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Abstract— This research paper explores an OpenCL-based 

algorithm to aid heat load modelling for district heating plants. 

Previous studies have proven that heat loads mostly depend on the 

external temperatures (temperature dependency component) and the 

time of the day (time dependency component). In this research we 

have used the sum of two truncated exponential functions to model 

the time dependency component and a generalised logistic function to 

model the temperature dependency component. The parameters of 

these functions are estimated using the traditional particle swarm 

optimisation (TPSO). The estimation of the parameters can be time 

consuming so to accelerate the process we have developed an 

OpenCL-based version of the algorithm. The critical part of the 

implementation of the algorithm in OpenCL is the use of different 

types of memories, especially the local memory and also the 

coalesced or broadcast read Access to Global Memory. 
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I. INTRODUCTION 

HE algorithm presented is designed to be used in 

decision-support software for the combined heat and 

power (CH) production in a combined heat and power plant 

(CHP). The user of this software will have the possibility to 

test different scenarios according to the weather forecast and 

his experiences. The algorithm output is the heat load 

prediction for a given period, of usually days or weeks. The 

algorithm inputs are measured data from the previous time 

period and a weather prediction.  

Many methods for heat load modelling have already been 

developed. A greater comparison of them can be found in [1]. 

Generally, there are three main approaches: black-box 

(ARIMA, neural networks, etc.)[2][3], when we have no 

physical knowledge about the problem, simulation models 

based on physical models, which need complex information 

about the system and a combination of both: grey box 

approach, when limited knowledge of a system is known 

[4][5][6]. 

Our model is similar to the simple model presented by 

Dotzauer [7] where the predicted heat load is modelled as a 

sum of two functions in which the temperature dependent 

component is approximated using piecewise linear function 

described by nine parameters. And the time dependent 
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component is approximated using 168 parameters, one 

parameter for each hour of the week. This model does not 

require complex knowledge about real CHP system. 

We have improved this model by using continuous 

functions for both components [8]. The temperature dependent 

component is approximated with a generalised logistic 

function. And, the time dependent component describes the 

daily pattern, instead of a weekly pattern, and is approximated 

using the sum of two hybrids of gaussian and truncated 

exponential functions (EGH). And there can be more sets of 

time dependent components parameters depending on the type 

of the day – weekends, working days etc. We have rapidly 

reduced the number of model parameters in comparison with 

Dotzauers model.  

After several experiments, we have chosen the Particle 

Swarm Optimisation (PSO) as the most suitable algorithm for 

the estimation of the approximation functions parameters. The 

parameters estimation process using PSO generally takes some 

minutes on a modern CPU. As we want provide the best user 

experience for users of this software, we have developed a 

parallel version of our algorithm that runs on a Graphic 

Processing Unit (GPU) using OpenCL. By the GPU 

acceleration, we have greatly reduced the processing time of 

the algorithm. 

II.  HEAT LOAD CALCULATION 

The district heating networks have dynamic properties like 

water flow and propagation of heat from the DHP to the 

consumers and back again. Such networks can be 

mathematically modelled. Some of these methods are 

computationally intensive and require full physical modelling 

of the networks, but there are also simplified methods [9][10]. 

For the purpose of heat load modelling, a simpler model can 

be used. The district heating system can be approximated by 

the load centre of the mass of the system[11]: 

 ( )   ̇( ) (  (  
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where 

 ( ) represents the heat load, 

 ̇( ) represents the measured mass flow, 

  represents the specific heat capacity, 

   represents supply  temperature, 

   represents return temperature, 

    represents the supply line transport time, 
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    represents the transport time of return line, 

  Represents time. 

 

We can simplify the model, so the transport time is only 

dependent on the mass flow and the total mass volume of 

district heating network. Transport times can be calculated 

according to [11]:  

   ∫  ̇( )
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where 

  represents  the known mass volume, 

    
Represents the unknown transport time of the 

supply line, 

    
represents the unknown transport time of the 

return line. 

III. HEAT LOAD APPROXIMATION 

The heat load is approximated by the sum of time 

dependent and temperature dependent components: 

  (     )       ( )       (   ) (4) 

where  

     ( ) represents the time dependent, 

component, 

    represents the outdoor temperature, 

     (   ) represents the outdoor temperature, 

dependent component. 

