
 

 

  
Abstract—Today’s advanced research areas such as DNA 
computing, different branches of nanotechnology, immune cell 
system and optical computing require extensive data processing. 
Therefore, parallel processing systems with sophisticated hardware 
and software platforms are widely used. Furthermore, implementing 
the right algorithm which affects the overall execution time is a 
challenging task.  This paper presents the principle of a massively 
parallel processing system based on Master-Slave Super-Super 
Hypercube 4-Cube (MS3H4-Cube) topology which could be easily 
implemented by using SGI products.  Moreover, it is verified that the 
execution time of a matrix product is shorter when is applied on 
Master- Slave Super-Hypercube (MSSHP) compared with Hypercube 
(HP) topology.   
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I. INTRODUCTION 
ARALLEL processing systems are commonly applied in 
areas such as military, space, signal processing, image 
processing and pattern recognition that require high 

computational power. HP architectures perform well for a 
large range of problems. It is well suited for both general-
purpose and special-purpose applications. They are mainly 
used in matrix operations, sorting, signal and image 
processing where extensive data processing is required [1].  
In HP architectures when communication between two 
indirectly connected Processing Elements (PEs) is required, 
the message has to cross one or more hyper-planes and go 
through intermediate PEs before reaching its destination. The 
PEs involved are required to compute and handle message-
passing, which reduces the overall computational power and 
performance. In addition, if one of the intermediate PEs is 
faulty or busy performing tasks, there will be a significant 
downtime in communication between the source and 
destination PEs. In order to overcome HP limitations such as 
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routing and expandability, a sub-class of the HP architecture 
namely Super-Hypercube (SHP) is used [2]. This architecture 
includes applying a Router (R) to the basic HP. This router 
acts as a crossbar switch, which can provide a communication 
path between indirect PEs. Its usage in conjunction with SGI 
(Silicon Graphics Inc.) products relieves the processor of the 
routing task and provides more efficient computing activities. 
Another configuration could be to include one extra PE 
(Master-Processor) which through a Master-Router (MR) is 
connected to the remaining PEs (Slave-Processors). This 
configuration called Master-Slave Super-Hypercube (MSSHP) 
as shown in Figure 1. As far as the interconnectivity of the 
proposed architecture is concerned, this architecture falls into 
a new interconnection category. 
As reported in [3], interconnection networks can be classified 
as either dynamic or static. The former interconnection is 
designed by using switches to connect PEs together. On the 
other hand, the latter deals with the networks consist of point-
to-point communication links among PEs. In the proposed 
topology, the adjacent PEs are directly connected together 
without use of the Router (R) and indirect PEs are connected 
together through a Router (R).   
The MSSHP outlined in this paper uses combination of both 
categories (dynamic and static). In this paper it is coined as 
Dynamic-Static (Daynastatic) interconnection. 
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Fig. 1 Master-Slave Super-Hypercube architecture  

II. DESCRIPTION OF MS3H4-CUBE ARCHITECTURE 
 
The basic building blocks of this architecture as shown in 
Figure 2 and previously reported in [4], is based on the SHP 
architecture. 
Under this arrangement, each processing element in each 
Super-Super-hypercube which contains the Router , is 
itself a SHP with the Router . 
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The processing element with the Router  is called satellite 
slave. In general, the overall control and management of the 
system is carried out by a Master-Processor. For this reason 
the overall architecture is called Master-Slave Super-Super-
Hypercube n-cube architecture (MSSSHn-Cube), or further 
abbreviated as . Figure 2 illustrates the 
interconnection of two Super-Super-Hypercube which results 
in construction of  topology. However, upon 
availability of technology and hardware capability this could 
be extended to  Super-Super-Hypercube arrangement. 
 

