

Abstract—Today’s advanced research areas such as DNA
computing, different branches of nanotechnology, immune cell
system and optical computing require extensive data processing.
Therefore, parallel processing systems with sophisticated hardware
and software platforms are widely used. Furthermore, implementing
the right algorithm which affects the overall execution time is a
challenging task. This paper presents the principle of a massively
parallel processing system based on Master-Slave Super-Super
Hypercube 4-Cube (MS3H4-Cube) topology which could be easily
implemented by using SGI products. Moreover, it is verified that the
execution time of a matrix product is shorter when is applied on
Master- Slave Super-Hypercube (MSSHP) compared with Hypercube
(HP) topology.

Keywords—Architecture, Execution Time, Master-Slave,
Matrix Product, Super-Hypercube

I. INTRODUCTION
ARALLEL processing systems are commonly applied in
areas such as military, space, signal processing, image
processing and pattern recognition that require high

computational power. HP architectures perform well for a
large range of problems. It is well suited for both general-
purpose and special-purpose applications. They are mainly
used in matrix operations, sorting, signal and image
processing where extensive data processing is required [1].
In HP architectures when communication between two
indirectly connected Processing Elements (PEs) is required,
the message has to cross one or more hyper-planes and go
through intermediate PEs before reaching its destination. The
PEs involved are required to compute and handle message-
passing, which reduces the overall computational power and
performance. In addition, if one of the intermediate PEs is
faulty or busy performing tasks, there will be a significant
downtime in communication between the source and
destination PEs. In order to overcome HP limitations such as

Manuscript received Jov 6, 2007: Revised version received Mar 12, 2008.
F. M. Amiripour is with Monash University , Department of Electrical and

Computer Systems Engineering, Victoria 3800, Australia. (phone: +613
99053824; fax:+613 99053454; e-mail: maryam.amiripour@
eng.monash.edu.au).

S. H. Abachi is with Monash University , Department of Electrical and
Computer Systems Engineering, Victoria 3800, Australia. (phone: +613
99053824; fax:+613 99053454; e-mail: hamid.abachi@ eng.monash.edu.au).

routing and expandability, a sub-class of the HP architecture
namely Super-Hypercube (SHP) is used [2]. This architecture
includes applying a Router (R) to the basic HP. This router
acts as a crossbar switch, which can provide a communication
path between indirect PEs. Its usage in conjunction with SGI
(Silicon Graphics Inc.) products relieves the processor of the
routing task and provides more efficient computing activities.
Another configuration could be to include one extra PE
(Master-Processor) which through a Master-Router (MR) is
connected to the remaining PEs (Slave-Processors). This
configuration called Master-Slave Super-Hypercube (MSSHP)
as shown in Figure 1. As far as the interconnectivity of the
proposed architecture is concerned, this architecture falls into
a new interconnection category.
As reported in [3], interconnection networks can be classified
as either dynamic or static. The former interconnection is
designed by using switches to connect PEs together. On the
other hand, the latter deals with the networks consist of point-
to-point communication links among PEs. In the proposed
topology, the adjacent PEs are directly connected together
without use of the Router (R) and indirect PEs are connected
together through a Router (R).
The MSSHP outlined in this paper uses combination of both
categories (dynamic and static). In this paper it is coined as
Dynamic-Static (Daynastatic) interconnection.

PE

PE

PEPE

PE

PEPE

PE

MR

Master

Fig. 1 Master-Slave Super-Hypercube architecture

II. DESCRIPTION OF MS3H4-CUBE ARCHITECTURE

The basic building blocks of this architecture as shown in
Figure 2 and previously reported in [4], is based on the SHP
architecture.
Under this arrangement, each processing element in each
Super-Super-hypercube which contains the Router , is
itself a SHP with the Router .

Impact of New Sub-Classes of Hypercube
Topology on Execution Time of Matrix

Multiplication
First M. Amiripour, Second H. Abachi

P

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Voume 2, 2008 118

The processing element with the Router is called satellite
slave. In general, the overall control and management of the
system is carried out by a Master-Processor. For this reason
the overall architecture is called Master-Slave Super-Super-
Hypercube n-cube architecture (MSSSHn-Cube), or further
abbreviated as . Figure 2 illustrates the
interconnection of two Super-Super-Hypercube which results
in construction of topology. However, upon
availability of technology and hardware capability this could
be extended to Super-Super-Hypercube arrangement.

