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Abstract—Considing the processes associated with fractional 
Bessel processes  driven by factional Brownian Motion with Hurst  
parameter  0<H<1, we study the  properties  and show the local times 
exist and  get Tanaka formula of  the  processes  as well as the local 
time. For 1-dimensional linear self-attracting diffusion process we 
study the convergence and local time.  
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I. INTRODUCTION 

IRST  we conside factional Bownian motion (fBm). 
Definition 1 (fBm)  Let : 

(0,1)H ∈  be a constant. The (1-parameter) fractional 
Brownian motion (fBm) with Hurst parameter H is the 
Gaussian process 

Ω∈∈= ωω ,),,()( RttBtB HH  , 
 Satisfying  

0)]([)0( == tBEB HH , 
 for all t R∈ , and 

RtstststBsBE HHH
HH ∈−−+= ,};{

2
1)]()([ 222

 
Where E denotes the expectation with respect to the 
probability law P for  

},);,({ Ω∈∈ ωω RttBH  
 where ( , )FΩ  is a measurable space. 

If H = 1/2 then ( )HB t  coincides with the classical Brownian 
motion, denoted by B(t). 
If H > 1/2 then ( )HB t  has long range dependence , in the 
sense that 

0)]()1()1([ >−+⋅= nBnBBE HHHnρ   
for all n = 1, 2, . . .  , and  

∑
∞

=

∞=
1n

nρ
 

If H < 1/2 then  ( )HB t  is anti-persistent, in the sense that 

0nρ <  for all n = 1, 2, . . . 

in this case 
1

n
n

ρ
∞

=

< ∞∑  (Shiryaev [5], p. 233) 

     Another important property of fBm is self-similarity: For 
any (0,1)H ∈  and 0α >  the law of { ( )}H t RB tα ∈  is the 

same as the law of  { ( )}h
H t RB tα ∈ .   

Next  we will give the definition of Bessel processes and 
Fractional Brownian Motion. 
For every δ ≥ 0 and x ≥ 0, the solution to the equation 

s

t

st dWXtxX ∫++=
0

2δ
 

is unique and strong. In the case δ =0, x = 0, the solution tX  is 
identically zero and applying the comparison theorem (see 
Revuz–Yor [11] Theorem IX.(3.7)) we conclude 0tX ≥  for 

all 0δ ≥ . 
Definition 1.1 ( BESQσ ) For every 0δ ≥  and x ≥ 0 the 
unique strong solution to the equation 

s

t

st dWXtxX ∫++=
0

2δ
 

is called the square of a δ-dimensional Bessel process started at 
x and is denoted by BESQσ . 

Remark: the law of ( )BESQ xσ  on C( R+ , R )by xQσ . We 

call the numberδ the dimension of BESQ . This notation arises 

from the fact that a BESQσ  process tX  can be represented 
by the square of the Euclidean norm of δ-dimensional 
Brownian motion  

tB : tX  = |
2

tB
| .  

The number 12/ −≡ δν  is called the index of the 
process BESQσ . 

Definition 1.2 ( BESσ ) The square root of 2( )BESQ aσ , 
0≥δ , 0≥a  is called the Bessel process of dimension δ 

started at a  and is denoted by  ( )BES aσ . 

Remark: the law of ( )BES aσ  by  aPσ  

In the case δ ≥ 2, ( )BES aσ , a > 0, will never reach 0.  

For δ > 1 a ( )BES aσ  process  tZ  satisfies  

∞<∫ ])/([
0

t

sZdsE
  

and is the solution to the equation 

t

t

s
t W

Z
dsaZ ∫ +

−
+=

02
1δ

 
For δ ≤ 1 the situation is less simple. For δ = 1 we have with 

oIt ˆ  Tanaka’s formula  

tttt LWWZ +== ~
 

F 
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where  

∫≡
t

sst dWWsignW
0

)(~
 

 is a standard Brownian motion, and Lt is the local time of 
Brownian motion. Refer to Revuz–Yor [11] and Pitman–Yor 
[9, 10] for the more study of Bessel processes. 
Definition 1.3  Denote the fractional Bessel process by 

222 )(...)2()1( dBBBR HHHH +++=  
where  

))(),...,2(),1(( dBBBB HHHH =  
 be a d-dimensional fractional Brownian motion with Hurst 
parameter H ∈(0, 1). 
We hope to obtain a stochastic calculus for fBm and to use its 
properties into application. 
     However, if 1/ 2H ≠ then ( )HB t  is not a 
semimartingale, so we cannot use the general theory of 
stochastic calculus for semimartingales on ( )HB t . 