 
Fig. 2   architecture 
 
A.   Operation of  Architecture 
 
As it was reported in [5], Master-Slave tasking is a simple yet 
widely used technique to execute independent task under the 
centeralised supervision of a Master-Processor. the operation 
of  architecture in a massively parallel 
processing system as reported in [6] can best be explained as 
follows. 
The main role of the Master-Processor is the task allocation 
and overall management and control of the system. To achieve 
this goal, undoubtedly, the Master-Processor needs to posses 
faster processing capability and additional memory capacity to 
be able to have full control of the system management. Once 
the main task is divided into multiple sub-tasks, then it is 
placed in the main memory of the Master-Processor. At this 
point there are two possibilities that one can consider: 
 1- Either to use the routers as crossbar switches, without any 
processing capabilities, to direct the packages from source to 
destinations and vice-versa. Therefore, for transmitting a 
subtask from the Master-Processor to Slave 1 in the satellite 
slave configuration that contains Router , first the subtask 
would find its way through  to  and then would reach 
to the processing element . In this context, one 
could provide direct connections between the Master-
Processor and routers 

   which will 
bypass router . 
 2- To incorporate some processing capabilities and memory 
facilities within each router 

In this 
scenario, the subtask could be saved in the memory of each 
router (for example first in  and then in ), before 
reaching its final destination in . In reality one can 
consider the routers as co-Master-Processors in this 
arrangement. 
The advantage and disadvantage of each approach can be 
explained as follows. In the first case although data 
transmission and computation is faster, the overall fault-
tolerance of the system is lower if there is a fault in the 
Master-Processor. On the other hand, the second approach 
may seem a bit involved and slower than the first case but if 
there is a hardware or software fault within the Master-
Processor, the overall system is not subject to a catastrophic 
failure. This is due to the fact that routers have memory and 
processing capabilities and they in turn can act as co-Master-
Processor within their own SHP arrangement. The transfer of 
data and information can take place through a direct 
connection that is provided for this purpose. So far as the 
multiprocessor scheduling which is a challenging problem in 
the real time system theory is concerned, one has to consider 
two main strategies. These are: partitioning strategy and 
global strategy. 

 
In former scenario a task is allocated to a processor and is 
executed by that processor. The latter deals with the case 
when at any instance a task can be executed on any processor 
or even be preempted and moved to a different processor 
before is completed [7]. In the proposed architecture, the 
former scheme is adopted for the task allocation methodology. 
 

In operation of the proposed architecture after the task is 
divided into a number of subtasks, they are allocated through 

 and  to each satellite slave processor for execution. 
After completion of execution of each subtask, a copy of the 
result is saved in the memory of each co-Master-Processor 
(assuming that  is level one and  is level two co-
Master-Processors) plus the memory of the main Master-
Processor. This precaution is taken to minimize a catastrophic 
failure that could result if the Master-Processor failed. 
Upon completion of each subtask, the satellite slave processor 
would request allocation of the next available subtask by 
sending an interrupt request signal through appropriate 
channels to the Master-Processor. This procedure will 
continue until all the subtasks are executed and results are 
collected by the Master-Processor. In the case when the 
subtasks are independent of one another and the execution 
time is the same, then that results in simultaneous interrupt 
request signals arriving at the co-Master-Processors and 
subsequently at the Master-Processor. In order to resolve the 
conflict resulting from initiation of simultaneous interrupt 
requests, the system designer through either hardware or 
software arrangement can assign priority to different satellite 
slave processors where they will receive services according to 
their priorities. Of course implementation of software priority 
scheme would be more convenient than a hardware approach. 
This is due to the fact that rearranging priority through 
software means reprogramming of the control register 
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belonging to the interrupt priority controller device, whereas 
the hardware approach needs rearranging connection of 
priority signals to different satellite slave processors. The 
latter naturally is more time consuming and hence more 
inconvenient. It is worth noting that while satellite slave 
processors are engaged in the execution of subtasks, co-
Master-Processors as well as the Master-Processor can be 
involved in the supervisory and control of the overall system. 
In addition, a precautionary approach could be implemented 
that includes random execution of subtasks and its comparison 
with results obtained by the satellite slave processors. 
Nevertheless, in the event of any discrepancy, the warning 
arrangement which is incorporated within the control section 
of the Master-Processor would generate a warning signal 
indicating either a hardware malfunctioning or a software 
failure in the system which contributed towards this 
discrepancy. 
Incorporation of the former approach would improve the 
control and management procedures whereas the 
implementation of the latter would undoubtedly enhance the 
reliability of such a dedicated message- passing architecture. 
Furthermore, implementation of Artificial Intelligence and 
Expert System within the operating system of Master-
Processor would significantly enhance the performance of the 
overall system. 
 

