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Abstract—We consider the limiting statistical properties of 

fluctuations of the voter model. The voter model is one of interacting 
particle systems, and it is a continuous Markov process on the lattice. 
Applying the theory of the voter model, an interface model defined 
from the voter model is defined and studied in the present paper. The 
interface model is analyzed and estimated by the voter model and the 
theory of stochastic analysis, including the stopping time method. 
Further, we show that the probability distributions of the fluctuations, 
under some conditions, converge to the corresponding distribution of a 
geometric Brownian motion.  

Keywords—Voter model, statistical properties, fluctuation, 
interface, geometric Brownian motion.  

I. INTRODUCTION 
n this paper, we consider the statistical properties of the 
fluctuations of interfaces that defined from the voter model, 

see [1-7]. The problem of description of shapes of interfaces is 
a well-known problem of statistical mechanics (see [8-10]), in 
details that, the aim of the research is to investigate the 
asymptotical behavior of the corresponding sequence of 
probability measure describing the statistical properties of these 
interfaces. The voter model is one of statistical physics models, 
as the name might suggest that the voter model can model 
political systems, but rather the fact that the voter model is 
exactly the class of spin systems which duality can be applied 
most completely and successfully, the voter model is a 
continuous Markov process on {0,1}

dZ , see [8]. This work 
originates in an attempt to describe the fluctuations of 
interfaces of the voter model, and study the convergence of the 
corresponding probability distributions. Recently, some 
research work has been done to study the statistical properties 
of the random interfaces for some statistical physics models, for 
example the two-dimensional Widom-Rowlinson model, see 
Refs. [2-6]. The research work of interfaces fluctuations focus 
on the Ising model, Widom-Rowlinson model and S.O.S. 
model, but there is no research work on the voter model, in fact 
that there is no definition of interfaces for the voter model until 

now. And their research work heavy depends on the theory of 
the cluster expansion and the partition functions expansion. But 
in the present paper, we give a definition of interfaces for the 
voter model, and the stopping time methods will be used to 
study the fluctuations of the model. In the last section of this 
paper, we extend the interfaces voter model and extend the 
result of Theorem 1, the theory of compound Poisson process is 
applied to study the properties of interfaces model, and we 
obtain Theorem 2. 
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First, we give the brief definitions and properties of the voter 
model, for details see [8]. One interpretation for the voter 
model is, for a collection of individuals, each of which has one 
of two possible positions on a political issue, at independent 
exponential times, an individual reassesses his view by 
choosing a neighbor at random with certain probabilities and 
then adopting his position. Specifically, the voter model is one 
of the statistical physics models, we think of the sites of the 

-dimensional integer lattice as being occupied by persons 
who either in favor of or opposed to some issue. To write this as 
a set--valued process, we let { (

d

), 0}s sξ ≥  the set of voters in 
favor, we can also think of the sites in ( )sξ  as being occupied 
by cancer cells, and the other sites as being occupied by healthy 
cells. We can formulate the dynamics as follows: (i) An 
occupied site becomes vacant at a rate equal to the number of 
the vacant neighbors; (ii) An vacant site becomes occupied at a 
rate equal to λ  times the number of the occupied neighbors, 
where λ  is a intensity which is called the ``carcinogenic 
advantage" in voter model. When 1λ = , the model is called the 
voter model, and when 1λ > , the model is called the biased 
voter model. 

Next we introduce the graphical representation of the model, 
since the graphical representation is necessary for us to give a 
good description of the model. For simplicity, we give the 
construction of graphical representation for 1 -dimensional 
voter model ( 1λ = ), for more general cases, see [8]. Thinking 
of -dimensional integer points as being laid out on a 
horizontal axis, with the time lines being placed vertically, 
above that axis. Define independent Poisson processes with 
rate 1 for each time lines, at each event time 

1

( , )x s , we choose 
one of its two neighbors with probability 1/ , and draw an 
arrow from that neighbor point to ( ,

2
)x s , and write a δ  at 

( , )x s . To construct the process from this ``graphical 
representation", we imagine fluid entering the bottom at the 

I
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points in (0)ξ  and flowing up the structure. The δ ’s are the 
dams and the arrows are pipes which allow the fluid to flow in 
the indicated direction. To make this definition mathematical, 
we say that there is a path from ( ,0)x  to  if there is a 
sequence of times  and 
spatial locations 

( , )y t

0 1 2 10 ... 1n ns s s s s += < < < < < =

0 1, ,..., nx x x x y= =  so that: 
(i) for  there is an arrow from ...,1,2, ni = 1ix −  to ix  at time 

is , and 

(ii) the vertical segments { } 1( , )i i ix s s +× ,  do not 
contain any 

...,0,1, ni =
δ ’s.  

