

Abstract— This research paper explores an OpenCL-based

algorithm to aid heat load modelling for district heating plants.

Previous studies have proven that heat loads mostly depend on the

external temperatures (temperature dependency component) and the

time of the day (time dependency component). In this research we

have used the sum of two truncated exponential functions to model

the time dependency component and a generalised logistic function to

model the temperature dependency component. The parameters of

these functions are estimated using the traditional particle swarm

optimisation (TPSO). The estimation of the parameters can be time

consuming so to accelerate the process we have developed an

OpenCL-based version of the algorithm. The critical part of the

implementation of the algorithm in OpenCL is the use of different

types of memories, especially the local memory and also the

coalesced or broadcast read Access to Global Memory.

Keywords— District Heating, Heat load, Modelling, Peak

function, Particle Swarm Approximation, OpenCL, Graphic

Processing Unit.

I. INTRODUCTION

HE algorithm presented is designed to be used in

decision-support software for the combined heat and

power (CH) production in a combined heat and power plant

(CHP). The user of this software will have the possibility to

test different scenarios according to the weather forecast and

his experiences. The algorithm output is the heat load

prediction for a given period, of usually days or weeks. The

algorithm inputs are measured data from the previous time

period and a weather prediction.

Many methods for heat load modelling have already been

developed. A greater comparison of them can be found in [1].

Generally, there are three main approaches: black-box

(ARIMA, neural networks, etc.)[2][3], when we have no

physical knowledge about the problem, simulation models

based on physical models, which need complex information

about the system and a combination of both: grey box

approach, when limited knowledge of a system is known

[4][5][6].

Our model is similar to the simple model presented by

Dotzauer [7] where the predicted heat load is modelled as a

sum of two functions in which the temperature dependent

component is approximated using piecewise linear function

described by nine parameters. And the time dependent

All authors are with Faculty of Applied Informatics, Tomas Bata

component is approximated using 168 parameters, one

parameter for each hour of the week. This model does not

require complex knowledge about real CHP system.

We have improved this model by using continuous

functions for both components [8]. The temperature dependent

component is approximated with a generalised logistic

function. And, the time dependent component describes the

daily pattern, instead of a weekly pattern, and is approximated

using the sum of two hybrids of gaussian and truncated

exponential functions (EGH). And there can be more sets of

time dependent components parameters depending on the type

of the day – weekends, working days etc. We have rapidly

reduced the number of model parameters in comparison with

Dotzauers model.

After several experiments, we have chosen the Particle

Swarm Optimisation (PSO) as the most suitable algorithm for

the estimation of the approximation functions parameters. The

parameters estimation process using PSO generally takes some

minutes on a modern CPU. As we want provide the best user

experience for users of this software, we have developed a

parallel version of our algorithm that runs on a Graphic

Processing Unit (GPU) using OpenCL. By the GPU

acceleration, we have greatly reduced the processing time of

the algorithm.

II. HEAT LOAD CALCULATION

The district heating networks have dynamic properties like

water flow and propagation of heat from the DHP to the

consumers and back again. Such networks can be

mathematically modelled. Some of these methods are

computationally intensive and require full physical modelling

of the networks, but there are also simplified methods [9][10].

For the purpose of heat load modelling, a simpler model can

be used. The district heating system can be approximated by

the load centre of the mass of the system[11]:

 () ̇() ((

) (

)) (1)

where

 () represents the heat load,

 ̇() represents the measured mass flow,

 represents the specific heat capacity,

 represents supply temperature,

 represents return temperature,

 represents the supply line transport time,

Heat Load Modelling for District Heating Plants

Using an OpenCL-based Algorithm

Erik Král, Petr Čápek, and Lubomír Vašek

T

Issue 4, Volume 6, 2012 181

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

 represents the transport time of return line,

 Represents time.

We can simplify the model, so the transport time is only

dependent on the mass flow and the total mass volume of

district heating network. Transport times can be calculated

according to [11]:

 ∫ ̇()

(2)

 ∫ ̇()

 (3)

where

 represents the known mass volume,

Represents the unknown transport time of the

supply line,

represents the unknown transport time of the

return line.