Fig. 2 architecture

A. Operation of Architecture

As it was reported in [5], Master-Slave tasking is a simple yet
widely used technique to execute independent task under the
centeralised supervision of a Master-Processor. the operation
of architecture in a massively parallel
processing system as reported in [6] can best be explained as
follows.
The main role of the Master-Processor is the task allocation
and overall management and control of the system. To achieve
this goal, undoubtedly, the Master-Processor needs to posses
faster processing capability and additional memory capacity to
be able to have full control of the system management. Once
the main task is divided into multiple sub-tasks, then it is
placed in the main memory of the Master-Processor. At this
point there are two possibilities that one can consider:
 1- Either to use the routers as crossbar switches, without any
processing capabilities, to direct the packages from source to
destinations and vice-versa. Therefore, for transmitting a
subtask from the Master-Processor to Slave 1 in the satellite
slave configuration that contains Router , first the subtask
would find its way through to and then would reach
to the processing element . In this context, one
could provide direct connections between the Master-
Processor and routers

 which will
bypass router .
 2- To incorporate some processing capabilities and memory
facilities within each router

In this
scenario, the subtask could be saved in the memory of each
router (for example first in and then in), before
reaching its final destination in . In reality one can
consider the routers as co-Master-Processors in this
arrangement.
The advantage and disadvantage of each approach can be
explained as follows. In the first case although data
transmission and computation is faster, the overall fault-
tolerance of the system is lower if there is a fault in the
Master-Processor. On the other hand, the second approach
may seem a bit involved and slower than the first case but if
there is a hardware or software fault within the Master-
Processor, the overall system is not subject to a catastrophic
failure. This is due to the fact that routers have memory and
processing capabilities and they in turn can act as co-Master-
Processor within their own SHP arrangement. The transfer of
data and information can take place through a direct
connection that is provided for this purpose. So far as the
multiprocessor scheduling which is a challenging problem in
the real time system theory is concerned, one has to consider
two main strategies. These are: partitioning strategy and
global strategy.

In former scenario a task is allocated to a processor and is
executed by that processor. The latter deals with the case
when at any instance a task can be executed on any processor
or even be preempted and moved to a different processor
before is completed [7]. In the proposed architecture, the
former scheme is adopted for the task allocation methodology.

In operation of the proposed architecture after the task is
divided into a number of subtasks, they are allocated through

 and to each satellite slave processor for execution.
After completion of execution of each subtask, a copy of the
result is saved in the memory of each co-Master-Processor
(assuming that is level one and is level two co-
Master-Processors) plus the memory of the main Master-
Processor. This precaution is taken to minimize a catastrophic
failure that could result if the Master-Processor failed.
Upon completion of each subtask, the satellite slave processor
would request allocation of the next available subtask by
sending an interrupt request signal through appropriate
channels to the Master-Processor. This procedure will
continue until all the subtasks are executed and results are
collected by the Master-Processor. In the case when the
subtasks are independent of one another and the execution
time is the same, then that results in simultaneous interrupt
request signals arriving at the co-Master-Processors and
subsequently at the Master-Processor. In order to resolve the
conflict resulting from initiation of simultaneous interrupt
requests, the system designer through either hardware or
software arrangement can assign priority to different satellite
slave processors where they will receive services according to
their priorities. Of course implementation of software priority
scheme would be more convenient than a hardware approach.
This is due to the fact that rearranging priority through
software means reprogramming of the control register

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Voume 2, 2008 119

belonging to the interrupt priority controller device, whereas
the hardware approach needs rearranging connection of
priority signals to different satellite slave processors. The
latter naturally is more time consuming and hence more
inconvenient. It is worth noting that while satellite slave
processors are engaged in the execution of subtasks, co-
Master-Processors as well as the Master-Processor can be
involved in the supervisory and control of the overall system.
In addition, a precautionary approach could be implemented
that includes random execution of subtasks and its comparison
with results obtained by the satellite slave processors.
Nevertheless, in the event of any discrepancy, the warning
arrangement which is incorporated within the control section
of the Master-Processor would generate a warning signal
indicating either a hardware malfunctioning or a software
failure in the system which contributed towards this
discrepancy.
Incorporation of the former approach would improve the
control and management procedures whereas the
implementation of the latter would undoubtedly enhance the
reliability of such a dedicated message- passing architecture.
Furthermore, implementation of Artificial Intelligence and
Expert System within the operating system of Master-
Processor would significantly enhance the performance of the
overall system.

