
 

 

  
Abstract—Estimating load by direct measurements for structures 

that are in use is in practice very difficult or impossible, either 
because the impact location is inaccessible or because the projectile 
is deformable and therefore cannot be instrumented. The problem of 
identifying impact force on mechanical structures is the inverse of the 
direct problem: the use of measured responses on a given structure to 
identify the causes, that is, the implicated impact forces. The 
approach needs to create experimentally or numerically, the transfer 
functions between the impact and the measurement points on the 
structure so as to measure the responses, and to find the load by 
deconvolution of the signal. It is known that this type of problem is 
poorly conditioned. To obtain a stable solution with a physical sense, 
it must be stabilized using conventional regulation methods, such as 
the Tikhonov method. The problem of characterizing the impact 
becomes more complex when the impact location is unknown; so it is 
necessary to create the transfer functions between several impacts and 
measuring points, and minimize the objective function, which can 
locate the impact and then identify the force impact history.  

This study develops an experimental method of identifying the 
impact force on two simple structures: a circular plate, using the 
transfer function obtained experimentally between the strain response 
and the force history applied to a point on the structure, and the 
Tikhonov method for the inverse problem. To locate the impact force, 
we used an experimental method based on the minimization of an 
objective function created from the transfer functions between several 
impact locations, forming a mesh structure with several measuring 
points. 
 

Keywords—Inverse problem, experimental location, 
identification, transfer function, plate, Tikhonov regularization. 
 

 
 
 

I. INTRODUCTION 

Impact force location and identification applied to a real 
structure is an inverse problem and is very important for 
design and engineering applications.  The technique for impact 
force identification using measured responses on a structure 
has been proposed by many researchers.  

Doyle [1,2,3,4] presented a method in a series of studies to 
determine the impact force on structures such as plates 
subjected to transverse impact. Strain gauges were used in 
these experiments to measure strain in selected locations. The 
relationship between the measured strain and the applied force 
was calculated from the classical theory of plates [3,4] and 
then techniques in the time or frequency domain were then 
used to reconstruct the force history.  

Chang and Sun [5] proposed a method of reconstructing the 
impact force using the Green functions generated with 
experimental signal deconvolution. The advantage of this 
method is that the material, shape, and boundary conditions are 
considered by the Green functions. This method was recently 
improved with the explicit Green function in the process of 
deconvolution [6]. 

For impact location, the technique used (as in the field of 
acoustics and seismology) is based on the arrival time 
difference method [7]. This technique requires much more 
precision in determining the absolute or relative time of arrival 
of the first wave. 

 Yen and Wu [8, 9] developed a method of locating and 
identifying the impact force from the strain recorded at many 
points on a rectangular plate. A reciprocal relationship 
between all stress pairs was developed to locate the source, 
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without precise prior knowledge of the force and the force 
history was then determined. 

Monitoring structures is increasingly necessary to monitor 
damage. To track a structure, one must know the intensity of 
effort and the impact location. This study develops an 
experimental method of identifying the impact force on a 
simple structure such as a plate, using a transfer function 
obtained experimentally between the strain response and the 
force history applied to one of the structure’s points, and using 
the Tikhonov method for the inverse problem.  

To locate the impact force, an experimental method was 
used, based on the minimization of an objective function 
created from the transfer functions between the several impact 
locations, forming a mesh structure and several measuring 
points. 

II. IMPACT FORCE IDENTIFICATION  

A. Approach 

To identify the impact force on a structure, the transfer 
function-based approach is used. Transfer functions can be 
determined analytically [10], [11], experimentally [12], or 
numerically. An experimental determination with a vibration 
test or with impacts has the advantage of being applicable to 
all types of structures, even those with any kind of complex 
boundary condition. 

The response of the structure to be measured can be 
acceleration, displacement, or strain. 

For a linear system, response jE  at a point j is related to 

impact force iF  applied to point i by the convolution equation: 

                   ( ) ( )j ij iE H F =                                             (1)   
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Where ijH is the transfer function of the structure between 

points i and j; it contains the system’s dynamic characteristics 
and depends on time, measurements, and impact locations. 

The matrix H is very poorly conditioned or rank-deficient 
and so finding a solution is not guaranteed for every response, 
possibly leading to an unstable solution. One must therefore 
regularize the problem for to achieve a physically acceptable 
solution.  

