Optimum Shape in Brick Masonry Arches Under Static And Dynamic Loads

KAVEH KUMARCI, ARASH ZIAIE, MEHRAN KOOHIKAMALI, ARASH KYIOUMARSI

Abstract

The objective of this study is to determine brick masonry arches under dynamic and static loads. In this paper, considerable attention is given to arches, their importance, modeling stages, dynamic analysis, static analysis and arch optimization using ANSYS11 software. A multiple stage analysis framework was conducted for semicircular arch:

1- The study of optimum shape for semicircular arch on the base of minimize of arch weight. 2- Determination of linear and nonlinear analysis limits by increase of density. 3- The study of optimum shape in semicircular arch by linear and nonlinear analysis. All of these stages have been conducted for obtuse angel arches, four- centered pointed arch, tudor arch, ogee arch, equilateral arch, catenary arch, lancet arch, four-centered arch (normal, diminished and steep). The main purpose has been study of arch optimum shape for minimize of weight: Finally, according to the results, the optimum shape in arches under dynamic load has been determined.

Keywords- optimum shape- arch- dynamic load- linear and non linear analysis- tensile stress

I. INTRODUCTION

BEFORE, arch was defined as a part of circle or bow. If we want to define it, we can say it is a curve surface for covering, that it's span is higher than it's depth .Overall, arches are classified to three groups:
circular arches and similar to that
obtuse angle arches
decorative arches
Time dynamic analysis is an analytical method to determine responses in each time section, especially for earthquake that a structure is under accelerations of earth motion (accelerograph) in the base level. In this model, structure dynamic response is function of time and calculated by number integral in equation of structure motion. [1,10,14,15, 16]

Manuscript received Febr.3, 2008: Revised Received June 12, 2008. This work is support in part by Sama organization, affiliated with Islamic Azad University, Shahrekord branch.
Kaveh Kumarci is with Sama Organization (affiliated with Islamic Azad University) , Shahr-e-kord branch e-mail: Kumarci_kaveh@yahoo.com fax:00983812226183; Tel:00989133811911
Arash Ziaie is with civil engineer department university of bahonar kerman e-mail: Ziaie111@yahoo.com
Mehran Koohikamali is with Sama organization (afiiliated with Islamic Azad University), Sahr-e-kord branch e-mail: Mehran koohikamali@yahoo.com Arash Kyiomarsi is with Electic Engeenering Department, university of isfahan e-mail: Kiumarsi_Ar@yahoo.com

II. MODELING, ANALYSIS AND OPTIMIZATION OF ARCH SHAPE

Arch modeling has been conducted by ANSYS11 software. Also dynamic analysis has been conducted by north-south horizontal accelerations of Elcentro earthquake in 1940.In this earthquake the time, maximum acceleration, maximum velocity and maximum displacement were $31.98 \mathrm{sec}, 0.31 \mathrm{~g}, 33 \mathrm{~cm} / \mathrm{sec}$ and 21.4 cm , respectively. The element which used in this analysis was SOLID 65. Arch shape optimization emphasized on the minimizing of arch weight. So, the base and top thickness, maximum tensile stress and weight of structure have been defined as design variable, state variable and objective function, respectively Optimization has been conducted in Design Optimum Processing. [5,6,8,10]

A. Geometrical Modeling:

According to optimization of design variables, such as base thickness (t 0) and top thickness (t 1) as parameters, all of key points are defined as follow. [9]
In order to study of this material, semicircular arch is defined by key points as parameters (fig.I).

Point 1: $(0,0)$	Point (2): $(\mathrm{R}, 0)$	Point3: ($-\mathrm{R}, 0)$	Pint4: $(0, \mathrm{R})$
Point 5(R+t0, 0$)$	Point6: $(-\mathrm{R}-\mathrm{t} 0,0)$	Point 7: $(0, \mathrm{R}+\mathrm{t} 1)$	

tigl: semicircular arch
In arch modeling, the tolerance increases because the thickness decreases from base to top. We should remember that in modeled arch, the thickness decrease from base (t 0) to top (t 1) linearly. Also, arch thickness in direction of length axis is 20 cm . The motion of support nodes is zero, and dynamic force has no effect on them. Also, brick masonry is made by brick and mortar as homogenous material (table I). The efficient factors in inelastic nonlinear analysis show in (table II). [4,7,12]

