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Abstract—Linear vector equations and inequalities are consid-
ered defined in terms of idempotent mathematics. To solve the
equations, we apply an approach that is based on the analysis of dis-
tances between vectors in idempotent vector spaces. The approach
reduces the solution of the equation to that of an optimization
problem in the idempotent algebra setting. Based on the approach,
existence and uniqueness conditions are established for the solution
of equations, and a general solution to both linear equations and
inequalities are given. Finally, a problem of simultaneous solution
of equations and inequalities is also considered.
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I. INTRODUCTION

Many applications of idempotent mathematics [1]–[9]
involve the solution of linear equations and inequalities
defined on finite-dimensional semimodules over idempotent
semifields (idempotent vector spaces). One of the problems
that often arise is to solve an equation having the form

Ax = d,

where A and d are given matrix and vector, x is an
unknown vector, and multiplication is thought of in terms
of idempotent algebra. Since the equation can be considered
as representing linear dependence between vectors, the de-
velopment of reasonable solution to the problem holds both
practical and theoretical interest. Of particular importance
are the methods that offer solutions in a compact vector
form suitable for development of efficient computational al-
gorithms and related software tools, including those intended
for implementation in vector and parallel computers.

Along with the above equation, an inequality

Ax ≤ d

that is considered component-wise constitutes another prob-
lem of interest in the idempotent algebra setting.

Among the early investigations of the problem of solving
the equation and of its interplay with linear dependence of
vectors are the works [1]–[3]. Further development of the
question is given in many studies, including [4], [9]–[14].

To solve the equation where the matrix has no (idem-
potent) zero entries, an approach based on the concept of a
covering set of rows for the matrix A is proposed in [1], [2].
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With the approach, existence conditions are established and
a procedure to find all solutions of the equation is described
in terms of the covering sets. The maximum solution to
the equation is given in the form x = A− ⊗ d , where
A− is a pseudoinverse matrix in the initial idempotent
semimodule (called there extremal inverse matrix), and ⊗
denotes matrix-vector multiplication in a dual semimodule.
In [10], [11], the above approach is extended to investigate
linear dependence in idempotent semimodules.

The development of the theory and methods in [3] is
aimed in particular at the solution of equations when the
matrix A may have zero entries. The operation of pseu-
doinversion is extended to such matrices (the matrix A− is
called conjugate to A ). For the solution, existence conditions
in the form of an equality A(A−⊗d) = d , where ⊗ is the
multiplication in a dual semimodule, are given and unique-
ness conditions are established. A procedure is proposed to
determine the linear dependence between vectors. The results
are further developed in [9] to offer a combinatorial and an
algebraic techniques for the solution of equations.

In [4], [12], [13], a notion of a subsolution to the equation
is introduced as any vector x that satisfies the condition
Ax ≤ d . A residuation operation \ is defined so that A\d
represents the maximal subsolution of the equation. It is
shown that when an ordinary solution exists, it can be written
in terms of a dual semimodule and then A\d = A− ⊗ d .
For an extended equation Ax ⊕ b = d , where ⊕ denotes
idempotent vector addition, a necessary and sufficient condi-
tion for the existence of its subsolutions is given in [4], [13]
in the form of an inequality b ≤ d that however suggests
only necessary conditions for the actual solution.

Another approach that is based on the application of
an idempotent analogue for the matrix determinant, known
as dominant, is proposed in [14]. A solution technique is
developed which uses Cramer’s rule with the dominant in
place of determinant. The implementation of the approach
requires, however, that some sufficient constraints for both
the matrix A and the vector d to satisfy.

In this paper another solution approach is described which
uses the analysis of distances between vectors in idempotent
vector spaces. As a metric, we take a distance function that
involves only main binary operations of the semimodule
supplemented with the operation of pseudoinversion. This
allows to represent subsequent results in a compact vector
form only in terms of the initial semimodule and give them
clear and natural geometrical interpretation in the plane with
the Cartesian coordinates. The results presented are based
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on implementation and further refinement of solutions that
were first published in the papers [15]–[17] (see also [18])
and were not fully available in English.