 B. The Building Blocks of MS3H4-Cube Architecture

The building block of each processing element and the
router proposed for this topology are based on the technology
developed by Silicon Graphics Inc (SGI)[8]. It is believed that
this product provides a suitable test-bed for this investigation.
Although SGI has many products that are specifically
designed to be used in multiprocessor environment, the most
recent and suitable architectures (Altix 3700Bx2 series) has
been chosen to be used in the design of the building blocks of
MS3H4-Cube architecture [3].

III. MATRIX PRODUCT ON DISTRIBUTED MEMORY SYSTEMS (DMS)

In many applications, matrix multiplication involves dealing
with different sizes (squares vs. rectangular) and may include
the communication cost. The size of the matrix can
significantly impact on the performance of parallel matrix
multiplication algorithm.
This section outlines the general mathematical model for
square matrix multiplication.

A. Basic Concepts, Definitions and Assumptions
Let and be matrices of size and
respectively. The product of and is a matrix of size

 which denoted by and is given by:

for each pair and with and .

For the purpose of this paper, we perform a matrix
multiplication on a DMS which is more favorable than shared
memory. In doing so, we consider the following definitions
[9]:

Definition 1: In order to construct our mathematical model,
we consider that a DMS can support one-to-one
communication in time unit. For this purpose, a fast
and scalable parallel matrix algorithm is required.

Definition 2: We assume that a DMS consists of PEs

 with their own local
memory . In addition, we consider that
PEs have the capability of communicating with each other
through message- passing scheme. Moreover, the computation
and communication are globally synchronized into steps. That
is to say, a step is either a computation step or a
communication step. In former, each PE has a capability of
performing a local logic/ arithmetic operation or in worse
scenario is idle and it utilises constant amount of time.
In latter, PEs could communicate with one another bio-
directionally via an interconnection network. In this case, a
communication step can be mathematically expressed as:

 where
 . This results in PE sending a value to PE

 and is a mapping
.

Definition 3: If PE doesn’t send any messages during the
communication step, then and is undefined.
However, in a practical situation, there is at most one j such
that . This implies that each PE can maximum
receive one message in one-to-one communication step. This
also reviles that based on definition 1, the DMS supports the
above communication step in time unit.
From a practical application point of view, in the busiest
communication step, every PE sends a message to another
processor and is a permutation
of

Definition 4: Based on the above definitions and assumptions,
if a computation step and the communication step in
performing a parallel task on a DMS, are and
respectively, then the execution time of performing parallel
tasks can be presented as: .
Furthermore, if the number of PEs in parallel processing
system is less than the required sub-tasks, then the execution
time can be shown as:

 (1)

where is the problem size, is the number of PEs
available, is the execution time of the best sequential
algorithm, and is the overall
communication overhead of a parallel computation.

 From an algorithmic point of view, a DMS is characterized by
the function which measures the communication
capability of the interconnection network.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Voume 2, 2008 120

According to [10], the fastest sequential algorithm for matrix
multiplication has the execution time of where
currently the best value for is 2.3755.
Based on these definitions, we try to find out the best time of
running this sequential algorithm in parallel form on
Hypercube and Super-Hypercube.

IV. MATRIX PRODUCT ON HP AND SHP

In multiplying two matrices where the number of PEs
is less than the number of sub-tasks , i.e. , we
assume that is an integer such that i.e. which
has the matrices of sub-matrices (i.e., all the matrices

 and are partitioned to sub-
matrices of size). Therefore, one can conclude that, in
terms of computation time, if we multiply matrix by

 matrix sequentially on PEs it will take units of
time.

A. Computation of the Communication Time for Matrix
Product on HP and SHP
As we know the identification of each PE in dimensional
HP is based on their binary representation. The set of PEs
which are distance from one PE to another in HP is showed
by and it includes PEs. Since HP is a symmetrical
architecture, so any algorithm which is written for any PE can
be converted to an identical algorithm for PE

by binary product of all PE i.d’s
referenced in any specific PE algorithm with .
We assume that it takes time for a PE to
send a message of length to a neighbor, where
represents the transfer rate of a message and the time for
start up and termination.

