not to be saturated, we need either 1(0,0, )f K  equal to 

condition b) or 2 (0,0, )f K  equal to condition b’) or both, 

since 0P C= = . So in either case, we can first choose 

1 20, 0,p p> >  and 0ε =  such that (27) holds. Since 

3 ( ) 00f > , then for large 3p , (24) holds too. Hence, by 
Theorem 2 the system (1) is permanent.   

VI. BIOLOGICAL INTERPRETATIONS 
In this section we will provide interpretations for what the 

parameter restrictions mean biologically. It has been shown by 

Křivan and Diehl [5] that the consumer must be the superior 
competitor for the shared resource for an IGP model with 
Type II functional responses.  

 The following analysis is similar to that done in [5].  
Theorem 3 requires that RP CP RCe e e< . That is, the consumer 
provides a high benefit to the predator, relative to the basal 
resource and thus, the predator gains significantly from its 
consumption of the consumer.   

Conditions b) and b’) can be rewritten as 

     1RP RP
P P

RP RP

e hm m
h Kλ

⎛ ⎞
> + >⎜ ⎟

⎝ ⎠
       (28) 

and 

1RC RC
C C

RC RC

e hm m
h Kλ

⎛ ⎞
> + >⎜ ⎟

⎝ ⎠
      (29) 

respectively. Condition (28) states that the profitability of 
resources for predators (the energy return per handling time) 
must exceed predator mortality by a sufficient amount.  
Similarly, (29) states that the profitability of resources for 
consumers must exceed consumer mortality by a sufficient 
amount. Also, we see that 1 0ξ >  and 2 0ξ > . 

Equation (15) and (16) can be rewritten as 

21
( 1)

RC RC
C

RC RC

e hm
h Kλ

⎛ ⎞
< +⎜ ⎟−⎝ ⎠

 

and 

21
( 1)

RP RP
P

RP RP

e hm
h Kλ

⎛ ⎞
< +⎜ ⎟−⎝ ⎠

 

respectively. That is, the profitability of resources for 
consumer must not be too high. Otherwise, the predator is 
driven to extinction. Similarly, the profitability of resources 
for predators must not be too high, so that the consumer is not 
driven to extinction.  

Solving for K in (15) and (16) yields 

1 2

2 2,C P

RC RP

m mK K
λ ξ λ ξ

≤ ≤ . 

Since, 1 2, 0ξ ξ > , these conditions state that there must be an 
upper bound on K for coexistence of species.   

In conclusion, we have the following:  
B1) The predator should gain significantly from its 
consumption of the consumer. 
B2) The consumer should be superior at exploitative 
competition for the shared resource. 
B3) Along gradients in resource productivity, coexistence is 
most likely at intermediate levels of productivity. 

VII. CONCLUSION 
In this paper we have analyzed the conditions under which 

our IGP model with Type II responses is permanent, or in a 
realistic biological sense, the coexistence of species is 
ensured. In summary, permanence requires that the solutions 
of system (1) are uniformly bounded in 3R+ , the Ω -limit set 
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of every orbit on +∂ 3R  consists of equilibrium points, and no 
boundary equilibrium can be saturated. Biologically, these 
conditions imply that the predator should gain significantly 
from its consumption of the consumer, the consumer should 
be superior at exploitative competition for the shared resource, 
and along gradients in resource productivity, coexistence is 
most likely at intermediate levels of productivity.   

The permanence of models with migration dynamics, 
symmetrical interactions, and additional species is still an 
open question. One limiting factor is that most available 
theory assumes that the boundary of the state space is 
invariant.  Therefore, it would be useful to investigate these 
more complicated models and provide the theory to analyze 
the permanence of these models.  
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