III. HEAT LOAD APPROXIMATION

The heat load is approximated by the sum of time

dependent and temperature dependent components:

 () () () (4)

where

 () represents the time dependent,

component,

 represents the outdoor temperature,

 () represents the outdoor temperature,

dependent component.

A. Temperature Dependent Component

 The temperature dependent component is at certain

periods inversely proportional to the external temperature and

we have chosen the generalised logistic function as the most

appropriate for this approximation:

 ()

(())

 (5)

where

 represents the lower asymptote,

 represents the upper asymptote,

 represents the dependence on the value

 (),

 represents affects near which asymptote

maximum growth occurs,,

 affects near which asymptote maximum growth

occurs,

 represents the time of maximum growth if Q =

v.

B. Time Dependent Component

The daily heat load pattern is typified by its morning and

evening peaks. Thus, the time dependent component is

approximated by the sum of the two peak functions. The

Hybrid of Gaussian and truncated exponential function (EGH)

was selected as most the convenient function due to its

capability to incorporate asymmetric peaks and its fast

convergence [12]. Hybrid of Gaussian and truncated

exponential function is defined as

 ()

 () {
 (

 ()

)

(6)

where

 represents the peak height,,

 represents the standard deviation of the parent

Gaussian peak,

 represents the time constant of the precursor

exponential decay,

 represents the parameter of the speed of the fall

of the leading trail,

 represents the time of the peak.

And the () function is then the sum of two EGH

functions, where (()) describes the

morning peak and) (()) describes the

evening peak of heat load demand. Because the function is

periodical and describes the 24hour daily pattern, we have to

shift time using time by using a time offset and function

modulo to match the daily minimum around 1 am.

 () (()) ((
))

(7)

where

 represents the time offset.

IV. PARAMETER ESTIMATION

A. Fitness Function

The fitness function using approximation functions is

defined as

∑(() ())

(8)

where

 represents the vector of () parameters.

As depicted in Table 1, the function has 17 parameters. The

time offset and mass volume are known and set as

constant, so there are a remaining 15 parameters to be

estimated.

Issue 4, Volume 6, 2012 182

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Table 1: Vector of () parameters

Function Parameters Number of

parameters

 () 6

 ()

 5

 ()

 5

 () 1

 ()

17

B. Particle Swarm Algorithm

The Particle swarm algorithm (PSO) [13] was chosen as the

numeric optimisation algorithm suitable for problems without

the explicit knowledge of the gradient of the function to be

optimised. In this paper we describe a parallel version of the

traditional PSO (TPSO), because its parallelization is more

general than the standard PSO (SPSO) [14]. Therefore, the

principles of this solution can be used for the implementation

of different evolution algorithms, where the best fitness

function value must be shared within the population. The

parallel implementation of SPSO could be simpler because the

best global fitness value does not have to be found. TPSO

should be written in this form:

 () () (() ())

 (() ())

(9)

 () () () (10)

where

 represents the particle index

 ,

NP represents number of particles in swarm,

d represents the dimension index ,

 represents the dimension of the solution

space,

 represent index of iteration,

 () represents the particle position,

 () represents particle velocity

 () represents the particle best position,

 () represents the swarm best position,

 represents the inertia component,

 represents the social component,

 represents the cognitive component,

 are uniformly distributed random numbers in

interval [].,

The particle velocity is limited to () [],
where is the maximum particle velocity. The number of

particles NP is usually set at two times more than the

dimension . The inertia component ω is set at about 0.8, the

social component c1 is set at about 1.4 and the cognitive

component c2 is set at about 0.6. We use MaxDistQuick as a

stopping criterion as described in [14]. The optimization is

stopped if the maximum distance of the majority of the

particles is below a threshold eps or the maximum number of

iteration is reached.

There are already many PSO implementations for GPU

[16][17]. Our parallel implementation of PSO is similar to the

CUDA-based solution in [16]

C. OpenCL

OpenCL is standard for general purpose programming across

CPU, GPU and other processors [18]. It consists of an API for

parallel computation and a cross platform programming

language which is a subset of ISO C99 with an extension for

parallelism.