For example, as 1/ 2H ≠  the fractional Brownian motion 

( )HB t  has not vyeL ˆ  type characteristic, i.e., the process 
(see Hu [7]) 

1
2
1),())((

0
<<= ∫ HsdBsBsignX H

t

HH
             (1) 

is not a fBm. Furthermore, the process 

)(
)(

)(
1

0
sdB

sR
BtY j

H

d

j

t

H

j
H

H ∑∫
=

=
                                   (2) 

is the fractional Bessel process. Thus, it is interesting to 
investigate the properties of these processes. Hu and Nualart 
obtained some properties of these processes in [7].  
The purpose of this paper is to prove the local times of these 
processes based on ( )HB t exist, 
1/2 < H < 1. Moreover, we give a Tanaka formula of the 
process  HX  given by (1) and (2). 
For 1-dimensional linear self-attracting diffusion process we 
study the convergence and local time.  
Consider the path dependent stochastic differential equation of 
the form 

0 0
( )

t sH H H H
t t s uX B X X duds= + Φ −∫ ∫  (1) 

where HB  is a d-dimensional fractional Brownian motion 
with Hurst index (0,1)H ∈  and Φ  Lipschitz continuous. 
Then it is not difficult to show that the above equation admits a 
unique strong solution. We will call the solution the fractional 
self-attracting diffusion driven by fBm. We will consider only 
a particular case as follows,the linear fractional self-attracting 
diffusion: 

0 0
( )

t sH H H H
t t s uX B a X X duds tυ= − − +∫ ∫   (2) 

with 0a >  and 
dυ∈ . Our aims are to study the 

convergence and local times of the processes given by above 
formula with 1d = . 
 

II.  FRACTIONAL oIt ˆ
 TYPE STOCHASTIC INTEGRAL 

For 1/2 < H < 1, an alternative integration theory based on the 
Wick product ◇ was introduced by [3], as follows:  

))()(()(lim:)()( 100 kHkH
k

k

t

H tBtBtusdBsu
n

−◊= +→ ∑∫ π

Where  
tttt nn =≤≤≤≤ ...0: 10π  

 is an arbitrary partition of  [0, t],  
}{max: 1 kkkn tt −= +π  

and lim 0nx → means the limit in  2 ( )L μ .  
The definition of the integrals has been extended by [8] (see 
also [1]) to all 0 < H < 1 as follows: 

dssWsusdBsu H

tt

H )()(:)()( )(00 ∫∫ ◊=
 

where  
*

)( )()()( S
dt

tdBtW H
H ∈=

  
with ( )S ∗  the Hida space of stochastic distributions if  

u : ( )R S ∗
+ → satisfies that ( ) ( )Ht W tμ <>  is 

dt-integrable in ( )S ∗ . These fractional oIt ˆ  integrals have 

many properties of the classical oIt ˆ integral. 
 
Definition 2.1 Let :F RΩ→  and choose γ ∈Ω . Then we 

say F  has a directional M-derivative in the direction γ  if : 

)]()([1:)( lim
0

)( ωγξω
ξ

ω
ξ

γ FMFFD H −+=
→  

Exists almost surely in ( )S ∗ . In that case we call  

)()( ωγ FD H

 
 the directional M-derivative of F in the directionγ . 
 
Definition 2.2 We say that :F RΩ→  is differentiable if 
there exists a function: 

*)(: SR →Ψ  
Such that 

∫ Ψ=
R

H dttMtMFD )()()()( γωγ  
 for all  

)(2 RLH∈γ  
Then we write 

)(),()(:)( ttFHFD H
t Ψ=

∂
∂

= ω
ω  
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And we call ( )H
tD F  the Malliavin derivative or the stochastic 

gradient of F at t . In the classical case (
1
2

H = ) we use the 

notation  tD  for the corresponding Malliavin derivative. 