 

A. Temperature Dependent Component 

 The temperature dependent component is at certain 

periods inversely proportional to the external temperature and 

we have chosen the generalised logistic function as the most 

appropriate for this approximation: 

     (   )    
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where 

  represents the lower asymptote, 

  represents the upper asymptote, 

  represents the dependence on the value 

     ( ), 

  represents affects near which asymptote 

maximum growth occurs,, 

  affects near which asymptote maximum growth 

occurs, 

  represents the time of maximum growth if Q = 

v. 

 

B. Time Dependent Component 

The daily heat load pattern is typified by its morning and 

evening peaks. Thus, the time dependent component is 

approximated by the sum of the two peak functions. The 

Hybrid of Gaussian and truncated exponential function (EGH) 

was selected as most the convenient function due to its 

capability to incorporate asymmetric peaks and its fast 

convergence [12]. Hybrid of Gaussian and truncated 

exponential function is defined as 

        (    ) 
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where 

  represents  the peak height,, 

  represents  the standard deviation of the parent 

Gaussian peak, 

  represents  the time constant of the precursor 

exponential decay, 

   represents  the parameter of the speed of the fall 

of the leading trail, 

   represents  the time of the peak. 

 

And the      ( ) function is then the sum of two EGH 

functions, where      ((    )       )   describes the 

morning peak and )        ((    )       ) describes the 

evening peak of heat load demand. Because the function is 

periodical and describes the 24hour daily pattern, we have to 

shift time using time by using a time offset and function 

modulo to match the daily minimum around 1 am.  

     ( )       ((    )       )        ((  
  )       ) 

(7) 

where 

   represents the time offset. 

IV. PARAMETER ESTIMATION 

A. Fitness Function 

The fitness function using approximation functions is 

defined as 
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(8) 

 

where 

  represents the vector of   (     ) parameters. 

 

As depicted in Table 1, the function has 17 parameters. The 

time offset    and mass volume   are known and set as 

constant, so there are a remaining 15 parameters to be 

estimated. 
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Table 1: Vector of   (     ) parameters 

Function Parameters Number of 

parameters 

     (   )             6 

     ( )            
    

   5 

     ( )            
    

  5 

     ( )    1 

  (     )              
            

    
    

           
    

   
   

17 

B. Particle Swarm Algorithm 

The Particle swarm algorithm (PSO) [13] was chosen as the 

numeric optimisation algorithm suitable for problems without 

the explicit knowledge of the gradient of the function to be 

optimised.  In this paper we describe a parallel version of the 

traditional PSO (TPSO), because its parallelization is more 

general than the standard PSO (SPSO) [14]. Therefore, the 

principles of this solution can be used for the implementation 

of different evolution algorithms, where the best fitness 

function value must be shared within the population. The 

parallel implementation of SPSO could be simpler because the 

best global fitness value does not have to be found. TPSO 

should be written in this form: 

   (   )      ( )      (    ( )     ( ))

     (   ( )     ( )) 

(9) 

   (   )     ( )      ( ) (10) 

 

where 

  represents the particle index  

         , 

NP represents number of particles in swarm, 

d represents the dimension index         , 

  represents the dimension of the solution 

space, 

  represent index of iteration, 

   ( ) represents the particle position, 

   ( ) represents particle velocity 

    ( ) represents the particle best position, 

   ( ) represents the swarm best position, 

  represents the inertia component, 

   represents the  social component, 

   represents the  cognitive component, 

      are uniformly distributed random numbers in 

interval [   ]., 
 

The particle velocity is limited to    ( )   [           ], 
where       is the maximum particle velocity. The number of 

particles NP is usually set at two times more than the 

dimension  . The inertia component ω is set at about 0.8, the 

social component c1 is set at about 1.4 and the cognitive 

component c2 is set at about 0.6. We use MaxDistQuick as a 

stopping criterion as described in [14]. The optimization is 

stopped if the maximum distance of the majority of the 

particles is below a threshold eps or the maximum number of 

iteration is reached. 

There are already many PSO implementations for GPU 

[16][17]. Our parallel implementation of PSO is similar to the 

CUDA-based solution in [16]  

C. OpenCL 

OpenCL is standard for general purpose programming across 

CPU, GPU and other processors [18]. It consists of an API for 

parallel computation and a cross platform programming 

language which is a subset of ISO C99 with an extension for 

parallelism. 