When there is a path from ( ,0)x  to , it follows that the 
individual at at time t has the same opinion as individual at 
time . Since every individual has the same opinion as some 
individual at time , it follows that 

( , )y t
y

0
0

{( ) :A s yξ =  for some x A∈  there is a path from ( ,0)x  to 

}( , )y t . 

Let ( )A sξ  ( s I∈ ) denote the state at time s  with the initial 

state (0)A Aξ = , when , recorded as . 

Then from [8], the voter model 

{0}A = {0}{ ( ), 0s sξ ≥ }

( )A sξ  approaches total 
consensus in  and . But in higher dimensions , 
the differences of opinion may persist. For more generally, we 
consider the initial distribution as 

1d = 2d = 3d ≥

θν , the product measure with 
density θ , that is, each site is independently occupied with 
probability θ  and let ( )sθξ  denote the voter model with initial 
distribution θν . For the biased voter model ( 1λ >

≥ >

), there is a 
``critical value" for the process which is defined as following  
          . { }{0}inf : (| ( ) | 0, 0) 0c P s sλ λ ξ= > ∀

It can be shown that 1cλ =  for the voter model. This means 
that, on d -dimensional lattice, if cλ λ< , the process dies out 
(becomes vacant) exponentially fast, if cλ λ> , the process 
survives with positive probability. 

II. NOTATIONS AND DEFINITIONS 
First we define the interfaces by the voter model on discrete 

time , then take the scaling limit of discrete time 
model, we will obtain a continuous time process, this is the 
main work of the present paper. Although a lot of research 
work has been done for studying the voter model in the past 
twenty years, the interfaces model defined in the following (1) 
is the first time, so we think that this kind of work is important 
for us to further understand the statistical properties of the voter 
model, especially understand the fluctuation properties of the 
voter model.  

{1, , }k ∈ n

Suppose that the interfaces fluctuate at each time k . For 
each , let {1, , }k n∈ kω  be random variable such that  

( )1k kP pω = + = , , , ( )1k kP qω = − = ( )0k kP rω = =

where , and {1k k kp q r+ + = }1 2, , , nω ω ω  is an independent 

random sequence. Let denote a positive integer, and let nl

nl
Λ = [ , ]n nl l−  be a subset of 1 -dimensional lattice Z . For a 

parameter 0kβ > , we define a function of interfaces by the 
voter model at time  by k

{0}| k
k

( ) |
( )

| |
n

k k
l

s
A σ β ω=

ξ
Λ

 

where | |
nl

Λ , {0}| ( )k |sξ  are the cardinality of 
nl

Λ and {0} ( )k sξ , 

s I∈ . Now we define the interfaces of the model by 
{ }( ) ( 1)exp ( )kG k G k A σ= − . 

Then for {1, , }k n∈ , 

1
( ) (0)exp ( )

k

l
l

G k G A σ
=

⎧ ⎫= ⎨ ⎬
⎩ ⎭
∑  

{0}

1

| ( ) |
(0) exp

| |
n

k
l

l l
l l

s
G

ξ
β ω

=

⎧ ⎫⎪ ⎪= ⎨ ⎬Λ⎪ ⎪⎩ ⎭
∑                      (1) 

where  is an initial state at time , and let (0)G 0

 
1

( )
k

k l
l

A A σ
=

= ∑ . 

The interpretation for the interfaces model of (1) is, for 
example, for a collection of individuals, each of individuals has 
one of two possible positions on a political issue, and  is 
the number that reflects this political issue at time . From (1), 
if 

( )G k
k

1kω = + , then {0}( ) | ( ) | / | | 0
nk k k k lA sσ β ω ξ= Λ > , this means 

that the number of voters in favor at time  is more than that of 
voters in favor at time 

k
1k − , so it implies that  increases; 

On the contrary, if 

( )G k

1kω = − , , 

then  decreases. 