B.  Experimental set-up 

To validate the approach, an aluminum circular plate was 
impacted with a hammer at different points. The measurements 
of impact force and strain at various points were recorded 
continuously with a data acquisition system at a 25-kHz 
frequency rate. Strain was measured using strain gauges. The 
Dytran Model 5850B impact hammer used was made of 
plastic, with a 5-kHz bandwidth. 

The data acquisition system (Fig. 1) is an autonomous STELA 
bag developed by SAPHIR and is composed of an NI cDAQ 
9172 support with accelerometer and strain gauge modules. 
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Structure
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Fig.1 Data acquisition system  

 

The plate is made of aluminum Al5054, measures 450 x 450 
x 4.4 mm2, is embedded in a circular plate measuring 410 
mm2 and is instrumented with strain gauges (radial and 
orthogonal): 120 Ω with a gauge factor of 2.10 (Fig. 2).  
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   Fig. 2 Experimental set-up for impact force identification on a plate 

  

The coordinates of the impact points and strain gauge 
positions are shown in Table 1. 

 

Point X (cm) Y (cm) R (cm) 

C 0 0 0 

Pt1 0 3 3 

Pt2 5.5 5 7.43 

Pt3 −7 −7.5 10.26 

J1 0 15 15 

J2 10 0 10 

J3 1 0 1 

J4 7.07 7.07 10 
 

Table 1. The coordinates of the impact points and strain positions 

INTERNATIONAL JOURNAL OF MECHANICS

Issue 1, Volume 5, 2011 49



 

 

 

The impact force and the deformation at various points are 
recorded continuously at an acquisition frequency of 25 kHz.  

C. Results and discussion 

1. Frequency response function (FRF) 
Experimentally it is possible to obtain a transfer function for a 
pair of impact point-measurement points by measuring force 
and strestrain. By applying a Fourier transform to the results, 
the frequency response function (FRF) can be created, 
representing the ratio between the output signal (response 
measured at one point) and the input signal (applied force at 
one point).  
              FRF= FFT(E)/FFT(F)                                              (3) 
The FRF matrix inversion has certain limits in the time 
domain, which normally requires appropriate windowing to 
reduce leakage errors. 
The FRF allows us to obtain the first vibration modes for a 
structure, corresponding to the peaks of the FRF. These peaks 
also correspond to the peaks of the spectrum distortion. It is 
possible to create the transfer functions between an impact 
point and a measuring point for the circular plate. Figure 3 
shows the FRF obtained using an impact in the plate center 
and deformation recorded on strain gauge J2. 
  

 

Fig.3 FRF for impact at the plate center and strain on J2  

 

Table 2 summarizes the first three modes of vibration obtained 
for the plate. 
 

Modes Frequency (Hz) 

1 244.1 

2 952.1 

3 2148 

 

Table 2. The first three vibration modes  

 

It is possible to verify the accuracy of the transfer functions 
obtained by calculating the strain from the transfer function 
and the impact force used, which represents the direct 
problem.  
For an impact applied to point Pt1 and deformation recorded 
on the strain gauge J2, the FRF obtained is shown in Figure 4. 

 

 

Fig.4 FRF for impact at Pt1 and strain on J2 

 

For the same structure studied, a new vibration mode (512.7 
Hz) appears, because a node in this mode coincides with the 
center of the plate. Consequently, when the impact is made at 
the plate center, this mode cannot be activated.  
The direct problem is to calculate the strain using the FRF and 
the impact force applied to the reference impact point. The 
comparison of the deformation obtained and that measured 
shows a small difference in reconstruction, probably because 
of the difficulty in applying the impact at the exact reference 
impact point (Fig. 5). 
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Fig.5 Comparison between measured and calculated strain – direct 

problem 

 

The resolution of the system by simply reversing the direction 
of least squares leads to an unstable, oscillating or divergent 
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(Fig. 6) impact test at the center of the plate and strain 
recorded on strain gauge J1. 
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Fig.6 Calculated force without regularization 

 

The problem is analyzed using the singular value 
decomposition (SVD) of different matrices Hij. It should be 
recalled that the SVD of a matrix H is a decomposition of the 
form: 

      
1

n
T T

i i i
i

H U V u vσ
=

= Σ =∑                                                   (4) 

where:  
• U=(u1,u2,...,un): square orthogonal matrix formed by 

n orthonormal vectors (UTU=I n), which are the 
eigenvectors of the matrix HHT; 

• V=(v1,v2,...,vn): square orthogonal matrix formed by n 
orthonormal vectors (VTV=In), which are the 
eigenvectors of the matrix HTH; 

• Σ =diag(σ1, σ2,..., σn): diagonal matrix whose 
diagonal terms are the singular values of H, which are 
the square roots of eigenvalues H*H, and ranked in 
descending order 

                          1 1 ... nσ σ σ≥ ≥ ≥ . 