An OpenCL model consists of a host connected to one or 

more OpenCL devices like CPU or GPU. An OpenCL device 

is divided into one or more compute units, which are divided 

into one or more processing elements (PE). The function 

executed on an OpenCL device is called kernel. When a kernel 

is submitted for execution, an index space is defined and is 

called NDRange. The NDRange is an N-dimensional index 

space, where N is one, two or three. An instance of the kernel 

is executed for each point in this index space and is called a 

work-item. Each work-item has a unique global ID. The work 

items are organized into work-groups which have their own 

unique work-group ID. Work-items are also assigned a unique 

local ID within a work-group. We use a one dimensional 

index, so in this case, the global ID can be defined as: 

         (11) 

where 

  represents the work-item global ID, 

  represents the work-group ID, 

S represents the work-group size 

s represents the work-item local ID 

 

The number of work-groups that can be computed is  

defined as: 

      (12) 

where 

  represents number of work-groups, 

  NDRange size (number of work-items) 

 

A memory model in OpenCL is critical for efficient 

algorithm implementation. There are four types of memory 

regions: 

 global memory – permits read/write access in all 

work-groups.. 

 constant memory – a region of global memory that 

remains constant during the execution of a kernel, 

 local memory – a memory local to work-group, 

 Private memory – a memory private to a work item. 

 

On GPU, the private memory is considered to be the fastest 

memory together with the local memory; the slowest memory 

is the global memory. The memory scheme of our algorithm is 

depicted in Figure 2. 
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V. ALGORITHM 

The algorithm runs k-iterations and then updates the User 

Interface (UI) as depicted in Figure 1, so the UI does not 

freeze and the operator can observe and control the 

intermediate results. 

Initialization

Run k iterations

Update UI

[Stopinnig criterion == false] 

 

Figure 1: Activity diagram – Algorithm and user interface updates 

 

In presented, one work item represents one particle and 

each work item is processed in one Processing Element, as 

depicted in Figure 2. Each work-item initializes the particle 

position    and the velocity   .using an OpenCL 

implementation of a pseudo random number generator 

(PRNG) [19]. The private memory is the fastest memory, but 

it has limited capacity. As there are only 17 parameters in 

vector  , so the dimension of solution space   is only 17, the 

particle position   , and velocity    can be stored in the private 

memory as the one-dimensional arrays. Using the private 

memory for   ,    we can greatly improve the speed of the 

algorithm. The indexes of the particles best positions and the 

values of the fitness functions of the particles in each work 

group are stored in the one dimensional array    and FL 

respectively. Arrays VL and FL are stored in the fast local 

memory and are shared within one work-group. The work 

group size is set equal to the number of Compute Units, so the 

maximum use of the local memory is achieved. Parallel 

minimum reduction is used for finding minimum       from 

all particles in the local group using arrays VL and FL (Figure 

5). The indexes and value of the fitness functions of the best 

particles from each work groups are stored in arrays VG and 

FG respectively, which size is equal to the number of work 

groups. Then, the parallel minimum reduction is again used 

for finding the index of the best particle in population    and 

the related value of fitness function    (Figure 4). Finally, the 

particle positions and velocities are updated according to 

equations (9) and (10) and the algorithm continues until the 

stopping criterion is valid or the maximum number of iteration 

is reached.   

 

Compute Device

Compute unit 1 Compute unit N

Private 
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X1 ,V1

PE 1
Init. and 
updates 

X1 ,V1 
find min. 

check stop. 
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find min.
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stopp. crit.

...

Local memory 1
stores  

VL1, FL1

Private 
memory 1

stores 
XNP-N, VNP-N

PE 1
Init. and 
updates

XNP-N, VNP-N

find min. 
check 

stopp. crit.

Private 
memory M

stores 
XNP, VNP

PE M
Init. and 
updates
XNP, VNP

find min.  
check 

stopp. crit.

...

Local memory M
stores  

VLM, FLM

Global/Constant Memory Data Cache

Global Memory
stores VG, FG, ig and Fg

 stores calculated P if not enought constant memory

Constant Memory
 stores calculated P if enought memory available

...

 
Figure 2: Parallel TPSO memory scheme 

   

The population of the particles is split into N groups (Figure 

3 and Figure 4) according to the number of working groups 

 and the number of particles in swarm NP. NDRange size 

(number of work-items) G is set equally to the NP.  