Table I: Brick masonry specification

density $(\rho) \quad \mathrm{kg} / \mathrm{m}^{3}$	1460 [2]
Elastic modulus $\mathrm{N} / \mathrm{m}^{2}$	$5 \times 10^{8}[3]$
Allowable tension stress $\left(\mathrm{f}_{\mathrm{t}}\right) \mathrm{N} / \mathrm{m}^{2}$	$0.5 \times 10^{5}[2,3,4]$
Poisson ratio (v)	$0.17[4]$

Table II: Effective coefficient in non elastic and nonlinear
analysis

motion coefficient for open crack	$0.1[5]$
motion coefficient for close crack	$0.9[5]$
allowable tension stress $N / m^{2}\left(\mathrm{f}_{\mathrm{t}}\right)$	$5 \times 10^{4}[2,3,4]$
allowable compressive stress $N / \mathrm{m}^{2}\left(\mathrm{f}_{\mathrm{c}}\right)$	$5 \times 10^{5}[2,3,4]$

III. EVALUATION OF OPTIMUM SHAPE IN SEMICIRCULAR ARCH

The analysis conducted for semicircular arch in five spans: 4,5,6,7 and meters (TableIII,Table IV,Fig II).

TableIII: specification of optimum shape for semicircular arch with various spans under dynamic load.

Span Length	$4(m)$	$5(m)$	$6(m)$	$7(m)$	$8(m)$
$t_{0}(m)$.8328	.973	1.2154	1.4828	1.6208
$t_{1}(m)$.2763	.28182	.297	.31879	.36388
k	.3317	.2896	.2443	.2149	.2245
t_{0} / R	.4164	.3892	.4051	.4236	.4052
t_{1} / R	.1381	.1127	.099	.091	.0909
\bar{W} / H	.4347	.917	5.68	.435	.8064
N / m^{2} $\left(\sigma_{t}\right)_{\max }$	50982	48072	52815	51600	48430

TableIV: specification of optimum shape for semicircular arch with various spans under static load.

with various spans under static load.					
Span Length	$4(\mathrm{~m})$	$5(\mathrm{~m})$	$6(\mathrm{~m})$	$7(\mathrm{~m})$	$8(\mathrm{~m})$
$\mathrm{t}_{0}(\mathrm{~m})$.5829	.681	.85	1.037	1.62
$\mathrm{t}_{1}(\mathrm{~m})$.2486	.2531	.2673	.2869	.3638
k	.423	.3716	.3144	.2766	.2245
$\mathrm{t}_{0} / \mathrm{R}$.29	.27	.283	.2962	.4052
$\mathrm{t}_{1} / \mathrm{R}$.12	.101	.099	.082	.0909
\bar{W} / H	4	4	5.68	4	.8064
$\left(\sigma_{t}\right)_{\max } N / \mathrm{m}^{2}$	50326	50982	52815	51100	48430

Fig II: semicircular arch modeling by ansys

IV. EVALUATION OF DIFFERENT ARCH AND THEIR OPTIMUM SHAPE

Here, in addition to semicircular arch, the obtuse angel, four centered pointed, tudor ogee arch, equilateral catenary, four centered, lanced arches have been studied. Analyzed arches were studied in three spans: 4,5 and 6 meters. In each span, dynamic force, maximum tension stress, arch optimum dimensions and stability factor are calculated. Also, Obtus angel, four centered pointed tudor and ogee arch, arches have been analyzed in 3 levels: normal, diminished and steep (Table V-XI, Fig III-XI). [1,2,3,8,9]

Fig III: Catenary arch modeling by ansys

Table V：Comparison of optimum arches under dynamic load

	L（m）		$t_{0}(m)$	$t_{1}(\mathrm{~m})$	K	\bar{W} / H	$\left(\sigma_{t}\right)_{\mathrm{ma}}$
		4	． 8969	． 21984	． 2451	． 464	47907
		5	． 99269	． 27688	． 2789	． 872	45231
		6	1.1539	． 28849	． 2500	2.54	47095
		4	． 96243	． 18058	． 1876	． 4	53598.
		5	1.06	． 2095	． 197	． 7842	46291
		6	1.132	． 2843	． 214	． 492	50765
$\begin{aligned} & p_{0}^{2} \\ & 0_{0} \\ & 2 \\ & 2 \end{aligned}$		4	． 83438	． 39919	． 4784	． 41	49629
		5	． 81818	． 34175	． 4176	． 661	46588
		6	． 80817	． 24095	． 2981	2.35	46681
	$\begin{aligned} & \text { Z } \\ & \text { 兑 } \end{aligned}$	4	． 81414	． 19308	． 237	3.44	53685
		5	． 8389	． 22744	． 2711	． 557	50578
		6	． 98287	． 36179	． 3680	1.145	53037
	$\begin{aligned} & \frac{n}{0} \\ & \stackrel{0}{0} \end{aligned}$	4	1.3931	． 3143	． 2256	1.78	48905
		5	1.2725	． 32409	． 2546	． 6	52702
		6	1.2126	． 32669	． 2694	． 878	45363