We start with a brief overview of preliminary algebraic
definitions and results. Furthermore, the problem of solving
the equation under study reduces to an optimization problem
of finding the minimal distance from a vector to a linear
span of vectors. We derive a comprehensive solutions to the
optimization problem under quite general conditions. The
obtained results are applied to give existence and uniqueness
condition as well as to offer a general solution of the
equation. Furthermore, a complete solution to the inequality
is given. Finally, a problem of simultaneous solution of
equations and inequalities is also considered.

II. PRELIMINARIES

In this section, we present algebraic definitions, notations,
and results based on [15], [17] to provide a background
for subsequent analysis and solutions. Additional details and
further results can be found in [2]–[9].

A. Idempotent Semifield

We consider a set X endowed with addition ⊕ and mul-
tiplication ⊗ and equipped with the zero 0 and the identity
1 . The system 〈X,0, 1,⊕,⊗〉 is assumed to be a linearly
ordered radicable commutative semiring with idempotent
addition and invertible multiplication, and it is commonly
called idempotent semifield.

Idempotency of addition implies that x ⊕ x = x for all
x ∈ X . For any x ∈ X+ , where X+ = X \ {0} , there
exists an inverse x−1 such that x−1⊗ x = 1 . Furthermore,
the power xq is defined for any x ∈ X+ and a rational q .
Specifically, for any integer p ≥ 0 , we have

x0 = 1, xp = xp−1x, x−p = (x−1)p.

In what follows, we drop the multiplication sign ⊗ and
use the power notation only in the above sense.

The linear order defined on X is assumed to be consistent
with a partial order that is induced by idempotent addition
to involve that x ≤ y if and only if x ⊕ y = y . From the
last definition it follows that addition possesses an extremal
property in the form of inequalities

x ≤ x⊕ y, y ≤ x⊕ y,

and that both addition and multiplication are isotonic.
Below, the relation symbols and the operator min are

thought in terms of the above linear order.
Note that we have x ≥ 0 for all x ∈ X . We also assume

that the set X includes (or can be extended by) a maximal
element ∞ such that x ≤ ∞ for all x ∈ X .

Examples of the linearly ordered radicable idempotent
semifield under consideration include

Rmax,+ = 〈R ∪ {−∞},−∞, 0,max,+〉,
Rmin,+ = 〈R ∪ {+∞},+∞, 0,min,+〉,
Rmax,× = 〈R+ ∪ {0}, 0, 1,max,×〉,
Rmin,× = 〈R+ ∪ {+∞},+∞, 1,min,×〉,

where R is the set of real numbers, R+ = {x ∈ R|x > 0} .
Specifically, the semifield Rmax,+ has its null and identity

defined as 0 = −∞ and 1 = 0 . For each x ∈ R , there exists
an inverse x−1 equal to −x in conventional arithmetic. For
any x, y ∈ R , the power xy corresponds to the arithmetic
product xy . The order induced by the idempotent addition
coincides with the natural linear order on R . The maximal
element is given by +∞ .

In Rmin,× , we have 0 = +∞ and 1 = 1 . The inverse
and power notations have the same interpretation as in the
conventional algebra. The relation ≤ defines a reverse order
to the linear order on R . The role of the maximal element
is performed by 0 .

The semifields Rmax,+ , Rmin,+ , Rmax,× , and Rmin,×
are isomorphic to each other. Fig. 1 offers a diagram that
represents isomorphism maps for these semifields.

Rmax,+

y = −x
-

�
y = −x

Rmin,+

y = lnx

6

?

y = ex y = lnx

6

?

y = ex

Rmax,×

y = 1/x
-

�
y = 1/x

Rmin,×

Fig. 1. Isomorphism of Rmax,+ , Rmin,+ , Rmax,× , and Rmin,× .

As an example of an idempotent semiring that is not a
simifield, one can consider

Rmax,min = 〈R ∪ {−∞,+∞},−∞,+∞,max,min〉.

In this semiring, it holds that 0 = −∞ and 1 = +∞ .
Inverse elements with respect to the multiplication ⊗ defined
to be min do not exist, whereas the power notation is
undefined. The order induced by the addition ⊕ corresponds
to the natural linear order. The maximal element is +∞ .

Now we introduce a distance function ρ on X as follows.
For any x, y ∈ X+ , we define

ρ(x, y) = y−1x⊕ x−1y.