  B. The Building Blocks of MS3H4-Cube Architecture 
 
The building block of each processing element and the 
router proposed for this topology are based on the technology 
developed by Silicon Graphics Inc (SGI)[8]. It is believed that 
this product provides a suitable test-bed for this investigation. 
Although SGI has many products that are specifically 
designed to be used in multiprocessor environment, the most 
recent and suitable architectures (Altix 3700Bx2 series) has 
been chosen to be used in the design of the building blocks of 
MS3H4-Cube architecture [3]. 
 
 

III. MATRIX PRODUCT ON DISTRIBUTED MEMORY SYSTEMS (DMS) 

                                      
In many applications, matrix multiplication involves dealing 
with different sizes (squares vs. rectangular) and may include 
the communication cost. The size of the matrix can 
significantly impact on the performance of parallel matrix 
multiplication algorithm. 
This section outlines the general mathematical model for 
square matrix multiplication. 
 
A.  Basic Concepts, Definitions and Assumptions 
Let  and  be matrices of size  and  
respectively. The product of  and  is a matrix of size 

 which denoted by  and is given by: 
  

for each pair  and  with  and . 

For the purpose of this paper, we perform a matrix 
multiplication on a DMS which is more favorable than shared 
memory. In doing so, we consider the following definitions 
[9]: 
 
Definition 1: In order to construct our mathematical model, 
we consider that a DMS can support one-to-one 
communication in  time unit. For this purpose, a fast 
and scalable parallel matrix algorithm is required.  
 
Definition 2: We assume that a DMS consists of   PEs 

 with their own local 
memory .  In addition, we consider that 
PEs have the capability of communicating with each other 
through message- passing scheme. Moreover, the computation 
and communication are globally synchronized into steps. That 
is to say, a step is either a computation step or a 
communication step. In former, each PE has a capability of 
performing a local logic/ arithmetic operation or in worse 
scenario is idle and it utilises constant amount of time. 
In latter, PEs could communicate with one another bio-
directionally via an interconnection network.  In this case, a 
communication step can be mathematically expressed as: 

 where 
 . This results in PE  sending a value  to PE 

 and  is a mapping  
. 

Definition 3: If  PE  doesn’t send any messages during the 
communication step, then  and  is undefined. 
However, in a practical situation, there is at most one j such 
that  . This implies that each PE can maximum 
receive one message in one-to-one communication step. This 
also reviles that based on definition 1, the DMS supports the 
above communication step in time unit. 
From a practical application point of view, in the busiest 
communication step, every PE sends a message to another  
processor and is a permutation 
of  
 
Definition 4: Based on the above definitions and assumptions, 
if a computation step and the communication step in 
performing a parallel task on a DMS, are  and   
respectively, then the execution time of performing parallel 
tasks can be presented as:  . 
Furthermore, if the number of PEs in parallel processing 
system is less than the required sub-tasks, then the execution 
time can be shown as:  

      (1) 

where  is the problem size,  is the number of PEs 
available,  is the execution time of the best sequential 
algorithm, and  is the overall 
communication overhead of a parallel computation.