Proposition 2.3 Let ( )F S ∗∈ .Then 

FMDFD H
tt

)(=   
for . .a a t R∈  
 
Proposition 2.4 Suppose:  

*)(: SRY →  
 is    ( )HdB -integrable. Then 

)()()())()(( )()()()( tYsdBsYDsdBsYD H

R

H
tR

HH
t += ∫∫  

Proposition 2.5 Let ( )
1,2

HD  be the set of all 2 ( )F L μ∈  such 

that the Malliavin derivative ( )H
tD F  exists and 

∞<∫ ]][[ 2)(

R

H
t dtFDE

  
The following result has been obtained with a different proof 
in Lemma 2 of [M] 
 
Proposition 2.6 Suppose:  

2 ( )Hg L R∈ is deterministic and let ( )
1,2

HF D∈ .  
Then  

∫
∫

〉⋅〈−⋅

=

R

HH

R

H

FDgtdBtgF

tdBtgF
)()(

)(

,)()(

)()(ο

 
Recall that the Malliavin Φ -derivative of the function U : 

R→Ω  defined in [3] as 
follows: 

UdrDsrUD rs ∫
∞

=
0

),(φφ

 
where rD U  is the fractional Malliavin derivative at r. Define 

the space
2,1

φL
 to be the 

set of measurable processes u such that )(suDs
φ

 exists for 
a.a. 0≥s  and 

∞<

+ ∫ ∫∫
∞ ∞∞

]),()()())([( 210 0 2121
2

0
dsdssssusudssuDE s φφ

 

Then the integral 
0

( ) ( )Hu s dB s
∞

∫ can be well defined as an 

element of 2 ( )L μ  
 
Theorem 2.7 ([3]). Let { ( ), 0}u t t ≥ be a stochastic process in 

2,1
φL

. Then for the process 

0),()()(
0

≥= ∫
∞

tsdBsut Hη
 

we have 

∫∫ +=
t

rH

t

s drrsurdBrutD
00

),()()()( φηφ

 
In particular, if u is deterministic, then 

drrsrutD
t

s ),()()(
0

φηφ ∫=  
 

Theorem 2.8 ([3]). Let 
2,1CF ∈ ( RR ×+ ) with bounded 

second order derivatives and let the process  
X be given as follows: 

∫∫ ++=
t Ht

sdBsudssvxtX
00

)()()()(
,  

Rxt ∈≥ ,0  

With 
2,1

∅∈ Lu . Then we have 

dssXDsusXF
dx
d

SdXsXF
dx
dxFtXF

s

t

t

)()())((

)())(()())((

0 2

2

0

∅∫

∫ ++=

 
for all 0t ≥ . 
 

Consi  

III. LOCAL TIME AND TANAKA FORMULA FOR PROCESSES ASSOCIATED WITH 
FRACTIONAL BESSEL PROCESSES 

Refer to [9], the weighted local time ( )HL B  of fractional 
Brownian motion are established: 

dssxsBHBL Ht

HH
12

0
))((2)( −∫ −= δ

 
The Tanaka formula is given as: 

)(
2
1)(1))((

0 })({ H
x
tH

t

xsBH BLsdBxxtB
H

++=− ∫ >
++

 

)()())((|||)(|
0 H

x
tH

t

HH BLsdBsBsignxxtB ++=− ∫  
In this section we show that the local times of the process 

0),())((
0

≥= ∫ tsdBsBsignX H

t

HH

)(
1

0
jdB

R
B

Y H
s

d

j

t

H
s

H
sH

t ∑∫
=

=
 

exist and obtain their Tanaka formula. We will also find a 
relationship between the weighted local time of  fractioanal 
Brownian motion and the local time of the  process  HX  for 
d=1. 
First we  conside some properties of process  HX  
 
Propostion 3.1. The process X={Xt , t ≥0} is H-self-similar. 
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Propostion 3.2. For any 0 1H< <  

∑∫
∞

=

=
1

220
)()(

k
kkk

t

ss hIcdBBsign
 

Where  

2

1

2)!1)(12(2
)1(

−

−

−−
−

= k

k

k kk
c

π  
Hk

kssk ksssh )12(
)2,......,1(2 )221( −−∨⋅⋅⋅∨∨=

 
A consequence of this proposition is the following 
 
Propostion 3.3. For any 0<H<1, the random variable sign(BH) 
belongs to the Sobolev space  Dα,2 
For any α<1/2. 
 
