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Linear Time-Varying Systems: Model Parameters
Characterization Using Intervals Analysis

Kyarash Shahriari, Stanislaw Tarasiewicz

Abstract— A strategy is proposed to model the complex industrial
systems using linear time-varying system (LTV S). The proposed
methodology is independent of model structure and the model may
take any classic linear structure such as finite impulse response, input-
output relation structures etc. To take into account the error between
system and model due to model order reduction, variation of system
behavior in time and perturbations, model’s parameters are considered
varying but bounded variables characterized by intervals. The output
of this model is characterized by a function of the piecewise linear
parameters which contains all possible system’s responses taking into
account modeling error as well as the perturbations.

Keywords— Time-Varying System, Model’s Parameters Character-
ization, Interval Analysis

I. INTRODUCTION

Description of complex industrial processes generally leads
to mathematical models of very large orders. Examples of
these processes are mobile arc welding robot (MAWR) or
wood cutting system [7], [24], [25], [26]. These models
are very time-consuming from processing point of view.
Moreover, from an engineering point of view, one is more
interested in treating a simpler and consequently less accurate
mathematical model rather than a complex and accurate one.
In this objective, mathematical model simplification is usually
performed using model reduction methods [6], [12], [16], [22].
Having been simplified, model describes system’s behavior in
a less accurate manner and hence, there is generally a differ-
ence between observed and estimated values which is called
modeling error. This error can also be due to improper model
structure, inadequate parameter identification, the variation of
system’s behavior in time, etc.

Handling modeling error is among the most challenging
problems in almost all identification procedures. This matter
is more important when the model is developed for critical
applications in which modeling error should be reduced as
much as possible. Classical method to handle modeling error
is the probabilistic approach in which model’s parameters are
constant scalars and modeling error is characterized by means
of a certain Probability Density Function (PDF ). However,
it is not always possible to characterize modeling error by a
certain PDF . Moreover, the properties of PDF may change
in different calculation steps specially if one uses iterative
algorithms.
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Another alternative is set-membership approach in which
model’s parameters are supposed to be unwell-known (un-
certain) or time-variant but bounded. Uncertain bounded pa-
rameters are then characterized by intervals [14], [18], [18],
[5]. If the parameters are correctly characterized, it is then
guaranteed that the model is able to determine all possible
system’s responses. This fundamental property of the set-
membership approach is the main motivation to explore it to
describe dynamic systems in critical industrial applications in
which one needs guaranteed results.

A methodological approach independent of model structure
is proposed in this paper to characterize the parameters of lin-
ear time-varying model (LTV M ) which is then implemented
to MAWR system. After explaining the system under study,
proposed methodology is explained in sections III, IV and V.
In section VI, numerical results of parameter characterization
of the MAWR system are given.

II. MOBILE ARC WELDING ROBOT SYSTEM
This system is a relatively new application of robotics, even

though robots were first introduced during the 1960s. Growth
is primarily limited by high equipment costs, and the resulting
restriction to high-production applications. Arc welding robot
has begun growing quickly just recently, and already it com-
mands about 20% of industrial robot applications. The major
components of arc welding robots are the manipulator or the
mechanical unit and the controller which are shown in Figs 1,
2 and 3.

Fig. 1. Mobile welding robot arm

Representing this system mathematically leads to a high
order model [24], [26]. Reducing the model to a second or to a
first order increases modeling error. This error which is shown
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Fig. 2. Mobile platform equipments

Fig. 3. Data acquisition equipments

in Fig. 4, can also be due to wide variation of mechanical
and physical properties of the system such as changing the
static friction between the wheels and the rail, the unbalance
platform gravity affected by changing the robot configuration
and the variable platform mass due to the electrode systems.

To collect data for parameter identification, a
microcomputer-based data acquisition equipment shown
in Fig. 3 is used which provides to us set DSo = {uo,k, yo,k}
in which uo,k and yo,k represent respectively system’s input
and response.