Table VI：Comparison of optimum arches under

Fig IV：Lancet arch modeling by ansys

Table VII：Comparison of optimum arches under dynamic load

L（m）		$t_{0}(m)$	$t_{1}(\mathrm{~m})$	K	\bar{W} / H	$\left(\sigma_{t}\right)_{\max }$
	4	． 82923	． 2073	． 2499	． 4876	46137
	5	1.0769	． 2776	． 2577	1.955	53033
	6	1.2125	． 32458	． 2676	． 708	52903
	4	1.0875	． 32358	． 2975	2.2	52845
	5	1.0945	． 34641	． 3165	． 39	51515
	6	1.1457	． 35342	． 3079	． 63	50091

L（m）			$t_{0}(m)$	$t_{1}(m)$	K	\bar{W} / H	$\left(\sigma_{t}\right)_{\mathrm{ma}}$
플0000	$\begin{aligned} & \text { 危 } \\ & \text { En } \\ & \text { 兑 } \end{aligned}$	4	1	． 3	． 3	． 38	47049
		5	． 96541	$\text { . } 2234$	． 2314	． 52	53843
		6	． 81758		． 2467	2.46	45479
	$\begin{aligned} & \text { Z } \\ & \text { B } \\ & \end{aligned}$	4	． 94988	． 2192	． 2308	． 602	46598
		5	1.0553		． 2487	2.93	49234
		6	1.1021	$\text { . } 3308$	． 3001	7.71	49909
	$\begin{aligned} & \stackrel{y}{\underset{\sim}{0}} \\ & \stackrel{0}{\infty} \end{aligned}$	4	1	． 3	． 3	1.018	45254
		5	1.0055	$.2114$	． 2102	． 428	46968
		6	1.0081	． 2072	． 2056	． 746	53990

Fig V：Obtuse angel arch modeling by ansys

Fig VI: Tudor arch modeling by ansys

Fig VIII: equilateral arch modeling by ansys

Fig X: Four centered pointed arch modeling by ansys

Fig VII: Catenary arch modeling by ansys

Fig IX: Fourcentered arch modeling by ansys

Fig XI: Ogee arch modeling by ansys

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Table VIII: Comparison of optimum arches (dynamic load)

L(m)			$t_{0}(m)$	$t_{1}(\mathrm{~m})$	K	\bar{W} / H	$\left(\sigma_{t}\right)_{\text {max }}$
		4	1	. 3	. 3	. 428	51732
		5	1.0692	. 32387	. 3029	6.32	47999
		6	1.1662	. 32977	. 2827	. 807	45882
	荡	4	1.0975	. 25091	. 2286	1.49	51981
		5	1.1472	. 30751	. 268	5.72	53113
		6	1.1606	. 31979	. 275	. 193	51373
	$\begin{array}{\|l\|l} \frac{n}{2} \\ 0 \\ \hline 8 \end{array}$	4	. 96942	. 1798	. 1854	. 55	45853
		5	1.0975	. 25091	. 2286	. 135	53922
		6	1.1769	. 30722	. 261	7.3	52566
$\begin{aligned} & \text { To } \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$		4	. 83728	. 24854	. 2968	. 887	46341
		5	1.1309	. 32538	. 2877	1.156	50859
		6	1.1472	. 33751	. 2942	3.94	47815
	亮	4	1.0682	. 27979	. 2619	4.62	48692
		5	. 98693	. 34854	. 353	5.69	45980
		6	. 98287	. 36943	. 3758	. 471	53175
	$\left\lvert\, \begin{gathered} \stackrel{n}{0} \\ \underset{\sim}{0} \end{gathered}\right.$	4	. 89212	. 34194	. 3832	. 32	47463
		5	. 9222	. 3546	. 386	. 589	47367
		6	. 98992	. 37287	. 376	5.01	49506

Table IX: Comparison of optimum arches(static load)