{0}( ) | ( ) | / | | 0
nk k k k lA sσ β ω ξ= Λ <

( )G k

III. THE STOPPING TIME FOR THE MODEL 
In this section, first we introduce some results of the voter 

model (see [8]), then we define the stopping times for the 
interfaces model, at last we show the main results of the present 
paper. From [8], we have the following Lemma 1, here we omit 
the proof of Lemma 1. According to above Section 2 and 
Lemma 1, we can show the following Corollary 1. Corollary 1 
is important for us to estimate the main results of the present 
paper. 

 
Lemma 1  (a) If cλ λ< , there is a 0ρ >  such that   

( ){0} ( ) sP s e ρξ −≠ ∅ ≤  

then the process dies out exponentially fast;  
(b) If cλ λ> , then on  for all , {0}{ ( )sξ ≠ ∅, 0}s ≥

                    
{0}| ( ) | 2( 1)s

s
ξ λ→ − ,    a.s.,      as  s → ∞ . 

 
Corollary 1  For any 0ε >  and  large enough, nl

(a) If cλ λ< , for any fixed k , 
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{0}| ( ) |
| |

n

k

l

s
E

ξ
ε

⎛ ⎞
<⎜ ⎟⎜ ⎟Λ⎝ ⎠

,     as  s → ∞ . 

(b) If cλ λ> , for any fixed k , there is a 0ρ >  such that, as 
s → ∞ , 

{0}| ( ) |
| |

n

k

l

s
E

ξ
ρ

⎛ ⎞
≥⎜ ⎟⎜ ⎟Λ⎝ ⎠

,       
2

{0}| ( ) |
| |

n

k

l

s
E

ξ
ρ

⎛ ⎞
≥⎜ ⎟⎜ ⎟Λ⎝ ⎠

. 

 
Next we define the stopping time for the interfaces model. 

Let 1 2, , , , ,mτ τ τ denote the stopping times defined as 
followings 

1
3

1
1

min 1; ( ) 1
k

l
l

k n Aτ σ
−

=

⎧ ⎫
= ≥ ≥⎨ ⎬

⎩ ⎭
∑ ,  

1

1

1
3

2
1

min 1; ( ) 1
k

l
l

k n A
τ

τ

τ σ
+−

= +

⎧ ⎫⎪ ⎪= ≥ ≥⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ,  

1

1

1
3min 1; ( ) 1

m

m

k

m
l

k n A
τ

τ

τ
−

−

+−

=

⎧ ⎫⎪ ⎪= ≥ ≥⎨ ⎬
⎪ ⎪⎩ ⎭

∑ lσ

]m

,  .                       (2) 

For every stopping time intervals 1[ 1,mτ τ− + , define a 
0mλ >  on this time interval, such that for some 0 1α< < , if 

 then / 2m nα≤ m cλ λ< , if  then / 2m nα> m cλ λ> . Then we 
have the following results. For any fixed , k

[ ]( )kE A σ =
{0}| ( ) |

( )
| |

n

k
k k k

l

s
p q E

ξ
β

⎛ ⎞
− ⎜⎜ Λ⎝ ⎠

⎟⎟                     (3) 

[ ]2( )kE A σ =

2
{0}

2 | ( ) |
( )

| |
n

k
k k k

l

s
p q E

ξ
β

⎛ ⎞
+ ⎜⎜ Λ⎝ ⎠

⎟⎟                 (4) 

By Lemma 1, Corollary 1, (3) and (4), If cλ λ< (or ), 
we can properly choose 

/ 2m nα≤

, ,k k kp qβ , where k  belongs to some 
time interval 1[ 1,m ]mτ τ− + , such that 

[ ]( )kE A σ = [ ]2( )kE A σ =
1
n

.                          (5)  

If cλ λ> (or ), by Lemma 1 and Corollary 1, (3) and 

(4), we properly choose 

/ 2m nα>

, ,k kp qkβ , where k  belongs to some 
time interval 1[ 1,m ]mτ τ− + , such that 

[ ]( )kE A σ = [ ]2( )kE A σ = c                               (6) 
where  is a positive constant. c

Taking the scaling limit of discrete time model of  (1), we 
will obtain a continuous time process—the continuous time 
interfaces model, and we discuss the probability distribution of 
this continuous time model. Let 

0 1v< < ,     [ ]1 1 1[ ] 1 ,m mnv τ τ τ τ−∈ + + + + +  
where [  is the integer part of . Then  can be expressed 
by , let 