III. INTERVAL ANALYSIS

As much as we know, Archimedes was of the early pioneers
who used bounded numbers in his work to calculate π [8]. In
new age and in the beginning of the 20th century, the concept
of the bounded value functions was discussed in [30] and a
formal algebra of multi-value numbers and interval analysis
were developed in [29], [28], [23] and [14] respectively.
Interval analysis has also found its place in engineering [10]
and especially in control engineering [9], [13], [27].

Definition 1: Interval [x] = [x, x] is a closed set of convex
and continuous real numbers defined by lower bound x ∈ <
and upper bound x ∈ <.

Fig. 4. Measured system response without (Left and curve 2) and with
perturbations (curves 1,3,4)

Any uncertain variable x ∈ < whose true value is not
known can be characterized by interval [x, x] such that
x ≤ x ≤ x.1 Operations on intervals are also defined in
such way that the resulting interval always contains the true
result that would be obtained by using exact inputs and exact
calculations.

Theorem 1 (Interval arithmetic operations): [15] In inter-
val arithmetic

1) For all intervals,

−[x] = [−x,−x]

2) For ¦ ∈ {+,−,×,÷}, if (x¦y) is defined for all x ∈ [x]
and y ∈ [y], we have:

[x] ¦ [y] = [min(x ¦ y, x ¦ y, x ¦ y, x ¦ y),
max((x ¦ y, x ¦ y, x ¦ y, x ¦ y))]

3) For monotone function ξ,

ξ([x]) = [min(ξ(x), ξ(x)), max(ξ(x), ξ(x))]

where

ξ([x]) = {ξ(x)|∀x ∈ [x]}

In arithmetic expressions and real functions, one can
replace the variables with intervals and evaluate the resulting
expressions using interval arithmetics.

Definition 2: [f ]([x]) is defined as interval extension of
real function f(x) by replacing real argument x by interval
[x] and real arithmetic operations by their interval counterparts.

It should be noticed that different expressions for the
same real function may produce different interval results. For
instant, interval evaluation of real function f(x) = x2 +x can
be either of the following expressions:

[f ]1([x]) = [x]2 + [x]
[f ]2([x]) = [x]([x] + 1)

1During this work, x (respect. X) is a real-valued variable (respect. a real-
valued vector) and [x] (respect. [X]) is an interval (respect. interval vector).
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[f ]3([x]) = ([x] +
1
2
)2 − 1

4
Theorem 2 (Inclusion property): [15] Suppose that the

arithmetic expression f(z1, ..., zn) can be evaluated at
z1, ..., zn ∈ <, and let

[x1] ⊆ [z1], ..., [xn] ⊆ [zn]

Then:
1) f can be evaluated at [x1], ..., [xn] and

[f ]([x1], ..., [xn]) ⊆ [f ]([z1], ..., [zn])

2) f([z1], ..., [zn]) ⊆ [f ]([z1], ..., [zn])

The former is called the inclusion isotonicity property and
the latter, the range inclusion property.

Any interval can also be described in the normalized form.
Mathematically stated:

[x] = [x, x] = xc + λx × [−1, 1]

mid([x]) = xc = x+x
2 , rad([x]) = λx = x−x

2 ≥ 0

where xc is called the midpoint and λx is called the radius
of interval [x]. Normalized interval form substitutes original
one to simplify interval operations by eliminating min(.) and
max(.) functions from calculations [19].

Definition 3: Interval vector [X] is the counterpart of vector
X whose entries are intervals; that is to say:

[X]T = [[x1], [x2], ..., [xn]]

An interval vector can also be described in the normalized
form. In this case, Xc is the vector of midpoints and λX is
the vector of radiuses of the entries of interval vector [X]:

[X] = Xc + λX . ∗ [υ]

where

Xc =




xc,1

...
xc,n


 , λX =




λx1

...
λxn


 , [υ] =




[−1, 1]
...