 From an algorithmic point of view, a DMS is characterized by 
the function  which measures the communication 
capability of the interconnection network.  
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According to [10], the fastest sequential algorithm for matrix 
multiplication has the execution time of  where 
currently the best value for   is 2.3755. 
Based on these definitions, we try to find out the best time of 
running this sequential algorithm in parallel form on 
Hypercube and Super-Hypercube. 
 

 

IV. MATRIX PRODUCT ON HP AND SHP 
 
In multiplying  two matrices where the number of PEs 
is less than the  number of sub-tasks , i.e. , we 
assume that  is an integer such that  i.e.  which 
has the matrices of sub-matrices    ( i.e., all the matrices   

  and   are partitioned to sub-
matrices  of size ). Therefore, one can conclude that, in 
terms of computation time, if we multiply   matrix by 

 matrix sequentially on  PEs it will take  units of 
time. 
 

A. Computation of the Communication Time for Matrix 
Product on HP and SHP 
As we know the identification of each PE in  dimensional 
HP is based on their binary representation. The set of PEs 
which are distance  from one PE to another in HP is showed 
by  and it includes PEs.  Since HP is a symmetrical 
architecture, so any algorithm which is written for any PE can 
be converted to an identical algorithm for PE  

by binary product of all PE i.d’s 
referenced in any specific PE algorithm with . 
We assume that it takes  time for a PE to 
send a message of length  to a neighbor, where  
represents the transfer rate of a message and   the time for 
start up and termination. 

B. Analysis of Mathematical Modeling 
According to [11], the fastest possible time for one PE in  
dimensional HP to send a message to an arbitrary PE with 
distance  is 

          

                                                 (2) 
 In this scenario, we assume that all PEs can communicate to 
one another simultaneously. So, when multiplying two 
matrices of size on a -dimensional HP by applying 
sub-matrices of size , each PE can broadcast the 

message of length . For calculating the communication time 

in the HP, we consider the worse case scenario. This simply 
implies that if we intend to send a message of length  from 

any PE to the farthest PE ( ), that would include 
the communication time for all the PEs within this range.  
Therefore, the time takes to multiply two  matrices in 
forms of sub-matrices on a HP is: 
 

 
This results in: 

    (3)                   

where  denotes the number of PEs in HP. 
Now we are in the position to expand the above methodology 
to cover the SHP architecture. This means for the case of 
SHP: 

 

By including the Router (R) in the middle of HP, we have 
provided a direct connection between any two PEs in HP. 
Therefore, all PEs in SHP are in equal distance to one another. 
Moreover, the required time to multiply two  matrices 
in form of sub-matrices on a SHP is:               

              
     

      (4)                   

Where  is the number of PEs in SHP. In driving equation 
(4) we assumed that  

C. Execution Time of Matrix Product on HP Architecture 
In HP architecture when processing is carried out in parallel, it 
is best to assume that one of the processors acts as the Master-

Processor which sends the message of size     to each slave 

processor for processing purpose. In this case, the Slave-
Processors after receiving the allocated subtasks perform the 
inner product of sub-matrices and upon their completion will 
send the results back to the Master-Processor for summation. 
This process  includes scatter and gather which means the 
Master-Processor sends a piece of data of equal size to all the 
Slave-Processors and then all the Slave-Processors send k 
pieces of data of the same length to the Master-Processor [12]. 

Therefore, the time that it takes a message of length    to be 

sent from the Master-Processor to a single Slave Processor is: 
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 And the time that it takes the massage to be received by a 
single Slave-Processor is: 

 

Therefore, sending and receiving a message to and from a 
single slave processor   takes the following unit of times:  

 

 

Finally, the total time to send a message of length      to all 

the Slave-Processors and the time that it takes to receive it 
from them is: 

 

Further substitution and simplification results in having the 
parallel time execution of a matrix product on HP as: 

(5) 

V. EXECUTION TIME OF MATRIX PRODUCT ON 
MSSHP 
As we know the identification of each PE in  dimensional 
HP is based on their binary representation. The set of PEs 
which are distance  from one PE to another in HP is showed 
by  and it includes PEs.  Since HP is a symmetrical 
architecture, so any algorithm which is written for any PE can 
be converted to an identical algorithm for PE 

by binary product of all PE i.d’s 
referenced in any specific PE algorithm with . We assume 
that it takes  time for a PE to send a message 
of length  to a neighbor, where  represents the transfer 
rate of a message and   the time for start up and 
termination. 