]nv nv m
( , )m m n v=

1 ( , )

1

1 ( )
m n v

n
v k

k
A A

n

τ τ

σ
+ +

=

= ∑ 0 1v< <,    .                   (7) 

Now we define the interfaces of the model in terms of above  (7) 

by  (see (1)) 
{ }( , ) (0) exp n

vG n v G A= ,    .                         (8) 0 v< < 1

 
Theorem 1  Suppose that the interfaces model follows (8), 
when , the probability distribution of the process 

 convergence to the corresponding distribution of 
n → ∞

( , )G n v

{ }0 0
(0)exp ( ) ( ) ( )

v v
G v dv v Bμ σ+∫ ∫ v dv ,        0 1v< <  

where  is the one dimensional standard Brownian motion, 
 is an initial state at time ,

( )B v
(0)G 0 ( )vμ is the trend function and 
( )vσ  is the volatility function. 

IV. CONVERGENCE OF THE FLUCTUATIONS OF INTERFACES 
In this section, we consider the convergence of the 

probability distribution of the process  which is 
introduced in Section 3, and we show the proof of the main 
results in this paper. The proof of Theorem 1 is divided into 
four parts, and the supercritical case (

( , )G n v

cλ λ> ) and subcritical 
case ( cλ λ< ) are considered in the proof. 
 
Proof of Theorem 1  In order to show the convergence of the 
distribution, we consider the convergence of the characteristic 
function of n

vA , i.e., 

( ) exp{ }n n
v vz E izAϕ ⎡ ⎤= ⎣ ⎦ ,       as   n → ∞

where 1i = − .  is divided into two terms as follows ( )n
v zϕ

5 / 6 2 / 3( ) [exp{ }; | | ,n n
v v mz E izA n n εϕ τ += − ≤   

for all 1, , ]
2

nm
α

=  

+ [exp{ };n
vE izA 5 / 6 2 / 3| |m n n ,ετ +− >   

for some 1, , ]
2

nm
α

= .                               (9) 

Next we define the conditional expectations, 
5 / 6 2 / 3

1 [exp{ } | | ,n
v mK E izA n n ετ += − ≤   

for all 1, , ]
2

nm
α

= ,                                      (10) 

5 / 6 2 / 3
2 [exp{ } | | ,n

v mK E izA n n ετ += − >   

for some 1, , ]
2

nm
α

= .                                 (11) 

(I) Now we estimate the second term 2K . Let 1/12 1/ 6ε< <  

and 
1

( )
k

k l
l

A A σ
=

= ∑ , then 

( )5 / 6 2 / 3| |mP n n ετ +− >  

= ( )2 / 3 5 / 6
mP n nετ +> + + ( )5 / 6 2 / 3

mP n n ετ +< −  

= ( )2/ 3 5 / 6
1/ 3

n n
P A nε+ +

≤ +  ( )5/ 6 2 / 3
1/ 3

n n
P A nε+−

≥

= ( )2 /3 5 / 6 2 / 3 5 / 6
1/ 6( [ ]

n n n n
P A E A nε ε

ε
+ +

+
+ +

− ≤ −  
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+ ( )5/ 6 2 / 3 5 / 6 2 /3
1/ 6( [ ]

n n n n
P A E A nε ε

ε
+ +

+
− −

− ≥  

( ) ( )1/ 3 1/ 6 1/ 3 1/ 6
1/ 3 2 1/ 3 2

1 1n n n n
n n

ε ε
ε ε

+ +
+ +≤ − + +  

= 2

2
n ε .                                                                    (12) 

By  (11) and (12), when 1/ 6α = , then we have 2
2 2 /K n nα ε≤ , 

so that 
2 0K → ,         as   n . → ∞

This implies that the length of stopping time mτ  is about . 5 / 6n

(II) From above discussion, for 1/ 6α = , . 
So, when , 

5 / 6( / 2) / 2n n nα × =

/ 2k n≤ cλ λ< ; when , / 2k n> cλ λ> . 