[−1, 1]




Symbol .∗ represents entry-by-entry product of two vectors.

Remark 1: A vector with scalar entries determines a
point in space <n whereas a vector of intervals represents a
hypercube in this space.

As mentioned before, normalized form facilitates arithmetic
operations. In which follows, one will need to calculate the
resulting interval of multiplying two interval vectors. Using
this form, we obtain [19]:

[z] = [X]T × [Y ]
= (Xc + λX . ∗ [υ])T × (Yc + λY . ∗ [υ])

Data Acquisition &

Pre-processing


Model structure


Identification semantic


Calculate the parameters of model


Validate the model


Yes :
 Use it
 !


Priori knowledge


No : Revise


Optimization criterion


Fig. 5. System identification schema

where

z = XT
c Yc + |XT

c |λY + λT
X |Yc|+ λT

XλY

z = XT
c Yc − |XT

c |λY − λT
X |Yc| − λT

XλY (1)

IV. LINEAR TIME-VARYING MODEL
Parameter characterization using intervals has already been

studied for input-output and state-space models in [13], [3],
[17] and [2]. Methods which have already been proposed treat
the case in which only system’s response in DS is interval.
Moreover, depending on model structure and identification
semantic, parameter characterization procedure differs [4],
[3], [1]. In this section, a generic approach is proposed for
parameter characterization of any linear structure while both
system’s inputs and responses are characterized by intervals.
Schema 5 proposed by L. Ljung [11] for black-box systems
identification is our guidance while considering minor modi-
fication by adding identification semantic step to adapt it to
set-membership context.

During the data acquisition experience and because of
diverse reason like measurement error, true system’s input uk

and response yk may not be equal to observed values uo,k and
yo,k. If maximum values of eu and ey are known:

eu = max
k

(|uk − uo,k|) , ey = max
k

(|yk − yo,k|)
then the true values can be characterized by intervals:

[u]k = [uo,k − eu, uo,k + eu]
[y]k = [yo,k − ey, yo,k + ey]

which guarantee that:

∀k, uk ∈ [u]k ∧ yk ∈ [y]k

Dataset DS = {[u]k, [y]k} is then used in parameter charac-
terization procedure.
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Fig. 6. Different identification semantics.

A. Semantic of identification
In the case that system’s responses are characterized by

intervals, the identification semantic defines the properties
of model’s parameters and consequently, the specifications
of the model’s output [4]. It is described in the form of
a mathematical (logical) expression made up of quantifiers
∀, ∃ and ¬, parameters and system’s inputs and responses.
For instance, if parameters are identified using the following
semantic:

∀k, ∃yk ∈ [y]k,∃θk ∈ [θ] | yk = θT
k × ϕk (2)

at every instant, system’s response [y]k and model’s output
[env]k have at least one common point; that is:

∀k, [y]k
⋂

[env]k 6= φ

whereas if the semantic is defined as follows:

∀k, ∀yk ∈ [y]k,∃θk ∈ [θ] | yk = θT
k × ϕk (3)

the model’s output includes the system’s response at any
instance; that is:

∀k, [y]k ⊆ [env]k

or in other words:

∀k,

{
yk ≤ envk

envk ≤ y
k

(4)

The system’s response and the model’s output for identification
semantics 2 and 3 are shown in the left and in the right hand-
side of Fig. 6 respectively. The second one is chosen in this
work to characterize model’s parameters. Other identification
semantics have been presented and discussed with more detail
in [4].

B. Optimization criterion
The set of model’s outputs at different instances determines

the wrapping envelope of system’s response:

{[env]} = {[env]1, [env]2, ...}
Smaller the radius of the wrapping envelope, more precisely
the possible system’s responses are characterized (see Fig. 7).
Therefore, the radius of wrapping envelope is defined as the
optimization criterion of model’s parameters.