The singular values iσ  and vectors iu  and iv  satisfy certain 

properties, the most important being: 

i i iHv uσ= ,        
2i iHv σ= ,        i=1,..,n 

This relationship leads to a simple expression for the solution 
of the system H*F = E : 

          
1

Tn
i

i
i i

u e
f v

σ=
=∑                                                                 (5) 

In practice, in most cases and especially for the matrix 
obtained by discretizing the Fredholm equation of the first 
kind, one can see that: 
- The singular values decrease to zero. 
- An increase in the size of matrix H causes an increase in 

the number of small singular values. 
- Vectors iv  and iu  are increasingly oscillating as index i 

increases, i.e. as iσ  decreases. 

Given that the coefficients T
iu e corresponding to the small 

singular values iσ  does not decrease faster than them, the 

solution will be dominated by highly oscillating terms: find the 
problems associated with a high disturbance frequency. 
A graph of singular FRF values (impact at plate center and 
strain on J1) shows a very significant and sudden difference 
between the smallest and largest singular values, which 
explains the instability and divergence of the solution (Fig. 7).  
 

1 2 3 4 5 6 7 8 9 10

x 10
-4

-1000

-500

0

500

1000

1500

temps(s)

F
or

ce
 (

N
)

 

 

force mesurée
force calculée sans régularisation

0 10 20 30 40 50 60 70 80 90 100
10

-14

10
-12

10
-10

10
-8

10
-6

10-4

10
-2

10
0

i

V
al

eu
rs

 s
in

gu
liè

re
s

S
in

g
ul

a
r 

va
lu

e

i
F

or
ce

 (
N

)

Time (s)

Calculated force

Measured force without regularization

1 2 3 4 5 6 7 8 9 10

x 10
-4

-1000

-500

0

500

1000

1500

temps(s)

F
or

ce
 (

N
)

 

 

force mesurée
force calculée sans régularisation

0 10 20 30 40 50 60 70 80 90 100
10

-14

10
-12

10
-10

10
-8

10
-6

10-4

10
-2

10
0

i

V
al

eu
rs

 s
in

gu
liè

re
s

S
in

g
ul

a
r 

va
lu

e

i
F

or
ce

 (
N

)

Time (s)

Calculated force

Measured force without regularization

Calculated force

Measured force without regularization

 

Fig.7 Singular FRF value – impact at the center and strain on J1 

 

The solution obtained by inversion is not always disrupted, as 
can be seen in the second example which represents the 
solution in the case of an impact force applied at Pt1 and 
deformation registered on gauge J3 (Fig.8). The singular 
values decrease gradually and continuously without a sudden 
jump and provide a correct and stable solution. 
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Fig.8 Singular FRF value – impact at Pt1 and strain on J3 

 

In practice, to obtain a physically acceptable solution, the 
problem must be regularized. 
 
2. Regularization 
The aim of any regularization method is to reduce the 
contribution of these small singular values. The Tikhonov 
approach [13] is used to resolve poorly posed problems.  
In its standard form, the key idea is to accept a non-zero 

residual standard and to impose a low normf  to the 

solution. In fact, it replaces the original poorly posed problem 
with a close problem that is clearly posed and better 
conditioned, so that the solution depends consistently on the 
data and is robust. 
Using the singular value decomposition of H, the regularized 
solution is written as: 

INTERNATIONAL JOURNAL OF MECHANICS

Issue 1, Volume 5, 2011 51



 

 

2

2 2
1 1

T Tn n
i i i

i i i
i ii ii

u e u e
f v fact vβ

σ
σ σσ β= =

= =
+∑ ∑                                (6) 