(a) If , and , by (5) we have / 2m nα≤ / 2k n≤

[exp{ ( )}]k
izE A
n

σ  

=1+ [ ( )]k
iz E A
n

σ
2

2[ ( )]
2 k
z E A
n

σ− + 1( )o
n n

 

=1+ iz
n

+ 1(o
n n

)                                                         (13) 

(b) If , and , by (6) we have / 2m nα> / 2k n>

[exp{ ( )}]k
izE A
n

σ  

=1+ [ ( )]k
iz E A
n

σ
2

2[ ( )]
2 k
z E A
n

σ− + 1( )o
n n

 

=1+
2 / 2iz z c

n
− + 1(o

n n
) .                                          (14) 

(III) We estimate the first term 1K  in two parts. 

(a) If  ( ), so , by (13) we 
have 

0 1/ 2v< < / 2k n≤ 1/ 6( , ) [ ]m n v n v=

5/ 6 2 /3
1

| |
1, , / 2

[exp{ }
m

n
v m

r n n
m n

mK E izA
ε

α

τ
+− ≤

=

= =∑ r ,   

for all 1, , ]
2

nm
α

= , 

=
1/ 6

5/ 6 2 /3

[ ]

1| |
1, , / 2

[exp{ ( )}] m

m

n v
r

k
mr n n

m n

izE A
nε

α

σ
+ =− ≤

=

∑ ∏  

=
1/ 6

5/ 6 2 / 3

[ ]

1| |
1, , / 2

1(1 ( )) m

m

n v
r

mr n n
m n

iz o
n n nε

α

+ =− ≤
=

+ +∑ ∏  

=
1/ 6

5/ 6 2 /3

[ ]

1| |
1, , / 2

1exp[ ln(1 ( ))]
m

n v

m
mr n n

m n

izr o
n n nε

α

+ =− ≤
=

+ +∑ ∑  

=
5/ 6 2 /3

1/ 6
| |

1, , / 2

1exp[ ( )]
mr n n

m n

izv o
nε

α

ε
+

−
− ≤

=

+∑ .                               (15) 

On the other hand, by (12) we have 
5/ 6 2 / 3(| | , 1, , )

2m
nP n n m

α
ετ +− ≤ =  

=
/ 2

5 / 6 2 / 3

1

(| | )
n

m
m

P n n
α

ετ +

=

− ≤∏  

= .                                 (16) 
/ 2

2 2

1

(1 ) (1 )
n

n

m

n n
α

αε ε− −

=

− = −∏ / 2

So for 1/ 6α =  and 1/12 1/ 6ε< < , then 2ε α> , so that, as 
, n → ∞

2 / 2ln(1 )nn
αε−− 2 2

1 1 0
2 2

nn
n n

α
α

ε ε≈ = → . 

Then we have 
5/ 6 2 / 3lim (| | , 1, , ) 1

2mn

nP n n m
α

ετ +

→∞
− ≤ = =

2

.                (17) 

Combining (9)-(11) and (15)-(17), if 0 , then we 
obtain 

1/v< <

lim ( )n
vn

zϕ
→∞

= 1/ 6

1lim exp ( )
n

izv o
n ε−→∞

⎧ ⎫+⎨ ⎬
⎩ ⎭

 

                    =                                                  (18) exp{ }izv
(b) If 1/ 2 1v≤ <  ( ), following the similar procedure 
of above (a), and by (13)(14), we have 

/ 2k n>

[exp{ }n
v mE izA τ mr= , for all 1, , ]

2
nm

α

=  

=
[ / 2]

1

[exp{ ( )}] m

n
r

u
m

izE A
n

α

σ
=

∏               (
2
nu < ) 

× 1 / 2
[ ] ( )[exp{ ( )}] n
nv r r

k
izE A
n

ασ
− + +  

= 1 / 2
[ ] ( )1(1 ( )) n
nv r riz o

n n n
α− + +

+ +  

× 1 / 2

2
[ ] ( )/ 2 1(1 ( )) n
nv r riz z c o

n n n
α− + +−

+ +  

= 21 1 1exp[ ( ) ( )]
2 2

izv v z c o
n

− − + . 