Definition 4: The radius of wrapping envelope in time
interval from k = i until k = j is the mean-value of its
radius at different instants. Mathematically stated:

OCi,j =
1

j − i + 1

j∑

k=i

envk − envk

2
(5)

Definition 5: The precision of the wrapping envelope in
time interval from k = i until k = j is the exponential
function-value of (−OCi,j); that is:

Pi,j = exp(−OCi,j)

For more details and demonstrations see [21], [19].
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Fig. 7. System’s response and different wrapping envelopes.

C. Model Structure
Probably, the simplest mathematical relationship between

inputs and outputs of a linear time-invariant system in discrete
time is represented by its transfer function:

G(z) =
yk

uk
=

b1z
−1 + b2z

−2 + ... + bnb
z−nb

1 + a1z−1 + a2z−2 + ... + ana
z−na

By developing it, one obtains [11]:

yk + a1yk1 + ... + ana
yk−na

=
b1uk−1 + ... + bnb

uk−nb
+ ek

which can be reformulated in vectoriel form

yk = θT × ϕk + ek (6)

where

θ = [a1, ..., ana
, b1, ..., bnb

, ]T

ϕk = [−yk−1, ..., −yk−na , uk−1, ..., uk−nb
]T

θ is the parameters and ϕk the regression vector of the
model. Additive term ek is usually added to compensate
modeling error. If one fixes na = nb = N , the model is
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an input-output model whereas if he/she fixes na = 0 and
nb = N , it is the finite impulse response of the system. In
both cases, N is called the moving horizon of the model.

We have already argued that modeling error is due to many
facts among which model order reduction and variation of
physical and mechanical properties of system can be cited.
If model’s parameters are considered time-varying, one can
project modeling error on its parameters and eliminate ek from
6; that is to say:

yk = θT
k × ϕk

where

θk = [a1,k, ..., ana,k, b1,k, ..., bnb,k]T

Parameter vector θk carries index k to demonstrate that its
entries are not constant scalars anymore and vary in time.

System analysis using a model with time-varying parameters
is complicated and time-consuming. To obtain a time-invariant
model which is true at any instant, one can characterized time-
variant parameters vector θT

k by interval vector [θ] such that:

∀k, θk ∈ [θ]

In this case, model’s output is obtain from:

[env]k = [θ]T × ϕk

If vector ϕk contains also uncertain entries, it is replaced by
interval vector [ϕ]k for which it is guaranteed that ϕk ∈ [ϕ]k.
One consequently obtains a more general vectoriel form of the
model:

[env]k = [θ]T × [ϕ]k

Considering 1, the upper and the lower bounds of output
interval [env]k are:

envk = θT
c ϕk,c + |θT

c |λϕk
+ λT

θ |ϕk,c|+ λT
θ λϕk

envk = θT
c ϕk,c − |θT

c |λϕk
− λT

θ |ϕk,c| − λT
θ λϕk

(7)

where

θc = mid([θ]) ∈ <N+1ϕk,c = mid([ϕ]k) ∈ <N+1

λθ = rad([θ]) ∈ <N+1 λϕk
= rad([ϕ]k) ∈ <N+1

In 7, θc and λθ are model’s parameters which should be
identified.

There exist different numerical methods to characterize
parameters of LTV M [3], [2]. Parameters characterization
using the semantic of 3 can easily be reformulated in the form
of an optimization problem subject to a set of constraints. Con-
sidering optimization criterion in 5 and the pair of inequalities
in 4 we obtain:

min
θc,λθ

(OCi,j) = min
θc,λθ

(
1

j − i + 1

j∑

k=i

envk − envk

2
) (8)

subject to

∀k,

{
yk ≤ envk

envk ≤ y
k

in which envk and envk are substituted from 7. By finding
the minimizer2 of objective function OCi,j , one can obtain
model’s parameter vector [θ]. Because of non-linear term
|θT

c | in the objective function and in the constraints, it is
a non-linear optimization problem subject to non-linear
constraints with respect to the parameters vectors θc and λθ .