An OpenCL model consists of a host connected to one or

more OpenCL devices like CPU or GPU. An OpenCL device

is divided into one or more compute units, which are divided

into one or more processing elements (PE). The function

executed on an OpenCL device is called kernel. When a kernel

is submitted for execution, an index space is defined and is

called NDRange. The NDRange is an N-dimensional index

space, where N is one, two or three. An instance of the kernel

is executed for each point in this index space and is called a

work-item. Each work-item has a unique global ID. The work

items are organized into work-groups which have their own

unique work-group ID. Work-items are also assigned a unique

local ID within a work-group. We use a one dimensional

index, so in this case, the global ID can be defined as:

 (11)

where

 represents the work-item global ID,

 represents the work-group ID,

S represents the work-group size

s represents the work-item local ID

The number of work-groups that can be computed is

defined as:

 (12)

where

 represents number of work-groups,

 NDRange size (number of work-items)

A memory model in OpenCL is critical for efficient

algorithm implementation. There are four types of memory

regions:

 global memory – permits read/write access in all

work-groups..

 constant memory – a region of global memory that

remains constant during the execution of a kernel,

 local memory – a memory local to work-group,

 Private memory – a memory private to a work item.

On GPU, the private memory is considered to be the fastest

memory together with the local memory; the slowest memory

is the global memory. The memory scheme of our algorithm is

depicted in Figure 2.

Issue 4, Volume 6, 2012 183

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

V. ALGORITHM

The algorithm runs k-iterations and then updates the User

Interface (UI) as depicted in Figure 1, so the UI does not

freeze and the operator can observe and control the

intermediate results.

Initialization

Run k iterations

Update UI

[Stopinnig criterion == false]

Figure 1: Activity diagram – Algorithm and user interface updates

In presented, one work item represents one particle and

each work item is processed in one Processing Element, as

depicted in Figure 2. Each work-item initializes the particle

position and the velocity .using an OpenCL

implementation of a pseudo random number generator

(PRNG) [19]. The private memory is the fastest memory, but

it has limited capacity. As there are only 17 parameters in

vector , so the dimension of solution space is only 17, the

particle position , and velocity can be stored in the private

memory as the one-dimensional arrays. Using the private

memory for , we can greatly improve the speed of the

algorithm. The indexes of the particles best positions and the

values of the fitness functions of the particles in each work

group are stored in the one dimensional array and FL

respectively. Arrays VL and FL are stored in the fast local

memory and are shared within one work-group. The work

group size is set equal to the number of Compute Units, so the

maximum use of the local memory is achieved. Parallel

minimum reduction is used for finding minimum from

all particles in the local group using arrays VL and FL (Figure

5). The indexes and value of the fitness functions of the best

particles from each work groups are stored in arrays VG and

FG respectively, which size is equal to the number of work

groups. Then, the parallel minimum reduction is again used

for finding the index of the best particle in population and

the related value of fitness function (Figure 4). Finally, the

particle positions and velocities are updated according to

equations (9) and (10) and the algorithm continues until the

stopping criterion is valid or the maximum number of iteration

is reached.

Compute Device

Compute unit 1 Compute unit N

Private
memory 1

stores
X1 ,V1

PE 1
Init. and
updates

X1 ,V1
find min.

check stop.
crit.

Private
memory M

stores
X1+M, V1+M

PE M
Init. and
updates

X1+M, V1+M

find min.
check

stopp. crit.

...

Local memory 1
stores

VL1, FL1

Private
memory 1

stores
XNP-N, VNP-N

PE 1
Init. and
updates

XNP-N, VNP-N

find min.
check

stopp. crit.

Private
memory M

stores
XNP, VNP

PE M
Init. and
updates
XNP, VNP

find min.
check

stopp. crit.

...

Local memory M
stores

VLM, FLM

Global/Constant Memory Data Cache

Global Memory
stores VG, FG, ig and Fg

 stores calculated P if not enought constant memory

Constant Memory
 stores calculated P if enought memory available

...