Since the function ρ takes values in the segment [1,∞) ,
it is natural to put ρ(x, y) = 1 when x = y = 0 . We also
assume that ρ(x, y) =∞ if one of the arguments x and y
is zero while the other is not.
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In the semifield Rmax,+ for all x, y ∈ R , the function
ρ coincides with the ordinary distance d(x, y) = |x − y| .
Due to the isomorphism between semifields, the function
ρ induces a distance function in each semifield Rmax,× ,
Rmin,+ , and Rmin,× . Specifically, in Rmax,× , we have

ρ′(x, y) = ln(y−1x⊕ x−1y).

The function ρ possesses the symmetry property and
satisfies the triangle inequality in all semifields Rmax,+ ,
Rmax,× , Rmin,+ , and Rmin,× . Moreover, for every such
semifield, the function can always be converted into an actual
metric by scaling its value by an appropriate isomorphism.
Below, for simplicity, we leave out the isomorphism maps,
and take the function ρ as a metric for all semifields.

B. Idempotent Vector Space
Consider the Cartesian power Xm with column vectors as

its elements. A vector with all elements equal to 0 is the
zero vector. A vector is regular if it has no zero elements.

For any two vectors a = (ai) and b = (bi) in X
m , and a

scalar x ∈ X , addition and scalar multiplication are defined
component-wise as follows

{a⊕ b}i = ai ⊕ bi, {xa}i = xai.

Endowed with these operations, the set X
m forms a

semimodule over the idempotent semifield X and it is
referred to as the idempotent vector space.

Fig. 2 gives geometrical illustrations of the addition in the
space R

2
max,+ with the Cartesian coordinates on the plane.

Note that the left example can equally refer to R
2
max,× .

-

6

�
�
�
�
�
�
�
�
��

��
��
��
�1

�
�
�
�
�
�
�
�
��

0 b1 a1

a2

b2
a

b

a⊕ b
-

6

�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
��=

�
�
�
�
�
��

0a1

a2

b1

b2
b

a

a⊕ b

Fig. 2. Vector addition in R
2
max,+ .

Idempotent addition of two vectors in R
2
max,+ follows the

“rectangle rule” that defines the sum as the upper right vertex
of a rectangle formed by lines drawn through the end points
of the vectors, parallel to the coordinate axes.

Scalar multiplication of vectors in R
2
max,+ is equivalent

to shifting the end point of the vector in the direction at
45◦ to the axes (see Fig. 3, left), whereas in R

2
max,× it has

conventional geometrical interpretation (Fig. 3, right).
For any vectors a, b ∈ X

m , the extremal property of
addition leads to component-wise vector inequalities

a ≤ a⊕ b, b ≤ a⊕ b.
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Fig. 3. Scalar multiplication in R
2
max,+ (left) and in R

2
max,× (right).

Furthermore, vector and scalar inequalities a ≤ b and
x ≤ y imply that the inequalities

a⊕ c ≤ b⊕ c, xa ≤ xb, xc ≤ yc

are valid for all c ∈ X
m , and so both vector addition and

scalar multiplication are isotone in each argument.

C. Matrix Algebra

Consider matrices having entries in X . For conforming
matrices A = (aij) , B = (bij) , and C = (cij) , matrix
addition and multiplication together with multiplication by
a scalar x ∈ X follow the conventional rules

{A⊕B}ij = aij ⊕ bij , {BC}ij =
⊕
k

bikckj ,

{xA}ij = xaij .

Specifically, a matrix A = (aij) ∈ Xm×n is multiplied by
a vector x = (xi) ∈ Xn to result in a vector with elements

{Ax}i = ai1x1 ⊕ · · · ⊕ ainxn.

The matrix operations is component-wise isotone in each
argument.

A matrix with all entries equal to zero is called the zero
matrix and denoted by 0 .

A matrix is row regular (column regular) if it has no zero
rows (columns).

A square matrix is diagonal if its off-diagonal entries are
zero. The diagonal matrix I = diag(1, . . . ,1) is the identity.

For any nonzero column vector x = (xi) ∈ Xn , we define
a row vector x− = (x−i ) , where x−i = x−1i if xi 6= 0 , and
x−i = 0 otherwise.