L(m)			$t_{0}(m)$	$t_{1}(m)$	K	t_{d} / R	$\begin{aligned} & t_{1} / \\ & R \end{aligned}$	\bar{W} / H	$\left(\sigma_{t}\right)_{\mathrm{m}}$
		4	. 7	. 27	. 38	. 35	. 13	4.15	51526
		5	. 748	. 29	. 38	. 3	. 11	4.15	48326
		6	. 816	$.296$. 36	. 27	. 1	4.15	50545
		4	. 768	$\begin{gathered} 1 \\ \hline .225 \\ 8 \end{gathered}$. 29	. 38	. 11	4.5	50256
	듳	5	. 803	$\begin{gathered} .276 \\ 7 \\ \hline \end{gathered}$. 34	. 32	. 1	4.5	49400
		6	$\begin{gathered} .812 \\ 4 \end{gathered}$	2878	. 35	. 27	. 1	4/5	49568
		4	$\begin{gathered} \hline .678 \\ 5 \end{gathered}$	$\begin{gathered} \hline .161 \\ 8 \end{gathered}$. 238	. 34	. 1	5	51489
	$\begin{gathered} \stackrel{Q}{\otimes} \\ \stackrel{\oplus}{\omega} \end{gathered}$	5	$\begin{gathered} .768 \\ 2 \end{gathered}$. 225	. 29	.. 3	. 1	5	51026
		6	$\begin{gathered} .823 \\ 8 \end{gathered}$	$\begin{gathered} .276 \\ 4 \end{gathered}$. 335	. 27	. 1	5	51092

Table X: Comparison of optimum arches

L(m)			$t_{0}(m)$	$t_{1}(m)$	K	t_{d} / R	t_{1} / R	\bar{W} / H	$\left(\sigma_{t}\right)_{\max }$
		4	. 58	. 22	. 38	. 29	. 11	1.6	48525
		5	. 79	. 29	. 37	. 32	. 11	1.6	50145
		6	. 8	. 30	. 38	. 26	. 1	1.6	51526
		4	. 75	. 25	. 33	. 37	. 12	1.95	49411
		5	. 7	. 31	. 45	. 27	. 12	1.95	49980
		6	. 68	. 33	. 49	. 22	. 11	1.95	52111
	$\begin{aligned} & \stackrel{\circ}{\otimes} \\ & \stackrel{ֻ}{\omega} \end{aligned}$	4	. 62	. 30	. 49	. 31	. 15	2.4	49881
		5	. 64	. 31	. 49	. 25	. 12	2.4	50101
		6	. 69	. 33	. 47	. 23	. 11	2.4	51211

Table XI: Comparison of optimum arches

$\begin{aligned} & \mathrm{L}(\\ & \mathrm{m}) \end{aligned}$		$t_{0}(m)$	$t_{1}(\mathrm{~m})$	K	t_{0} / R	t_{1} / R	\bar{W} / H	$\left(\sigma_{t}\right)_{\text {max }}$
	4	. 67	. 16	. 24	. 34	1	4.9	51105
	5	. 74	. 18	. 25	. 3	. 1	4.9	49411
	6	. 79	. 25	. 32	. 26	. 1	4.9	49881

V. DETERMINATION OF LIMITS IN LINEAR AND NON LINEAR ANALYSIS BY INCREASE OF DENSITY

B.A. Evaluation And Comparison Of Linear And Nonlinear Limits In Semi Circular And Obtuse Angel Arches By Density Factor
In this part, linear and nonlinear analysis of semicircular arches with span of 5 m and obtuse angle arch with span of 4 m has been studied. Also, the density is applied to evaluation of linear and nonlinear analysis. This was also noticed that in which limits the maximum tension stress (the arch optimization factor) can change (table XII). [6,13,15]

Table XII: Comparison between linear and nonlinear limits by density factor(dynamic load)

According to results of test and error (table 2), if density is higher than 4ρ, the response of linear and nonlinear stress is different. So for linear analysis, increase of density to 4ρ is ineffective. [6,9,10]
B.B. Evaluation And Comparison Of Optimum Shape In Semicircular And Obtus Angle Arch By Linear And Non Linear Analysis

The optimum shape of semicircular arch and obtus arch with spans of 4 m have been calculated by linear and nonlinear analysis and density of 4ρ.Then the results compared to the optimum shape of semicircular and obtus by linear analysis and density of ρ (TableXIII). [8,12,16]