Figure 2: Parallel TPSO memory scheme

The population of the particles is split into N groups (Figure

3 and Figure 4) according to the number of working groups

 and the number of particles in swarm NP. NDRange size

(number of work-items) G is set equally to the NP.

Compute unit NCompute unit ..Compute unit 1

Init work-group 1 Init work-group .. Init work-group N

Figure 3: Activity diagram - Initialization

Issue 4, Volume 6, 2012 184

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

C
o

m
p

u
te

U

n
it

 M
C

o
m

p
u

te

U
n

it
 ..

C
o

m
p

u
te

U

n
it

 1

Update Group of Particles 1

Update Group of Particles ..

Update Group of Particles M

Fi
n

d
 b

es
t

in
 G

ro
u

p
 (

p
ar

lle
l r

ed
u

ct
io

n
)

Figure 4: Activity diagram - Update group of particles

P
ro

ce
ss

in
g

El
em

en
t

N
P

ro
ce

ss
in

g
El

em
en

t
..

P
ro

ce
ss

in
g

El
em

en
t

1

Update particle 1

Update particle ..

Update particle N

[iteration < k]

Fi
n

d
 b

es
t

in
 G

ro
u

p
 (

p
ar

lle
l r

ed
u

ct
io

n
)

[iteration < k]

[iteration < k]

Figure 5: Activity diagram - Particle update

VI. EXPERIMENTS

We have evaluated the presented algorithm on the data

measured during the two heating seasons I and II at the two

CHP plants A and B. Firstly, we ran the approximation for

every day in the heating seasons, then only for the working

days and lastly for the nonworking days (weekends and public

holidays) only. In Table 2 and Table 3 respectively the Root

Mean Square Errors is presented (RMSE) for the given

season, day class and the CPH plant.

We have run the experiments on the Intel Core i5 i5-520M /

2.4 GHz with NVIDIA GeForce 310M GPU. GForce 310M

provides 16 Cuda Cores. The OpenCL implementation has

only float precision while the standard CPU implementation

has double precision. The OpenCL is more than 10 times

faster than the CPU solution.

The Previous researches [16][17] prove that the acceleration

rate increases with the number of processing elements (for

example Cuda Cores or Steam Processors). Therefore, it is

expected that the algorithm running time can be reduced by

using the GPU with high number of the Processing Elements.

Table 2: CHP plant A results from 1st October – 1st May

Season Day class RMSE [kW]

I All 5919,9

I Working 5547,0

I Nonworking 5885,4

II All 6215,3

II Working 5880,7

II Nonworking 6047,5

Table 3: CHP plant B results from 1st October – 1st May

Season Day class RMSE [kW]

I All 3424,1

I Working 3451,1

I Nonworking 3304,7

II All 2842,4

II Working 2747,7

II Nonworking 2909,9

A. Temperature dependent component

As you can see in the Figures 6 – 9, the approximated

temperature dependent component parameters are similar for

both working and nonworking days. That means that it is not

dependent on the class of the day. If we compare the heating

seasons (Figure 6 andFigure 7 and Figure 8 andFigure 9,

respectively), the temperature dependent component changes

over a long time period. It will be more preferable to update

the temperature dependent component parameters

continuously with the new measurements while dropping the

oldest measurements.

Figure 6: Temperature dependent component, CHP Plant A, season I

-40000

10000

60000

110000

160000

-30-26-22-18-14-10 -6 -2 2 6 10 14 18 22 26

P
o

w
e

r
[k

W
]

Outdoor temperature [°C]

All days Working days Nonworking days

Issue 4, Volume 6, 2012 185

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Figure 7: Temperature dependent component, CHP Plant A, season II

Figure 8: Temperature dependent component, CHP Plant B, season I

Figure 9: Temperature dependent component, CHP Plant B, season II

B. Time dependent component

As you can see in the Figures 10 – 13, the approximated time

dependent component is different for each day class. There is

noticeably higher peak in the mornings on working days while

the evening peak is similar for all day classes. If we compare

the seasons in the same CHP plant, the time dependent

component parameters also change over a long time period.