Lemma 3.4. (Hu [7]) 

0,
)()2!(2)12(

)()!2(4

))](())(([

0
)12(22

1222

≥
+

−−+
= ∑

∞

=
+

+

t
sukk

ususk

uBsignsBsignE

k
kk

kHH

HH

π . 
We can get the proof of this Lemma in [7]. By using this 
Lemma its easy to show the following result holds  
 

Lemma 3.5. Let
1 1
2

H< < ,  then  

satXDtBsign HHH .,0)())(( ≥  
for all 0t ≥ . 
 
Theorem 3.6. Let : R R+Φ → be a convex function having 
polynomial growth and let 
the process  HX  be defined by 

0),())(()(
0

≥= ∫ tsdBsBsigntX H

t

HH  
Then there exists a continuous increasing process 

ΦA such 
that: 

0,
2
1)())(())((

)0())((

0
≥+Φ

+Φ=Φ

Φ−∫ tAsdBsBsignsXD

tX

tH

t

HH

H

 
where Φ−D denotes the left-hand derivative of Φ . 

Proof: If 
2C∈Φ , then this is the oIt ˆ  formula and 

dssXDsBsignXA HHH

t

st )())(()(''
0∫ Φ=Φ

 
and Lemma 3.1 implies that the process 

ΦA  is increasing. 

Let now
2C∉Φ . For 0ε >  and x R∈  we set 

2

2
1

2
1)(

x
ep ε

ε πε
ε

−
=

 
and 

)0(,)()()( >Φ−=Φ ∫ εεε dyyyxpx
R  

Then ( )xτΦ  has polynomial growth and 2CτΦ ∈ . It 

follows that for all 0ε > there exists a continuous increasing 

process 
ΦA  such that 

ε
ε

εε

Φ+Φ

+Φ=Φ

∫ tHH

t

H

AsdBsBsignsX

tX

2
1)())(())(('

)0())((

0  
and 

dssXDsBsignsXA HHH

t

t H
)())(())((''

0∫ Φ=Φ
ε

ε

 

0

''( )

( ( ( ) )( ( ( )) ( ) )

R
t

H H H H

x

X s x sign B s D X s ds dx

ε

δ

= Φ

−

∫
∫

 

 
Noting that for all x R∈  

)()(lim
0

xx Φ=Φ
↓ εε  

 
)()('lim

0
xDx Φ=Φ −

↓ εε    
So as 0ε →  

)())(())((

)())(())(('

0

0

sdBsBsignsXD

sdBsBsignsX

HHH

t

HHH

t

Φ→

Φ

∫
∫

−

ε

 
in probability. As a result, t

tAΦ converges also to a process 
ΦA which, as a limit of increasing processes, is itself an 

increasing process and 

εΦ− +Φ

+Φ=Φ

∫ tHHH

t

H

AsdBsBsignsXD

tX

2
1)())(())((

)0())((

0  
The process

ΦA  can now obviously be chosen to be a.s. 
continuous. This completes the proof. 
 
Corollary 3.7. For any real number x, there exists an increasing 
continuous process 

( )x
HL X  called the local time of the process 

H
X  in x such 

that, 

)()())((

|)(|

0

Hx
tH

t

H

H

XLsdXxsXsignx

xtX

+−+=

−

∫ . 
Combining this corollary with [3, 9], we get the following 
 

Corollary 3.8. Let )(XL  denote the local time of the process 
X and let 

dssxsBHBL Ht

HH
x
t

12

0
))((2)( −∫ −= δ

 
be the weighted local time of fractional Brownian motion . 
Then we have 
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)())((12

)()(
)()(

0 }{ sdBxsBsign

xtBxtX
BLXL

H

t

HxX

HH

H
x
tH

x
t

s∫ −+

−−−=

−

≤  
 
Corollary 3.9. For any real number x and  0t ≥ , we have 

dssXsDsBsignxsX

XL
t

HHHH

H
x
t

∫ −=
0

)()())(())((

)(

δ
. 