Parameter characterization method proposed in this section
is not limited in input-output or impulse response models. Any
other linear model which can be transferred in the form of 6,
i.e. inner product of a parameter and a regression vector, can
also be treated using this method.

Another point to be noted is that in any dynamic model,
parameters can not be characterized before instant k < N as
the entries of regressor vector are not available. This problem
also appears in simulation where the model’s output can not be
calculated before instant k ≤ N . In other words, the model is
not valid in its moving horizon. A parameter identification pro-
cedure based on model order reduction/increase respectively
during/after model’s moving horizon has been proposed in
[20]. Using this procedure, a set of parameters is assigned to
the model and consequently, model’s output can be calculated
at any instant.

V. PIECEWISE PARAMETERS OF LTVM
In the previous sections, a method has been proposed to

identify the parameters of complex systems. To obtain a time-
invariant model, variant parameters have been characterized
by intervals. However, if the variations of parameters are con-
siderable, interval parameters will be large and consequently,
LTV M produces a wide wrapping envelope which may not
be of use from academical or technical point of view.

To improve the precision, we suggest a novel strategy to
split system’s operating regime (SOR) into several segments
and to represent every segment by a set of parameters. In
which follows, every segment of SOR is called an operating
mode (OM ) and its corresponding parameters set is called
local parameters set (LPS). At any instant, model uses the
parameters set which matches the best to current SOP . For a
non-linear system, this approach is very likely to linearizing
the system around different operating points and for a hybrid
system, it means to represent every system’s operating mode
by a set of LPS.

It is supposed that every SOR can be determined by
system’s state variables in observable state space. For piece-
wise linear modeling of such a system, following steps are
performed:

A. Determining characteristic variables

They are the variables by which every SOR can be
determined in observable state space [25], [21]. Since they

2A local (respect. global) minimizer is a set of parameters that minimizes
locally (respect. globally) the value of the objective function.
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are not known a priori, the entries of the regressor vector
are supposed to be. Hence, the space of the characteristic
variables is regressor space χϕ. At any instant k, ϕk (respect.
[ϕk]) represents a point (respect. a hypercube) in this space.

B. Splitting system’s operating regime

In this step, the objective is to split SOR into several
segments SORi and to characterize LPSi of LTV M using
subset DSi ⊆ DS which corresponds to SORi. LTV M with
LPSi will then represent SORi. To do that, a strategy based
on the precision of wrapping envelope is proposed in which
follows.

Suppose that the desired precision is user-defined value
prcn and suppose that the last OM has already been fin-
ished at instant bgn. Before instant bgn, i − 1 modes have
been detected and therefore, at instant bgn, we enter in the
ith one. At the beginning, the initial data set for current
mode is supposed to include only the minimum number of
points to characterize LPSi local parameters that is DSi =
DSbgn,b+N = {([u]k, [y]k)|bgn ≤ k ≤ bgn+N}. Since this is
a minimum number of necessary points, the wrapping envelope
is the most possible precise one 3. If Pbgn,bgn+N < prcn, then
prcn should be modified since even for the least number of
points, it can not be achieved.

In the next step, point bgn + N + 1 is added to DSi

and local parameters are re-characterized using DSi =
DSbgn,bgn+N+1. If Pbgn,bgn+N+1 is still superior than prcn,
it demonstrates that this point can be included in OMi.
Following points are added one after the others until instant s
at which if point ([u]s, [y]s) is added to DSi, Pbgn,s becomes
less than prcn. This indicates that OMi can not handle any
other point. DSi = DSbgn,s−1

o , LPSi are characterized using
DSi and new OMi+1 starts at instant bgn+s. This procedure
is followed for all the points in DS. At the end of this
procedure which is shown in Fig. 8, DS is divided into m
disjoints subsets DSi, i = 1, ...,m. See Appendix I for the
splitting algorithm.