Then we have, for 1/ 2 1v≤ <  

lim ( )n
vn

zϕ
→∞

= 21 1 1lim exp ( ) ( )
2 2n

izv v z c o
n→∞

⎧ ⎫
− − +⎨ ⎬

⎩ ⎭
 

= 21 1exp ( )
2 2

izv v z c⎧ ⎫− −⎨ ⎬
⎩ ⎭

.                               (19) 

(IV) Combining (18) and (19), for , we have 0 v< < 1

lim ( ) lim exp{ }n n
v vn n

z E izAϕ
→∞ →∞

⎡ ⎤= ⎣ ⎦  

= 21 1exp ( ) ( )( )
2 2

izv v v v zμ σ 2⎧ ⎫− −⎨ ⎬
⎩ ⎭

                  (20) 

where  

( ) 1vμ = , 2 ( ) 0vσ = ,  if 10
2

v< < ,  

2 ( )v cσ = ,                  if 1 1
2

v≤ < . 

By Refs. [11], above (20) shows that the probability 
distributions of interfaces model of the present paper converge 
to the corresponding distributions of a geometric Brownian 
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motion, this completes the proof of Theorem 1. 
 

Remark 1  The proof of Theorem 1 can be extended to more 
complicated interfaces model. For example, the time s  in the 
voter model ( )A sξ  ( s I∈ ) , can be defined to be an 
independent random sequence { ( )}( 1, , )ks k nσ = , then 
following the similarly  proof methods, we can obtain the 
different trend function ( )vμ  and the different volatility 
function ( )vσ . 

V. THE EXTENSION OF THE MODEL AND THEOREM 1 
In this Section, we will extend the interfaces model defined 

in (1) of Section 2 in this paper. For each , we 
consider 

{1, , }k n∈
J  as a random variable that follows Poisson 

distribution with parameter γ . Let weight parameters jπ , 

 such that {1, , }j ∈ J 1 1jπ π+ + = . For a fixed 

, let {1, , }k n∈
{0}| ( )

( )
| |

n

j k
k j k k

l

|s
A

ξ
σ π β ω=

Λ
,       . {1, , }j J∈

Now we define the interfaces of the model by 

1

( ) ( 1)exp ( )
J

j
k

j

G k G k A σ
=

⎧ ⎫
= − ⎨ ⎬

⎩ ⎭
∑ . 

Then for , {1, , }k n∈

1 1

( ) (0)exp ( )
k J

j
k

l j

G k G A σ
= =

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∑∑  

{0}

1 1

| ( ) |
(0) exp

| |
n

k J
l

j l l
l j l

s
G

ξ
π β ω

= =

⎧ ⎫⎪ ⎪= ⎨ ⎬
Λ⎪ ⎪⎩ ⎭

∑∑                 (21) 

where  is an initial state at time . Similarly as Section 3, 
let 

(0)G 0

0 1v< < ,     [ ]1 1 1[ ] 1 ,m mnv τ τ τ τ−∈ + + + + +  
where [  is the integer part of . Then  can be expressed 
by , let 

]nv nv m
( , )m m n v=

1 ( , )

1 1

1 ( )
m n v J

n j
kAv

k j
A

n

τ τ

σ
+ +

= =

= ∑ ∑ 1v< <

1

v dv

,     0 .                  (22) 

Now we define the interfaces of the model in terms of above  
(22) by  

{ }( , ) (0) exp n
vG n v G A= ,    .                  (23)  0 v< <

Then we give the following Theorem 2. 
 
Theorem 2  Suppose that the interfaces model follows (23), 
when , the probability distribution of the process 

 convergence to the corresponding distribution of 
n → ∞

( , )G n v

{ }0 0
(0)exp ( ) ( ) ( )

v v
G v dv v Bμ σ+∫ ∫ ,        0 1v< <  

where  is the one dimensional standard Brownian motion, 
 is an initial state at time 0 , the trend function 

( )B v
(0)G ( )vμ and  

the volatility function ( )vσ  are given by 

( )vμ γ= , 2 ( ) 0vσ = ,  if 10
2

v< < ,  

2 ( )v cσ γ= ,                  if 1 1
2

v≤ < . 

 
The proof of Theorem 2 can follow the proving procedure of 

Theorem1 in Section 4 of the present paper. Note that the 
theory of compound Poisson process is applied in the proof of 
Theorem 2, see [12]. 

VI. CONCLUSION 
In this paper, we studied the statistical properties of the 

fluctuations of interfaces model given by the voter model and 
stopping times. Theorem 1 and Theorem 2 show that the 
probability distributions of the fluctuations of interfaces model 
converge to the corresponding distributions of a geometric 
Brownian motion. This work models an interface of the voter 
model, and is useful for us to understanding the fluctuations of 
the voter model. 
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