Moreover, for any convex function having polynomial 

growth RR →Φ +:  the following 
Ito-Tanaka type formula holds: 

)()(
2
1

)())(())(()0(

))((

0

dxXL

sdBsBsignsXD

tX

HR

x
t

HHH

t
H

Φ

−

∫

∫
+

Φ+Φ=

Φ

μ
 

where Φ−D denotes the left derivative of Φ  and the signed 

measure Φμ is defined by 
RbabaaDbDba ∈<Φ−Φ= −−

Φ ,,),()(]),([μ  
So we have got the relationship between  local time and weight 
local time. 
Finally, by the same method on can show that the local time of 
the process 

)(
)(

)(
1

0
sdB

sR
BtY j

H

d

j

t

H

j
H

H ∑∫
=

=
 

holds, where  
))(),...,2(),1(( dBBBB HHHH =  

 is a ( 2)d ≥  dimensional fractional Brownian motion with 
Hurst index 1/2 < H < 1 and 

222 )(...)2()1( dBBBR HHHH +++=  is the fractional 
Bessel process. 
 
 

IV. CONVERGENCE AND LOCAL TIME FOR  LINEAR SELF-ATTRACTING 
DIFFUSION PROCESS 

We consider convergence of the solution of the equation (2), 
the socall the linear fractional self-attracting diffusion. The 
method used here is essentially due to M. Cranston and Y. Le 
Jan [16]. 
 
Proposition 4.1 The solution to the equation (2) can be 
expresses as  

2 21
2

0

1 1[ ] , 0
2

xt x dsx
t

s

E L e t
σ

σπ

−−
= ≥∫         

Where 

2 21 ( )
2

0

(2 1) 1[ ] , 0
2

st x h s dsx
T

s

H HE e t
σ

σπ

−−−
= ≥∫  

for 0, ≥ts . 
This proposition can also be obtained by the same method as 
Cranston and Le Jan [16]. 
In this section, we study the usual local time and weighted 
local time of the process and obtain the Meyer-Tanaka type 
formula of the weighted local time. We consider the linear 
fractional self-attracting diffusion  

HX  { ,0H
tX t T≤ ≤ }  

with 0ν = . It follows that the linear fractional self-attracting 
diffusion is a centered Gaussian process. 
For 0T t s≥ ≥ ≥ ，we put 

2 2[( ) ]H
t tE Xσ =  
2 2
, [( ) ]H H

t s t sE X Xσ = −
 

Then 
2

0 0
( , ) ( , ) ( , ) ,

t t

t h t u h t v u v dudvσ φ= ∫ ∫ 0 t T≤ ≤  
And 

2
, 0 0

[ ( , ) ( , )][ ( , ) ( , )] ( , ) ,
t t

t s h t u h s u h t v h s v u v dudvσ φ= − −∫ ∫  
0 s t T≤ ≤ ≤  
Noting that: 

  

2 2( )2 2
0 0

( , ) ( , ) 1
at t t sHu v dudv t ande h t sφ

−
= ≤ ≤∫ ∫  

 for all 0t s≥ ≥  we get 
2

2 2 22
0 0

( , ) ( , ) ( , ) .
a t t tH H

te t h t u h t v u v dudv tσ φ≤ = ≤∫ ∫  
 
Lemma 4.2  For all 0t s≥ ≥  we have 

2 2 2
,( ) (1 )( ) ,H H

T t s Tc t s C t sσ− ≤ ≤ + −
 

for some constants  TC , 0tC >  depending on T. 
From the lemma above, we see that 

1/2
2

0 0
[( ) ]

T T H H
t sE X X dsdt

−

− < ∞∫ ∫  
holds for all 0T ≥ , and furthermore, we can show that the 
process is local nondeterminism for every  
0 T≤ ≤ ∞ , i.e 

1 1

2 2
0 ,

2 2
( ( ))

j j j j

n n
H H

j t t j t t
j j

Var u X X k u σ
− −

= =

− ≥∑ ∑
 

with a constant 0 0k > . Combining this with Berman, we 
obtain : 
 
Proposition 4.3 If 0ν = , then the solution HX  of the 
equation (2) has continuous local time such that 

[ , ]0
0 0

1lim 1 ( ) ( ) ,
2

t t
x H H
t x x x sL X ds X x dsε εε

δ
ε − +↓

= = −∫ ∫
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Where  
( )H

sXδ − ⋅  
denotes the delta function of H

sX . 