If x is a nonzero vector, then x−x = 1 .
Suppose that both x and y are regular vectors. The

component-wise inequality x ≤ y implies x− ≥ y− .
Furthermore, it is not difficult to verify the inequality

xy− ≥ (x−y)−1I. (1)

Indeed, since x−y = x−11 y1 ⊕ · · · ⊕ x−1n yn ≥ x−1i yi , we
have xiy

−1
i ≥ (x−y)−1 for all i = 1, . . . , n , and so

xy− ≥ diag(x1y
−1
1 , . . . , xny

−1
n ) ≥ (x−y)−1I.
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When y = x the inequality (1) takes the form xx− ≥ I .
By applying (1) in this form, one can get the inequality

(Ax)−A ≤ x−, (2)

which is valid for any nonzero matrix A ∈ Xm×n . In fact,
if x ∈ Xn

+ , then we have (Ax)−A ≤ (Ax)−Axx− = x− .

D. Linear Dependence

Consider a system of vectors a1, . . . ,an ∈ Xm . As usual,
a vector b ∈ X

m is linearly dependent on the system if it
admits representation as a linear combination

b = x1a1 ⊕ · · · ⊕ xnan

with coefficients x1, . . . , xn ∈ X .
The linear span of a1, . . . ,an is defined as the set of all

linear combinations that form an idempotent subspace

span(a1, . . . ,am) =

{
m⊕
i=1

xiai

∣∣∣∣∣x1, . . . , xm ∈ X
}
.

Geometrical examples of linear spans are given in Fig. 4.
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Fig. 4. Linear span of vectors in R
2
max,+ (left) and in R

2
max,× (right).

The linear span of vectors a1 and a2 in the idempotent
space R

2
max,+ is a strip bounded by the lines drawn through

the end points of the vectors (see Fig. 4, left). In R
2
max,× ,

the linear span has the form of a cone (Fig. 4, right).
A system of vectors a1, . . . ,an is linearly dependent if

at least one its vector is linearly dependent on others, and it
is linear independent otherwise.

A system of nonzero vectors a1, . . . ,an is a minimal
generating system for a vector b , if b is linearly dependent
on the system and independent of any of its subsystems.

Let us verify that if vectors a1, . . . ,an are a minimal
generating system for a vector b , then representation of b
as a linear combination of a1, . . . ,an is unique. Suppose
there are two linear combinations

b = x1a1 ⊕ · · · ⊕ xnan = x′1a1 ⊕ · · · ⊕ x′nan,

where x′i 6= xi , say x′i < xi , for some index i = 1, . . . , n .
Assuming, for the sake of simplicity, that the vector ai is

regular, we have b ≥ xiai > x′iai . Therefore, the term x′iai

does not affect b and so may be omitted, which contradicts
with the minimality of the system a1, . . . ,an .

E. Distance Function

For any vector a ∈ Xm , we introduce its support as the
index set

supp(a) = {i|ai 6= 0, i = 1, . . . ,m}.

The distance between nonzero vectors a, b ∈ X
m with

supp(a) = supp(b) is defined by a function

ρ(a, b) =
⊕

i∈supp(a)

(
b−1i ai ⊕ a−1i bi

)
= b−a⊕ a−b. (3)

We put ρ(a, b) = ∞ when supp(a) 6= supp(b) , and
ρ(a, b) = 1 if a = b = 0 .

Note that the function ρ in R
m
max,+ coincides for all

vectors a, b ∈ Rm with the Chebyshev metric

ρ∞(a, b) = max
1≤i≤m

|bi − ai|.

III. EVALUATION OF DISTANCES

Let a1, . . . ,an ∈ X
m be given vectors. We denote by

A = (a1, . . . ,an) a matrix having the vectors as columns,
and by A = span{a1, . . . ,an} a linear span of the vectors.

Take a vector d ∈ X
m and consider the problem of

computing the distance from d to A defined as

ρ(A,d) = min
a∈A

ρ(a,d).

As another problem of interest, we examine the distance
from d to the sets (half-spaces)

A1 = {a ∈ A|a ≤ d}, A2 = {a ∈ A|a ≥ d}.

Taking into account that every vector a ∈ A can be
represented as a = Ax for some vector x ∈ Xn , we arrive
at the problem of calculating

ρ(A,d) = min
x∈Xn

ρ(Ax,d). (4)

Suppose d = 0 . Considering that A always contains the
zero vector, we obviously get ρ(A,d) = 1 .