Figure 10: Temperature dependent comp., CHP Plant A, season I

Figure 11: Temperature dependent comp., CHP Plant A, season II

Figure 12: Temperature dependent comp., CHP Plant B, season I

-20000

0

20000

40000

60000

80000

100000

120000

140000

160000

-30 -26 -22 -18 -14 -10 -6 -2 2 6 10 14 18 22 26

P
o

w
e

r
[k

W
]

Outdoor temperature [°C]

All days Working days Nonworking days

-20000

0

20000

40000

60000

80000

100000

120000

140000

160000

-30 -26 -22 -18 -14 -10 -6 -2 2 6 10 14 18 22 26

P
o

w
e

r
[k

W
]

Outdoor temperature [°C]

All days Working days Nonworking days

-40000

-20000

0

20000

40000

60000

80000

100000

120000

140000

160000

-30 -26 -22 -18 -14 -10 -6 -2 2 6 10 14 18 22 26

P
o

w
e

r
[k

W
]

Outdoor temperature [°C]

All days Working days Nonworking days

0

5000

10000

15000

20000

25000

30000

35000

40000

0 2 4 6 8 10 12 14 16 18 20 22

P
o

w
e

r
[k

W
]

time [h]

All days Working days Nonworking days

0

5000

10000

15000

20000

25000

30000

35000

40000

0 2 4 6 8 10 12 14 16 18 20 22

P
o

w
e

r
[k

W
]

time [h]

All days Working days Nonworking days

0

5000

10000

15000

20000

25000

30000

35000

40000

0 2 4 6 8 10 12 14 16 18 20 22

P
o

w
e

r
[k

W
]

time [h]

All days Working days Nonworking days

Issue 4, Volume 6, 2012 186

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Figure 13: Temperature dependent compoponent,

CHP Plant B, season II

VII. IMPLEMENTATION

The algorithm was implemented as a Microsoft Excel 2007

and 2010 Addin application. Figure 14 depicts the Panel that is

used for estimating and evaluating the approximation

parameters.

Figure 14: Excel Addin Panel

 The application was designed to be compatibility with the

Model View ViewModel (MVVM) [20] design pattern to

provide further extensibility and maintainability.

 Figure 15 depicts the preferences panel. The user can

choose the CPU or GPU (OpenCL) version of the algorithm

and can also load measurements and others necessary data.

Figure 15: Preferences panel

VIII. CONCLUSION

An OpenCL based parallel solution for heat load

approximation and prediction in a district heating system

that’s runs on GPU was presented in this paper. This model

was successfully implemented using PSO as a parallel

algorithm.

The running speed of the algorithm is more than 10 times

faster than a CPU solution. This model does not require

complex knowledge about real CHP system and we have also

reduced the number of model parameters in comparison with

similar model. The preliminary experiments proved that the

running speed of the algorithm was greatly reduced. We will

now concentrate on the implementation of different evolution

algorithms.

ACKNOWLEDGMENT

The work was undertaken with the financial support of the the

European Regional Development Fund under the Project

CEBIA-Tech No. CZ.1.05/2.1.00/03.0089.

0

10000

20000

30000

40000

0 2 4 6 8 10 12 14 16 18 20 22

P
o

w
e

r
[k

W
]

time [h]

All days Working days

Nonworking days

Issue 4, Volume 6, 2012 187

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

REFERENCES

[1] Heller J., Heat-load modelling for large systems,

Applied Energy, Vol. 72, No. 1, May 2002, pp.

371-387, ISSN 0306-261.

[2] Vařacha P., Jašek R., ANN Synthesis for an

Agglomeration Heating Recent Researches in

Automatic Control. Montreux, WSEAS Press, 2011,

pp. 239-244, ISBN 978-1-61804-004-6.

[3] Chramcov B., Heat Demand Forecasting for

Concrete District Heating System. International

Journal of Mathematical Models and Methods in

Applied Sciences, 2010, Vol. 4, No. 4, pp. 231-239.

[4] Nielsen H., Madsen, H., Modelling the heat

consumption in district heating systems using a

grey-box approach, 2006, Vol. 38, pp. 63-71.