Table XIII: Comparison of optimum shape in semicircular and Obtus angle arches with of 4 m spans by linear and nonlinear analysis (dynamic load)

		Kind of analysis	t_{0}	t_{1}	k
	ρ		. 8328	. 2763	. 3317
	ρ		. 8328	. 2763	. 3317
	4ρ	苞	1.3	. 2921	. 2247
	4ρ		1.541	. 3344	. 2168
	ρ	忩	. 9694	. 1798	. 1854
	ρ		. 9694	. 1798	. 1854
	4ρ		1.332	. 3	. 2269
	4ρ		1.609	. 3886	. 241

Continue of Table XIV: Comparison of optimum shape in semicircular and Obtus angle arches with of 4 m spans by linear and nonlinear analysis. (dynamic load)

		Kind of analysis	W	H	\bar{W} / H	$\left(\sigma_{t}\right)_{\max }$
	ρ		917.2	1057.8	. 4347	50982
	ρ		917.2	1057.8	. 4347	50982
	$\begin{aligned} & 4 \\ & \rho \end{aligned}$		5641.1	4052	. 69	51700
	$\begin{aligned} & 4 \\ & \rho \end{aligned}$		6681	4471	. 747	53873
	ρ		1188	1079.3	. 552	45853
	ρ		1188	1079.3	. 552	45853
	$\begin{aligned} & 4 \\ & \rho \end{aligned}$		5781	5012	. 576	52853
	$\begin{aligned} & 4 \\ & \rho \end{aligned}$		6483	5221	. 62	53541

VI. THE SYUDY AND COMPARISION LINEAR AND NONLINEAR ANALYSIS OF SEMICIRCULAR VAULTS WITH SPAN OF 5M BY DENSITY

The results are as below:
Table XV: the results of study of linear and nonlinear analysis by density. (dynamic load)

$\rho=1460 \mathrm{~kg} / \mathrm{m}^{3}$		ρ	1.5ρ	1.6	1.7ρ	2ρ
	$\begin{aligned} & \left(\sigma_{t}\right)_{\max } \\ & \left(N / m^{2}\right) \end{aligned}$	207607	488911	$\begin{gathered} 53890 \\ 9 \end{gathered}$	1180000	$\begin{gathered} 655046 \\ 8 \end{gathered}$
		207607	488911	$\begin{gathered} 53217 \\ 0 \end{gathered}$	918847	388641

As the results show(table 10-3), for densitis which are higher than $1 / 6$, the linear and nonlinear stresses are diffrent to each other. Also, in analysis of semicircular arches, the place of maximum tensile stress is around of inner shield, near base of arch and in the middle of arch lenghth.Also,maximum compressive stress is around of outter shield near base of arch(figXII).[11,12,14]

FigXII:semicircular arch with 4 m spam and the place of

$$
\operatorname{stresses}\left(N / m^{2}\right)
$$

VII. ESTIMATION OF BASE THRUST FORCE IN X DIRECTION

According to this point that \bar{W} / H (the weight of half of arch to thrust force in one side) is a main criteria in arch resistence, the way of thrust force estimation is very important. Because of in modelling, we suppose that all of supports are restrained, so all of joints in $Y=0$ has a horizontal force that its source is earthquake force that is stimated by Reaction Solution processor and estimated in ANSYS software. For example, for estimation of thrust force for half of arch span (radius=2m), is shown in(fig.XII). [5,8,15]

```
PRINT FX REACTION SOLUTIONS PER NODE
    Huther POST1 TOTAL REACTION SOLUTION LISTING ththe
```



```
    the following \(x, y, z\) solutions are in global coordinates
        \(\begin{array}{rc}\text { NODE } & F \times \\ 558 & -107.83 \\ 559 & -46.297 \\ 560 & -49.527 \\ 561 & -122.34 \\ 562 & -59.980 \\ 803 & -112.60 \\ 804 & -59.980 \\ 808 & -46.297 \\ 809 & -49.527 \\ 810 & -122.34 \\ 811 & -173.27 \\ 812 & -107.83\end{array}\)
TOTAL VALUES
```

FigXIII-a:estimation of thrust force at x direction

```
MODES
```


959 .909
560
810
${ }^{812}$

FigXIII-b:estimation of thrust force at x direction

VIII.CONCLUSION

Considering to optimum shape in arches under dynamic load, several conclusions can be surmised from the results as follow:

1-With increase of masonry density, the difference between maximum tensile stress in linear and nonlinear analysis reveals. It means that the increase of density to 4ρ for linear and non linear analysis is ineffective.