By further expansion, we can conclude that, the parallel time 
computation of MSSHP can be presented as: 

(6)                                          

 
 To derive the above expression, we assume that: 

• the Master-Processor  has the processing capability ; 
•  the allocation of sub-tasks by the Master-Processor to each 
Slave-Processor is carried out one at a time; 
• the Slave-Processors start to process after receiving entire 
message and can not communicate with one another or with 
the Master-Processor  before completing the execution of the 
current subtask;  
• the utlised platform is homogenous; and 
• the result of execution of each subtask is return to the 
Master-Processor for further processing. 

This model is then extended to derive the analytical modeling 
of task scheduling for the MSSHP architecture. 
 

 

       (7) 

At this stage we use the existing mathematical models 
derived so far to demonstrate the graphical presentations of 
the execution time of matrix product on both HP and 
MSSHP architecture. Figure 3 illustrates the graphical 
presentation for Matrix Multiplication with a variable 
number of PEs on HP and MSSHP. However Figure 4 
provides the graphical presentation for Matrix Multiplication 
with variable Matrix Sizes on HP and MSSHP. 
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Fig. 3 graphical presentation for matrix product with variable number 
of PEs on HP and MSSHP 
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Fig. 4 graphical presentation for matrix product with variable matrix 
sizes on HP and MSSHP 

VI. PROCEDURE FOR CALCULATING THE 
EXECUTION TIME OF MATRIX MULTIPLICATION ON 

MS3H4-CUBE 
As indicated earlier, the role of the router can either be 
considered as being a cross bar switch for providing 
communication path between two indirect nodes, or it can 
have some processing capability and could be considered as a 
co-Master-Processor. In the first case, the execution time can 
have the general form of: 

 

 

 

Moreover, in case of router acting as the co-Master-Processor, 
the general form of the execution time takes the general form 
of: 
 
 

 
 
However, the full description and further expansion of these 
mathematical expressions will be revisited in our future 
work. 
 

. 

VII. CONCLUSION 
This paper has addressed the impact of new sub-classes of HP 
topology on execution time of matrix multiplication. To 
achieve this, we have highlighted the concept of MSSHP 
architecture which has led to the introduction of a topology 
entitled MS3H 4-Cube architecture. Furthermore, the 
communication time and the overall execution time of matrix 
product on HP and consequently on MSSHP architecture have 
been outlined. This has provided the foundation to proceed 
with driving a similar mathematical modeling applicable to 
MS3H 4-Cube architecture.  

 We have concluded that the completion time of matrix 
multiplication when we vary the number of PEs or the size of 
matrix is shorter for MSSHP when has been compared to that 
of HP architecture.  

This claim can be justified by considering the effect of having 
a router in the HP topology which results in offering an 
optimized communication path. Consequently, this improves 
the final expression for the communication cost and overall 
time execution of a matrix chain product. Lack of this 
inclusion is highly noticeable, when one experiences either a 
busy or faulty intermediate node between two indirect nodes 
in a HP topology. Of course in this scenario, the performance 
of the massively parallel processing system will be 
significantly degraded.  

As far as the future work is concerned, we intend to expand 
the expressions for the communication cost and the execution 
time of a matrix product on the MS3H 4-Cube topology. This 
then leads to arriving at an appropriate task scheduling for the 
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MS3H4-Cube architecture. To validate this analysis, we intend 
to compare our findings with benchmark results using SGI 
products. Further to this justification, we will choose the most 
appropriate architecture in literature and will compare our 
findings to support our claims.  
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