B. Analysis of Mathematical Modeling
According to [11], the fastest possible time for one PE in
dimensional HP to send a message to an arbitrary PE with
distance is

 (2)
 In this scenario, we assume that all PEs can communicate to
one another simultaneously. So, when multiplying two
matrices of size on a -dimensional HP by applying
sub-matrices of size , each PE can broadcast the

message of length . For calculating the communication time

in the HP, we consider the worse case scenario. This simply
implies that if we intend to send a message of length from

any PE to the farthest PE (), that would include
the communication time for all the PEs within this range.
Therefore, the time takes to multiply two matrices in
forms of sub-matrices on a HP is:

This results in:

 (3)

where denotes the number of PEs in HP.
Now we are in the position to expand the above methodology
to cover the SHP architecture. This means for the case of
SHP:

By including the Router (R) in the middle of HP, we have
provided a direct connection between any two PEs in HP.
Therefore, all PEs in SHP are in equal distance to one another.
Moreover, the required time to multiply two matrices
in form of sub-matrices on a SHP is:

 (4)

Where is the number of PEs in SHP. In driving equation
(4) we assumed that

C. Execution Time of Matrix Product on HP Architecture
In HP architecture when processing is carried out in parallel, it
is best to assume that one of the processors acts as the Master-

Processor which sends the message of size to each slave

processor for processing purpose. In this case, the Slave-
Processors after receiving the allocated subtasks perform the
inner product of sub-matrices and upon their completion will
send the results back to the Master-Processor for summation.
This process includes scatter and gather which means the
Master-Processor sends a piece of data of equal size to all the
Slave-Processors and then all the Slave-Processors send k
pieces of data of the same length to the Master-Processor [12].

Therefore, the time that it takes a message of length to be

sent from the Master-Processor to a single Slave Processor is:

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Voume 2, 2008 121

 And the time that it takes the massage to be received by a
single Slave-Processor is:

Therefore, sending and receiving a message to and from a
single slave processor takes the following unit of times:

Finally, the total time to send a message of length to all

the Slave-Processors and the time that it takes to receive it
from them is:

Further substitution and simplification results in having the
parallel time execution of a matrix product on HP as:

(5)

V. EXECUTION TIME OF MATRIX PRODUCT ON
MSSHP
As we know the identification of each PE in dimensional
HP is based on their binary representation. The set of PEs
which are distance from one PE to another in HP is showed
by and it includes PEs. Since HP is a symmetrical
architecture, so any algorithm which is written for any PE can
be converted to an identical algorithm for PE

by binary product of all PE i.d’s
referenced in any specific PE algorithm with . We assume
that it takes time for a PE to send a message
of length to a neighbor, where represents the transfer
rate of a message and the time for start up and
termination.

By further expansion, we can conclude that, the parallel time
computation of MSSHP can be presented as:

(6)

 To derive the above expression, we assume that:

• the Master-Processor has the processing capability ;
• the allocation of sub-tasks by the Master-Processor to each
Slave-Processor is carried out one at a time;
• the Slave-Processors start to process after receiving entire
message and can not communicate with one another or with
the Master-Processor before completing the execution of the
current subtask;
• the utlised platform is homogenous; and
• the result of execution of each subtask is return to the
Master-Processor for further processing.

This model is then extended to derive the analytical modeling
of task scheduling for the MSSHP architecture.

 (7)

At this stage we use the existing mathematical models
derived so far to demonstrate the graphical presentations of
the execution time of matrix product on both HP and
MSSHP architecture. Figure 3 illustrates the graphical
presentation for Matrix Multiplication with a variable
number of PEs on HP and MSSHP. However Figure 4
provides the graphical presentation for Matrix Multiplication
with variable Matrix Sizes on HP and MSSHP.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Voume 2, 2008 122

Fig. 3 graphical presentation for matrix product with variable number
of PEs on HP and MSSHP

Matrix Multiplication

0

200

400

600

800

1000

1200

30 40 50 60 70

Size of Matrix

Ti
m

e
Un

it

HP
MSSHP

Fig. 4 graphical presentation for matrix product with variable matrix
sizes on HP and MSSHP

VI. PROCEDURE FOR CALCULATING THE
EXECUTION TIME OF MATRIX MULTIPLICATION ON

MS3H4-CUBE
As indicated earlier, the role of the router can either be
considered as being a cross bar switch for providing
communication path between two indirect nodes, or it can
have some processing capability and could be considered as a
co-Master-Processor. In the first case, the execution time can
have the general form of:

Moreover, in case of router acting as the co-Master-Processor,
the general form of the execution time takes the general form
of:

However, the full description and further expansion of these
mathematical expressions will be revisited in our future
work.