The filter factor 
2

2 2
i

i
i

fact
σ

σ β
=

+
 between 0 and 1 controls the 

attenuation of each component of the SVD: β fixed between 0 
and 1, then: 
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For singular values close to β, ifact  is between the two 

extremes expressed above. Thus, the first elements of the SVD 
corresponding to singular values greater than β will contribute 
fully to the solutionfβ , whereas the last components 

corresponding to less than β are extremely weak and contribute 
little to the solution. 
The regularization of the inverse problem will depend on the 
choice of the parameter β. This is a compromise between 
stability and the likelihood of achieving a solution.  
Here the L-curve method is applied to determine the 
regularization parameter graphically. It was first applied by 
Lawson and Hanson [14] and more recently by Hansen [15] 
for regularization in the Tikhonov sense; it is based on the 
principle of seeking the optimum of a function composed of 
two terms, a residue called RN (residual norm) and the norm 
of the solution, designated by SN (semi-norm). 

             { } [ ]{ } 2
RN E H f= −                                              (8) 

              { } 2
SN f=                                                             (9) 

For this method, the optimal regularization parameter 
corresponds to the point of maximum curvature for an 
(SN,RN) plot. 
 

3. Resolution method 
To apply the process of rebuilding an effort to impact on a 

structure, an impact is applied to a point j of the structure, and 
the response is recorded on a sensor at a point i. This impact 
will serve as a reference impact and allow the calculation of 
the transfer function for a pair: impact point (j) and 
measurement point (i). The transfer matrix is then formed and 
decomposed into singular values. 

To rebuild a new impact force applied to the point j using 
the measurement recorded on point i, the Tikhonov method is 
used after calculation of the optimal regularization parameter 
with the L-curve method. 

The steps of the resolution method are shown in Figure 9. 
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Fig.9 Identification resolution scheme 
 
For example, for an impact in the plate center and strain 

measured at J1, the optimal regularization parameter obtained 
is shown in Figure 10. 
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Fig.10 L-curve 
 
For a new impact on the plate center, the resolution 

procedure is applied and it reconstructs the impact force. The 
result obtained is compared to the experimental force in Figure 
11. 
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Fig.11 Calculated force with Tikhonov regularization (impact at 
the center of the plate and strain recorded on strain gauge J1) 

 
In this figure, the contribution of regularization can be 

observed: it smoothes disturbances and provides a correct, 
stable solution.  

In some particular cases, the solution is satisfactory without 
regularization. This is mainly due to the position of the gauge 
and its distance from the impact point. 

 

III.  IMPACT FORCE IDENTIFICATION AND LOCATION 

A. Method 

The problem of impact characterization on a structure 
becomes more complex when the impact location is unknown. 
To solve this problem, the Hu method [16] can be used: it is 
based on the minimization of an objective function created 
from the transfer functions between the several impact 
locations, forming a mesh structure, and several measuring 
points (at least three sensors [17]). 

When applying the technique to identify the impacts for 
several sensors: 

       
{ }

{ } [ ]{ } 2 2

1

min
m

i i
f i

F H f fε β
=

= − +∑
ɶ

ɶ ɶɶ                     (10) 

{ }iεɶ  strain measured by sensor i at point (x0i,y0i,z0i) 

[ ]iH  transfer function between { }iεɶ  and { }fɶ  

β  regularization parameter. 

To determine the impact location, it is assumed that impact 

force { }ef
ɶ  was applied at a point on the mesh structure; it is 

calculated from formula (10) and measured strain{ }iεɶ . An 

error vector could therefore be constructed between the 
estimated and measured strains: 
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2
1

m i e i

i
i

H f
E

ε

ε=

−
=∑

ɶ ɶ

ɶ

                                        (11) 

The impact location was obtained by minimizing the 

objective function E. In the process of minimization, { }ef
ɶ  was 

recalculated for each impact point assumed using equation 
(11). Once the impact location had been obtained, the impact 
force history can be calculated using equation (11). 
The experimental approach consists of applying impacts 
throughout the grid structure and recording strain using gauges 
installed on the structure. This allows the creation of the 
structure’s transfer functions that are saved as a historical 
vibration. To locate and identify the impact force of an 
unknown impact, the recorded strain from each gauge was 
used and the approach followed the scheme in Fig.12, thus 
automating the method: 
 

Start

Stop

Loading data files

Signal processing

Calculate F for each impact location

Calculate E for each impact location

Impact location = point where E is min

Calculate impact force in this location

Draw force

 
Fig.12 Characterization resolution scheme 

 

B. Experimental set-up 

First, a grid was drawn on the plate and four strain gauges 
were installed to record the strain response because, for a two-
dimensional problem (plate), a minimum of three sensors is 
required (Fig.13). 
Impacts were applied to all points of the grid and transfer 
functions were thus created between the impact location and 
the measurements. 
 