 

Compute unit NCompute unit ..Compute unit 1

Init work-group 1 Init work-group .. Init work-group N

 
Figure 3: Activity diagram - Initialization 
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Figure 4: Activity diagram - Update group of particles 
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Figure 5: Activity diagram - Particle update 

VI. EXPERIMENTS 

 

We have evaluated the presented algorithm on the data 

measured during the two heating seasons I and II at the two 

CHP plants A and B. Firstly, we ran the approximation for 

every day in the heating seasons, then only for the working 

days and lastly for the nonworking days (weekends and public  

holidays) only. In Table 2 and Table 3 respectively the Root 

Mean Square Errors is presented (RMSE) for the given 

season, day class and the CPH plant. 

We have run the experiments on the Intel Core i5 i5-520M / 

2.4 GHz with NVIDIA GeForce 310M GPU. GForce 310M 

provides 16 Cuda Cores. The OpenCL implementation has 

only float precision while the standard CPU implementation 

has double precision. The OpenCL is more than 10 times 

faster than the CPU solution. 

The Previous researches [16][17] prove that the acceleration 

rate increases with the number of processing elements (for 

example Cuda Cores or Steam Processors). Therefore, it is 

expected that the algorithm running time can be reduced by 

using the GPU with high number of the Processing Elements. 

 

Table 2: CHP plant A results from 1st October  – 1st May 

Season Day class RMSE [kW] 

I All  5919,9 

I Working 5547,0 

I Nonworking 5885,4 

II All  6215,3 

II Working 5880,7 

II Nonworking 6047,5 

 

 
Table 3: CHP plant B results from 1st October  – 1st May 

Season Day class RMSE [kW] 

I All  3424,1 

I Working 3451,1 

I Nonworking 3304,7 

II All  2842,4 

II Working 2747,7 

II Nonworking 2909,9 

 

A. Temperature dependent component 

 

As you can see in the Figures 6 – 9, the approximated 

temperature dependent component parameters are similar for 

both working and nonworking days. That means that it is not 

dependent on the class of the day. If we compare the heating 

seasons (Figure 6 andFigure 7 and Figure 8 andFigure 9, 

respectively), the temperature dependent component changes 

over a long time period. It will be more preferable to update 

the temperature dependent component parameters 

continuously with the new measurements while dropping the 

oldest measurements.  

 

 
Figure 6: Temperature dependent component, CHP Plant A, season I 
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Figure 7: Temperature dependent component, CHP Plant A, season II 

 

 
Figure 8: Temperature dependent component, CHP Plant B, season I 

 

 
Figure 9: Temperature dependent component, CHP Plant B, season II 

 

B. Time dependent component 

As you can see in the Figures 10 – 13, the approximated time 

dependent component is different for each day class. There is 

noticeably higher peak in the mornings on working days while 

the evening peak is similar for all day classes. If we compare 

the seasons in the same CHP plant, the time dependent 

component parameters also change over a long time period. 

 

 
Figure 10: Temperature dependent comp., CHP Plant A, season I 

 

 

 
Figure 11: Temperature dependent comp., CHP Plant A, season II 

 

 
Figure 12: Temperature dependent comp., CHP Plant B, season I 
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Figure 13: Temperature dependent compoponent, 

CHP Plant B, season II 

VII. IMPLEMENTATION 

The algorithm was implemented as a Microsoft Excel 2007 

and 2010 Addin application. Figure 14 depicts the Panel that is 

used for estimating and evaluating the approximation 

parameters. 

 

 
Figure 14: Excel Addin Panel 

 

 The application was designed to be compatibility with the 

Model View ViewModel (MVVM) [20] design pattern to 

provide further extensibility and maintainability. 

 Figure 15 depicts the preferences panel. The user can 

choose the CPU or GPU (OpenCL) version of the algorithm 

and can also load measurements and others necessary data. 

 

 
Figure 15: Preferences panel 

VIII. CONCLUSION 

An OpenCL based parallel solution for heat load 

approximation and prediction in a district heating system 

that’s runs on GPU was presented in this paper. This model 

was successfully implemented using PSO as a parallel 

algorithm.  

The running speed of the algorithm is more than 10 times 

faster than a CPU solution. This model does not require 

complex knowledge about real CHP system and we have also 

reduced the number of model parameters in comparison with 

similar model. The preliminary experiments proved that the 

running speed of the algorithm was greatly reduced. We will 

now concentrate on the implementation of different evolution 

algorithms. 
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