For  0t ≥ , x R∈ we now set 
 

2 2

0 0

2 (2 1)

( ) ( , )( ) .

x
t
t sH H

s

H H

X x ds h s m s m dmδ −

= −

− −∫ ∫  
Then x

tl  is well-defined and  

The process 0( )x
t tl ≥ is called the weighted local time of HX at 

x R∈  
 
Lemma 4.4(Hu[27].) let Y be normally distributed with mean 
zero and variance 2 ( 0)σ σ > Then the data function  

( )Yδ − ⋅  
of Y exists uniquely and we have 

( )1( ) ,
2

i Y x

R
Y x e d x Rξδ ξ

π
−− = ∈∫

 
As a consequence, we have 

2 21
2

0

1 1[ ] , 0
2

xt x dsx
t

s

E L e t
σ

σπ

−−
= ≥∫

 
2 21 ( )

2
0

(2 1) 1[ ] , 0
2

st x h s dsx
T

s

H HE e t
σ

σπ

−−−
= ≥∫

 
Where and  

2 2

0
( ) ( , )( ) .

s Hh s h s m s m dm−= −∫  
 

Proposition 4.5 Assume that 0T ≥ is given. Then
x
T and 

x
TL are square integrable for all x R∈ and we have 

2 2 2[( ) ]x HH
T

T

CE L T
k cπ

−≤
 

2 2[( ) ]x HH
T

T

CE T
k cπ

≤
 

 
Theorem 4.6 Let HX be the solution to the equation(2)with 
Hurst index 
1 1,
2

H< <
 

0 , 0HX z v= =  
and let be the weighted local time of HX . Suppose that 

: R R+Φ → is a convex function having polynomial growth. 
Then: 

0
( ) ( ) ( ) ( ),

tH H H x
t s s tR

X z D X dX dxμ−Φ = Φ + Φ + Φ∫ ∫  
Where D−Φ denotes the left derivative of Φ and the signed 

measure μΦ is defined 
by

([ , ]) ( ) ( ), , , .a b D b D a a b a b Rμ − −
Φ = Φ − Φ < ∈  

Proof. For 0ε > and x R∈ we set 

( ) ( ) ( ) ( 0),
R

x p x y y dyε ε εΦ = − Φ >∫  
Where Then  

2CεΦ ∈  
and we have 
for all x R∈  
It follows that for all 0ε >  

0 0

( ) ( )

( ) 2 (2 1) ( ) ( )

H
t

t tH H H
s s s

X z

X dX H H X h s ds

ε ε

ε ε

Φ = Φ +

′ ′′Φ + − Φ∫ ∫  

On the other hand, it is easy to see that ( )H
tXεΦ converges to 

( )H
tXΦ almost surely, and 

0 0
( ) ( ) . .,

t tH H H H
s s s sX X ds D X X ds a sε

−′Φ → Φ∫ ∫  
And furthermore 

0 0
( ) ( )

t tH H H H
s s s sX dB D X dBε

−′Φ → Φ∫ ∫  

in
*( )S  

Finally, we have as 0ε →  

0

0

( ) ( )

( ) ( ) ( )

1 ( )
2 (2 1)

t H
s

t H
sR

x
tR

X h s ds

dsh s x X x dx

dx
H H

ε

ε δ

μΦ

′′Φ =

′′Φ −

→
−

∫
∫ ∫

∫
 

This completes the proof. 
 
Corollary 4.7 Let HX be the solution to the equation (2) with 
Hurst index 
1 1,
2

H< <
0 , 0HX z v= =  

and let l be the weighted local time of HX . Then The Tanaka 
formula 

0 0
| | | | ( )

tH H H H x
t s s tX x X x sign X x dX− = − + − +∫  

Holds for all .x R∈  
 

V.  CONCLUSION 

It can be seen from the above-mentioned analysis that the 
processes associated with fractional Bessel processes 
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<<= ∫ HtdBsBsigntX H

t

HH
 

)(
)(
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1

0
sdB

sR
BtY j

H

d

j

t

H

j
H

H ∑∫
=

=
                                                  

where  
))(),...,2(),1(( dBBBB HHHH =  

converge,   have the local times ( )x
HL X  and Ito-Tanaka type 

formula.   
For 1-dimensional linear self-attracting diffusion process 

0 0
( )

t sH H H H
t t s uX B a X X duds tυ= − − +∫ ∫  

We study the convergence and obtain the weight local time as 
showed above. 

)()(
2
1

)())(())(()0(

))((

0

dxXL

sdBsBsignsXD

tX

HR

x
t

HHH

t
H

Φ

−

∫

∫
+

Φ+Φ=

Φ

μ
 

holds. 
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