 N
 points


DS
 of
 operating mode
 i


 N
 points


Detecting new operating mode


bgn
 bgn
+N-1
 bgn
+s-1


k


bgn
+s+N-1


Fig. 8. Splitting system’s operating regime.

The value of prcn plays an important role in producing
proper SOR divisions. One may proceed a preliminary
analysis to observe the evolution of precision Pi,j with
respect to i and j and to chose an adequate value for prcn.
An alternative strategy for splitting SOR based on the
consistency of system’s response with estimated one has
already been suggested in [21] [19].

3If the true value of system inputs and outputs are known, then
Pbgn,bgn+N = 1.

C. Precision Improvement

As can be realized, the smaller the amount of precision
is, the more accurate the model would be. Its cost is the
complexity of the model that would appear in the number
of LPS sets. So, a trade off should be done between the
modeling precision and the number of its LPS sets. However,
it happens that an slight increase in prcn has no effect on the
number of sets. Then, the most amount of precision is sought
in interval [prcn, 1] in such a way that the same number of
modes is required to describe the system. It is accomplished
by bisecting interval [prcn, 1] and by observing the solutions,
i.e. the number of modes, in the bisected sections. If it is
found in the upper section [ 1+prcn

2 , 1], we continue bisecting
the upper one otherwise [prcn, 1+prcn

2 ] would be the interval
which would be bisected in the next step. The procedure
is continued until the radius of obtained interval on prcn
becomes less than allowed tolerance tlrn which is also a user
defined value. The lower bound of the final interval would be
the optimal value for prcn (see Appendix II for the algorithm).

D. Determining the validity domain of local parameters sets

To determine validity domain (V D) of any LPS, theorem
3 is presented (see [19] and appendix C for the proof):

Theorem 3 (The validity domain of LPS): For a system of
order n, suppose that the validity domain of any system’s
operating regime is a convex hull in observable state space.
Then, it is also a convex hull in input-output space Sχ1 =
{uk−1, ..., uk−n, yk−1, ..., yk−n} or reduced input-output
space Sχ2 = {uk−1, ..., uk−n−1, yk, ..., yk−n−1}.
If the V D of any SORi is a convex hull in input-output
space, then the V D of OMi and consequently, the V D of
LPSi is also a convex hull in input-output space. Entries
of any DSi determines a set of points (or hypercubes) by
vectors χ1

k = [uk−1, ..., uk−n, yk−1, ..., yk−n] or χ2
k =

[uk−1, ..., uk−n−1, yk, ..., yk−n−1] which occupies a region
in Sχ2 or Sχ2 respectively. This region is an approximation
of LPSi validity domain (see Fig. 9).

input-output space
 system's output space


1
CH


3
CH


2
CH


1
LP


2
LP


3
LP


1
SOR


2
SOR


3
SOR


Fig. 9. Validity of local parameters sets in Sχ.

Definition 6: The validity domain of LPSi is convex hull
CHi

χ of points/hypercubes determined by DSi in space χ.
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Definition 7: Consequently, LPSi is valid at instant k iff
vector χk is in convex hull CHi

χ or has at least one common
point with it. Mathematically stated:

χk ∈ CHi
χ or [χ]k

⋂
CHi

χ 6= φ

As mentioned before, convex hull CHi
χ is an approximation

of LPSi validity domain. More DSi is informative, more
CHi

χ approaches the true domain. If calculating convex hull
CHi

χ is time-consuming (because its dimensions or the num-
ber of entries of DSi) or its form is complex (because of the
high number of vertexes and sides), for simplicity reasons,
this convex hull can be approximated by its smallest outer
hypercube noted as ♦CHi

χ. Therefore:

CHi
χ ⊆ ♦CHi

χ

In some cases, convex hulls i.e. validity domains of LPS
intersect. The most important reason for this phenomenon is
uncertainty on system’s observations. If the entries of DS are
real values, vector χk determines a single point in space Sχ

whereas if they are intervals, interval vector [χ]k represents a
hypercube in this space. Consequently, convex hulls are more
voluminous and may intersect. This phenomenon is shown
in Fig. 10 for a finite response model with N = 2. In the
left, the convex hulls do not intersect whereas in the right,
they are not disjoints hulls anymore. For more details and
discussions, see [19].
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Fig. 10. Validity domain of two LPS without and with uncertainty on
measurements.