[5] Dolinay V., Vašek L., Simulation of Municipal

Heating Network Based on Days with Similar

Temperature, International Journal of Mathematics

and Computers in Simulations, 2011, Vol. 5, No. 5,

pp. 470-477, ISSN 1998-0159.

[6] Vasek, L., Dolinay, V. Simulation model of heat

distribution and consumption in municipal heating

network, International Journal of Mathematical

Models and Methods in Applied Sciences, 2010,

Vol. 4, No. 4, pp. 240-248.

[7] Dotzauer, E., Simple model for prediction of loads

in district-heating systems, Applied Energy, 2002,

No. 73, pp. 277-284.

[8] Král E.. Vašek L., Dolinay V.; Čápek P., The Use of

Peak Functions in Heat Load Modeling of Distric

Heating System, International Journal of

Mathematical Models and Methods in Applied

Science, 2011, Vol. 5, pp. 1241-1248. ISSN 1998-

0140.

[9] Larsen H., Pálsson H., Bøhm B., Ravn H.,

Aggregated dynamic simulation model of district

heating networks, Energy Conversion and

Management, Vol. 43, No. 8, May 2002, pp. 995-

1019, ISSN 0196-8904.

[10] Helge L., Benny B., Michael W., A comparison of

aggregated models for simulation and operational

optimisation of district heating networks, Energy

Conversion and Management, Vol. 45, No 7-8,

May 2004, pp. 1119-1139, ISSN 0196-8904.

[11] Saarinen L.. Modelling and control of a district

heating system, Uppsala University, 2008, pp. 67 s.,

ISSN 1650-8300.

[12] Jianwei Li, Comparison of the capability of peak

functions in describing real chromatographic peaks,

Journal of Chromatography A, Volume 952, Issues

1-2, 5 April 2002, Pages 63-70, ISSN 0021-9673,

DOI: 10.1016/S0021-9673(02)00090-0.

[13] JKennedy J., Eberhart R., Particle Swarm

Optimization IEEE International Conference on

Neural Networks, Pert, WA, Australia, Nov. 1995,

pp.1942-1948.

[14] Bratton D., Kennedy J., Defining a Standard for

Particle Swarm Optimization, IEEE Swarm

Intelligence Symposium, April 2007, pp.120-127.

[15] Zielinski K., Laur R., Stopping criteria for a

constrained single-objective particle swarm

optimization algorithm, Informatica, Vol. 31, No. 1,

pp. 51-59, 2007.

[16] You Zhou, Ying Tan, GPU-based Parallel Particle

Swarm Optimization, 2009, IEEE Congress on

Evolutionary Computation (CEC 2009), pp. 1493-

1500.

[17] Cadenas-Montes, M., Vega-Rodriguez, M.A.,

Rodriguez-Vazquez, J.J., Gomez-Iglesias, A.:

Accelerating particle swarm algorithm with

GPGPU, 2011, In: 19th Euromicro International

Conference on Parallel, Distributed and Network-

based Processing (PDP), pp. 560–564. IEEE

(2011)

[18] Khronos Group. The OpenCL Specification 1.2,

2011

[19] John K. Salmon, Mark A. Moraes, Ron O. Dror,

and David E. Shaw, Parallel random numbers: as

easy as 1, 2, 3, In Proceedings of 2011International

Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’11, New

York, NY, USA, 2011.

[20] Garofalo R., Building Enterprise Applications with

Windows Presentation Foundation and the Model

View ViewModel Pattern. Microsoft Press; 1 edition ,

March 31, 2011, ISBN 978-0735650923

The first author, Ing. et Ing. Erik Král is a PhD. candidate

and assistant leading lectures for the Department of Digital

communication and Hardware of communication systems at

Tomas Bata University in Zlin. Between 2003 and 2006 he

worked as a Software developer (MS Navision DB, CRM

system, .NET, c#). Between 2006 and 2011 he worked as a

researcher on National Research Program II, The intelligent

system controlling an energetic framework of an urban

agglomeration (successfully finished in 2011). He teaches

Object-oriented Programming, FPGA design and

Programming.

Issue 4, Volume 6, 2012 188

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