2- The limit for increase of base thickness in linear and nonlinear analysis for $4 \rho: \rho$ is 36 to 93%.

3- The limit for increase of top thickness in linear and nonlinear analysis for $4 \rho: \rho$ is 66 to 116%.

4-Increase of $\varpi / \mathrm{H} \quad$ in linear and nonlinear analysis for $4 \rho: \rho$ is 12%.

5- Increase of arch base thickness in nonlinear analysis of 4ρ to linear analysis of 4ρ is 21%.

6- Increase of arch top thickness in linear analysis of 4ρ to linear analysis of 4ρ is 30%.

REFERENCES

[1] Choopra, Anil, translated by Shapoor Tahooni, The structural dynamics and determination of earthquake load
[2] The results of Kharagan tower and Emamzadeh Mansoor bricks tests in Qazvin, Soil technical and mechanical laboratory in Qazvin, No.002/21/002+2
[3] Bsthe,K,J., Common Rules for Reinforced and Unreinforced Masonry Structures, Part 1, Design of Masonry Structures, Eurocode 6,1996.
[4]Drysdale,R.G., Hamid,A.A., Baker,L.R., , Masonry Structures Behavior and Design, Prentice Hall, New Jersey, USA,1994
[5]General Rules, Seismic Actions and Rules for Buildings, Design of Structures for Earthquake Resistance, Part 1, Draft No.6, Eurocode 8, 2003.
[6]Bsthe,K,J., The element procedures in engineering analysis, Prentice -Hall, Englewood Cliffs, 1982.
[7]Hughes,T.J.R., The finite element method linear static and dynamic finite element analysis, Prentice-hall, Inc, Englewood Cliffs,NJ,1987.
[8] Rao.SS., Optimization and applications,Wiley Eastern, New Delhi, 1984.
[9] Gratte,N.Vanderplaates, Numerical optimization techniques for engineering design, McGraw-Hill publishing CO.
[10]Hill,R.The Mathematical Theory of Plasticity, Oxford University,1983.
[11] K.V.Mital, Optimization Methods in Operations Research and Systems Analysis, $2^{\text {th }}$ edition, Wiley Eastern Limited, New Delhi,1983.
[12] R.K. Livesley, Linear programming in struturl analysis and design, Gallagher and O.C.Zienkiewicz, 1973.
[13] U.Kirsch, Optimal Structural Design, New York, McGraw-Hill Book Company, 1981.
[14] Garbriele Milani, A Simple Equilibrated Homogenization Model For The Limit Analysis of Masonry Structures, university of ferrara (Italy), WSEAS transactions on applied and theoretical mechanics, 2007.
[15] Javad Marzbanrad, Thickness and Mterial Yield Strength Effects of Thin Sheets on Dent Resistance, university of science and technology ,Iran , WSEAS transactions on applied and theoretical mechanics, 2007.
[16] L.Pomante, P.di flice, Ad-hoc HW/SW Architecture for DBMSs: a Co-Design Approach, the $6^{\text {th }}$ WSEAS int.conf.on artificial intelligence, knowledge engineering and data basis, corfu island, Greece , 2007

First Author; Kaveh kumarci, is born in shahrekord-iran.He studied in the fild of civil engineer (structure) and got his certification from Najaf Abad Azad university -iran He is full time member, The assistence, The Manager of Searchin of Sama Technical and Professional Organization in Shahrekord . Now. Mr.Kumarci is member of Iran Engineering Diciplinary.
Second Author; Arash Ziaie, is born in Isfahan, Iran in 1969 and got his M.S. degree in civil engineering in 1994. He studied in the fild of civil engineering (structure) and got his certification from Shahid Bahonar Kerman university of Iran He is full time member and the assistence of Kerman university. Mr. .Ziaie is a member of Iran Engineering Diciplinary now.
Third Author; Mehran Koohikamali, is born in shahrekord-iran.
He studied in the fild of civil engineering (structure). He is a member of Sama Technical and Professional Organization in Shahrekord now. Mr. Koohikamali is a member of Iran Engineering Diciplinary.
Fourth Author; Arash Kiyoumarsi, is born in shahrekord, iran in 1972.He studied in the fild of electric engineering and got his Ph.D. degree from Isfahan university of Thecnology in 2001 in Iran. Then he continued his post doctoral studies in the same field in Germany. He is full time member, and the Professor of Isfahan university now.