E. Aggregating similar local parameters sets

During data acquisition procedure, system may enter
several times in an identical operating regime. In this case,
the data corresponds to one OM may be found in disjoint
time intervals in DS. As proposed splitting method dose not
verify whether the following OM is a new or a mode which
has already been identified, several LPS may be assigned to
one SOR. Principally, this makes no problem. However, to
diminish the number of LPS we try to aggregate PLs which
represent an identical SOR. The following proposed solution
is based on the validity domains of LPS. For two different
convex hulls CHi and CHj , three different cases may happen.

The first case is that the former is the subset of the latter.
Mathematically stated:

CHi ⊆ CHj

In this case regarding to definition 7, LPSj is valid as soon
as LPSi. Therefore, the former is considered as subset of the
latter. LPSi is eliminated and TDSi is added to DSj . LPSj

are then re-characterized using DSi ∪ DSj and the validity
domain of new LPSj is convex hull CHj .

The second case happens when they intersect, but neither
does include the other one. i.e:

(CHi
⋂

CHj 6= φ)∧(
CHi

⋂
CHj 6= CHi ∧ CHi

⋂
CHj 6= CHj

)

In this case, only at some instances both LPSi and LPSj are
valid simultaneously and non of them includes completely
the other one. Therefore, no aggregation is performed since
it may reduce modeling precision considerably.

In the third case, they are two disjoint convex hulls. In other
words:

CHi
⋂

CHj = φ

which means that model LPSi and model LPSj describe
two different SOR. Therefore, no aggregation is made.

The above rules should be applied to every pair of validity
domains (CHi, CHj) to eliminate as many repeated LPS
as possible and to simplify the structure of LTV M . To
make the aggregation procedure easier, one may also use
outer hypercube approximations (♦CHi,♦CHj) rather than
convex hulls (CHi, CHi).

Aggregating similar local models, which describe identical
operating modes, is the last step in piecewise parameters
characterization. At the end of this stage, one obtain a set
of LPS and the corresponding convex hulls which determine
the validity of every parameters set. This model can then be
used to carry out the n-step prediction of the system’s response
in process safety or to simulate the system in fault detection
and diagnosis.

VI. NUMERICAL EXAMPLE

The reduced order model of the system without any pertur-
bation is described by:

G(S) =
Y(S)

E(S)
=

s + 2.3
s2 + 6.6s + 1.67

(9)

If model’s parameters are considered time-variant, the model
follows system’s response more precisely. This is shown in
Fig. 11. Parameters variations of LTV M are shown in Fig.
12. This result illustrates that the piecewise parameters of
LTV M have a substantial effect on the system’s responses.
The precision of this model has been worked out using
identification algorithms presented in appendixes I and II.
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Fig. 11. curve 1: System’s response without perturbation. Curve 2: Tuning
model response. Curve 3: System’s response with perturbation.

Fig. 12. Time-Varying coefficients of LTV M of Eq. 9.

VII. CONCLUSION

In this paper, we demonstrated that in systems identification,
how modeling error can be taken into account using LTV M .
Since manipulating such a model is time-consuming from
processing point of view and complex to analysis, parameters
have been characterized by intervals. The model then can
predict all possible system’s responses encapsulated in a tube
called wrapping envelope. This model can be used in system
analysis and control in applications such as process safety in
which ignorance of modeling error may cause catastrophic
consequences. Moreover, the LTV M model’s moving horizon
given in this paper is useful in determining the optimal
parameters of controller or regulator.