 

 

Fig.13 Experimental set-up for impact location 
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C. Results  

Once the impact force has been calculated and assuming that it 
is applied to each grid point of the structure, the error function 
can be calculated. It can be observed that the value of the error 
function is minimal at point Pt35; it therefore represents the 
point at which the impact to characterize is applied. The red 
points on Figure 14 represent the maximum error vector, and 
those in blue represent the minimum values. In this 
application, the maximum value of E is limited to 20 for a 
better view and interpretation of the curve. 
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Fig.14. Error function 

 
Once the point of impact has been found, the approach of 
identifying the impact force at that point is applied. For an 
unknown impact, e.g., on point 35 on the grid and after 
applying the procedure for characterizing and using the 
recorded strain, a printed screen of the results is obtained 
(Figure 15). The impact point is indicated by the number of 
points on the grid that appear on the screen and the calculated 
force is compared graphically to the measured force. 
The approach is applied to multiple impact points that coincide 
with the intersections of the grid on the structure studied. For 
these cases, the exact impact location was obtained and the 
identified force was very close to the measured force. 
If the point of impact is outside these points, the impact 
location is obtained on the grid intersection point that is the 
closest to the exact location. The reconstructed impact force in 
this case is not always close to that measured, and its quality 
strongly depends on the distance between the exact point of 
impact and the grid point on which it is located. 
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Fig.15. Example of results – impact location and force identification 
 
The impact locations obtained are summarized in Figure 16.  
 

 
Fig.16 Results of impact locations on the plate 

 

D. Impact location outside grid point 

To locate an impact that is not on a grid point, the mesh of 
the grid must be refined. It is also possible to use a numerical 
model that controls the mesh. In an experimental approach that 
has the advantage of finding results with the structure’s 
existing boundary conditions, it is difficult to increase the 
number of grid points for a large structure. Shape functions 
can be used to find transfer functions at any point (Fig. 17). 
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Fig.17 Using shape function to calculate transfer function outside 

a grid point 
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After obtaining the transfer function at four nodes for one 

element (a rectangular region), the transfer function at any 
location can be calculated within this element using shape 
functions [18]. A four-noded element should possess bi-linear 
shape functions.  

              [ ] [ ]
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Once the transfer function has been calculated for all grid 
points, the impact location and impact force are obtained by 
applying the characterization procedure. For the previous 
example, the exact point of impact is obtained and the 
calculated force is close to the measured force (Fig.18). 

 

0 1 2 3 4 5 6 7 8 9 10

x 10
-4

0

100

200

300

400

500

600

Time (s)

F
or

ce
 (N

)

 

 

Measured force

Calculated force with regularization

0 1 2 3 4 5 6 7 8 9 10

x 10
-4

0

100

200

300

400

500

600

Time (s)

F
or

ce
 (N

)

 

 

Measured force

Calculated force with regularization

 
 

Fig.18 Impact location outside grid point 
 

IV.  CONCLUSION 

This study shows that it is possible to experimentally 
identify and locate the impact force applied to simple 
structures such as a plate with linear material, using measured 
responses and transfer functions. An experimental 
determination by means of a vibration test or impact has the 
advantage of being applicable to all types of structures, even 
complex ones, with arbitrary boundary conditions. 

Using the Tikhonov regularization method and the L-curve 
method to determine the optimal regularization parameter, it is 
possible to obtain good results. Using experimental transfer 
functions created between different impact points forming a 
grid on the structure, as well as strains recorded on different 
sensors, the impact is located on the grid and the force is 
calculated at this location. 

For an impact outside an impact point, the use of shape 
function to calculate the transfer function at any point allows 

one to refine the grid mesh and obtain the exact impact 
location. 

In a subsequent experiment, we will test the robustness of 
the method by examining the optimal solution in terms of the 
number and position of the sensors. In addition, we will apply 
this experimental approach to describe the impact on a 
reinforced concrete slab to establish a system for detecting 
hazards such as falling blocks on a rock-shed structure.  
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