.

VII. CONCLUSION
This paper has addressed the impact of new sub-classes of HP
topology on execution time of matrix multiplication. To
achieve this, we have highlighted the concept of MSSHP
architecture which has led to the introduction of a topology
entitled MS3H 4-Cube architecture. Furthermore, the
communication time and the overall execution time of matrix
product on HP and consequently on MSSHP architecture have
been outlined. This has provided the foundation to proceed
with driving a similar mathematical modeling applicable to
MS3H 4-Cube architecture.

 We have concluded that the completion time of matrix
multiplication when we vary the number of PEs or the size of
matrix is shorter for MSSHP when has been compared to that
of HP architecture.

This claim can be justified by considering the effect of having
a router in the HP topology which results in offering an
optimized communication path. Consequently, this improves
the final expression for the communication cost and overall
time execution of a matrix chain product. Lack of this
inclusion is highly noticeable, when one experiences either a
busy or faulty intermediate node between two indirect nodes
in a HP topology. Of course in this scenario, the performance
of the massively parallel processing system will be
significantly degraded.

As far as the future work is concerned, we intend to expand
the expressions for the communication cost and the execution
time of a matrix product on the MS3H 4-Cube topology. This
then leads to arriving at an appropriate task scheduling for the

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Voume 2, 2008 123

MS3H4-Cube architecture. To validate this analysis, we intend
to compare our findings with benchmark results using SGI
products. Further to this justification, we will choose the most
appropriate architecture in literature and will compare our
findings to support our claims.

REFERENCES
 [1] J. Walker, “Performance, Reliability and Cost Analysis of Message
Passing Architecture.” Master of Engineering Thesis” Department of
Electrical and Computer Systems Engineering Monash University, Feb 1998.

[2] H. Abachi and J. Walker. “Simulation Modeling of Fault-Tolerant
Hypercube, Super-Hypercube and Torus Networks” Proceeding of 12th
International Conference on Computers and Their Applications (ISCA),
Arizona, U.S.A, 50-53 March 1997

[3] A. Grama, ; A. Gupta; G. Karypis; and V. Kumar. “Introduction to
Parallel Computing” Addison Wesley, U.S.A. 2003.

[4] Amiripour, M.; H. Abachi; and R. Lee. “Total System Cost and Average
Routing Distance Analysis of Master-Slave Super-Super-Hypercube 4-Cube
Message-Passing Architecture” The International Journal of Computer and
Information Science (IJCIS), Vol 10, No 2, pp. 269-279 June 2007.

 [5] Beaumont, O; A. Legrand and Y. Robert, “The Master-Slave Paradigm
with Heterogonous Processors” IEEE Transactions on Parallel and
Distributed Systems, Vol. 14, No 9, pp. 897-908, Sep 2003.

[6] Amiripour. M, Abachi. H, "Average Routing Distance Analysis and
Comparison of Master-Slave Super-Super-Hypercube 4-Cube Topology with
different Message Passing Architectures" 6th IEEE/ ACIS International
Conference on Computer and Information Science (ICIS), Australia, pp. 622-
628 July 2007.

[7] Lo'pez. J et al. "Minimum and Maximum Utilisation Bounds for
Multiprocessor Rate Monotonic Scheduling" IEEE Transactions on Parallel
and Distributed Systems, Vol 15, no. 7, pp.642-653, July. 2004.

[8] Sillicon Graphics Inc, "Hardware: End-User, Altix 3700 Bx2" System
Overview, Chapter 3, U.S.A, 2004, PP.1-6.

 [9] Li, K. “Analysis of Parallel Algorithms for Matrix Chain Product and
Matrix Powers on Distributed Memory Systems.” IEEE Transaction on
Parallel and Distributed Systems, Vol. 18, No. 7 July 2007.

[10] Coppersmith, D and S. Winograd. “Matrix Multiplication via Arithmetic
Progressions” Symbolic Computation Vol. 9, pp 251-280, 1990.

[11] F. Stout, Q. and B. Wagar, “Intensive Hypercube Communication:
Prearranged Communication in Link-Bound Machines.” Journal of Parallel
and Distributed Computing 10, 167-181, 1990

[12] Y. Saad, and M.H. Schultz, “Data Communication in Hypercube.”
Journal of Parallel and Distributed Computing” Vol. 6, pp. 115-135, 1989.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Voume 2, 2008 124