APPENDIX I
SOR SPLITTING ALGORITHM

prcn: user defined modeling precision
DS: System measurements

N: Moving horizon of LTV M

1) Start
2) bgn = 1, end = N, i = 1, DSi = DSbgn,end

3) While end < (the number of DS’s entries)
a) Characterize LPSi using DSi

b) If Pbgn,end < prcn

i) Get DSi = DSbgn,end−1

ii) Characterize LPSi using DSi

iii) i = i + 1
iv) bgn = end
v) end = bgn + N

vi) Go to 3
c) Else

i) end = end + 1
ii) DSi = DSbgn,end

iii) Go to 3
4) End

APPENDIX II
PRECISION IMPROVEMENT ALGORITHM

prcn: Maximum allowed modeling precision for every
piecewise linear model. By using this value in Algorithm 1,
system’s operating regime has been split into m segments.
tlrn: Allowed tolerance on prcn

1) Start
2) upper=1 , lower=prcn
3) While (upper-lower) > tlrn

a) c = (upper + lower)/2
b) Repeat algorithm 1 by taking prcn = c
c) If (number of operating modes) > M

i) upper=c
d) Else

i) lower=c
e) End

4) End

APPENDIX III
PROOF OF THE VALIDITY DOMAIN OF LPS

The theorem is proven for a first order and a second order
dynamic system. However, it can easily be proven in the
same way for a system of any order.

Proof: The dynamic of a first order SISO system in
observable state space can be described by the following
equations:

xk+1 = a× xk + b× uk

yk = xk (10)

where a, b ∈ < are known, xk ∈ < is the state variable and
uk, yk ∈ < are the system’s input and response respectively.
According the hypothesis of the theorem, the validity domain
of SORi is convex hull CHi

{x} in state space S{x} which
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can be determined by a set of linear inequality constraints as
followings:

CHi
{x} = {x | ∀j, αi,j × x + γi,j ≤ 0} (11)

where j is the index of inequality constraint and αi,j , γi,j ∈ <
are known. From 10 one has:

xk = yk (12)

Inserting 12 into 11, one obtains:

CHi
{y} = {y | ∀j, αi,j × y + γi,j ≤ 0} (13)

Equations 11 and 13 shows that if the validity domain
of SORi is a convex hull in observable state space, it can
also be determined as a convex hull in input-output space S{y}.

Identical to the first order system, the dynamic of a second
order SISO system can be described as follows:

Xk+1 =
[

0 a2

1 a1

]
×Xk + B × uk

yk =
[

0 1
]×Xk (14)

where Xk = [x1,k, x2,k]T . According to the hypothesis of the
theorem, the validity domain of SORi in the observable space
space is convex hull CHi

{x1,x2}:

CHi
{x1,x2} =

{
X | [

αi,j βi,j

]×X + γi,j ≤ 0
}

(15)

where αi,j , βi,j , δi,j ∈ < are known. Calculating x1,k and
x2,k form 14 with respect to a1, a2, b1, b2 and yk and
inserting them into 15, one obtains:

CHi
{χ1} = {χ1 | [

αi,j βi,j

]×
[

a2 0 b1 0
a1 a2 b2 b1

]

× χ1 + γi,j ≤ 0} (16)

where χ1 = [yk−1, yk−2, uk−1, uk−2]T and

CHi
{χ2} = {χ2 | [

αi,j βi,j

]×
[

0 a2 b1

1 0 0

]

× χ2 + γi,j ≤ 0} (17)

where χ2 = [yk, yk−1, uk−1]T . Equations 16 and 17 show
that if the hypothesis of the theorem is true, the validity
domains of any SORi of a second order SISO system is a
convex hull in input-output space Sχ

1 or reduced input-output
space Sχ

2 as well.
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