Let some of the vectors a1, . . . ,an be zero. Since zero
vectors do not affect the linear span A , they can be removed
with no change of distances. When all vectors are zero and
thus A = {0} , we have ρ(A,d) = 0 if d = 0 , and
ρ(A,d) =∞ otherwise.

From here on we assume that d 6= 0 and ai 6= 0 for all
i = 1, . . . , n , and so the matrix A is column regular.

Suppose the vector d = (di) may have zero components
and so be irregular. For the matrix A = (aij) , we introduce a
matrix Â = (âij) as follows. We define two sets of indices
I = {i|di = 0} and J = {j|aij > 0, i ∈ I} , and then
determine the entries in Â according to the conditions

âij =

{
0, if i /∈ I and j ∈ J ;

aij , otherwise.
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The matrix A may differ from Â only in those columns
that have nonzero intersections with the rows corresponding
to zero components in d . In the matrix Â , these columns
have all entries that are not located at the intersections set to
zero. The matrix Â with the above properties and the vector
d are said to be consistent with each other.

Note that when d is regular, we have Â = A ; that is, the
matrix Â obtained from the matrix A to provide consistency
with d appears to coincide with A .

Proposition 1: For all x it holds that

ρ(Ax,d) = ρ(Âx,d).

Proof: With a regular d the statement becomes trivial and
so assume d 6= 0 to have zero components.

Suppose that ρ(Ax,d) < ∞ , which occurs only under
the condition supp(Ax) = supp(d) . The fulfillment of the
condition is equivalent to equalities ai1x1⊕· · ·⊕ainxn = 0

that must be true whenever di = 0 . To provide the equalities,
we put xj = 0 for all indices j such that aij 6= 0 for at
least one index i with di = 0 . In this case, replacing A
with Â leaves the value of ρ(Ax,d) <∞ unchanged.

Since the condition supp(Ax) 6= supp(d) implies
supp(Âx) 6= supp(d) and vice versa, the statement is also
true when ρ(Ax,d) =∞ .

With the above result, we may now concentrate only on
the problems when A is consistent with d .

In order to describe the solution of problem (4), we need
the following notation. For any consistent matrix A and
vector d , we define a residual value

∆A(d) =
√

(A(d−A)−)−d

if A is row regular, and ∆A(d) =∞ otherwise.
In what follows, we drop subscripts and arguments in

∆A(d) and write ∆ if no confusion arises.
Below we find the solution when the vector d is regular

and then extend this result to irregular vectors.

A. Regular Vector

Suppose that d is a regular vector. First we verify that
the minimum of ρ(Ax,d) over Xn in (4) can be found by
examining only regular vectors x ∈ Xn

+ .
Proposition 2: If a vector d is regular, then

ρ(A,d) = min
x∈Xn

+

ρ(Ax,d).

Proof: Take a vector y = Ax such that ρ(Ax,d)
achieves the minimum value. If y is irregular and so has
zero components, then supp(y) 6= supp(d) , and thus
ρ(Ax,d) =∞ for all x , including regular vectors x .

Suppose y = (y1, . . . , ym)T is regular. Assume a corre-
sponding vector x to have a zero component, say xj = 0 .
Now we define a set I = {i|aij > 0} 6= ∅ and find a number
ε = min{a−1ij yi|i ∈ I} > 0 .

It remains to note that with xj = ε in place of xj = 0 ,
all components of y together with the minimum value of

ρ(Ax,d) remain unchanged. Therefore, to get the minimum
it is suffice to examine only regular vectors x ∈ Xn

+ .
The next statement reveals the meaning of the residual

value ∆ = ∆A(d) in terms of distances.
Lemma 1: If a vector d is regular, then it holds that

ρ(A,d) = ∆,

where the minimum is attained at

x = ∆(d−A)−.

Proof: Suppose that the matrix A is not row regular. Then
we have supp(Ax) 6= supp(d) and ρ(A,d) = ∞ . Since,
by definition, ∆ =∞ , the statement is true in this case.

Let A be row regular. Taking into account (3) and (4),
we arrive at an optimization problem to find

min
x∈Xn

+

(d−Ax⊕ (Ax)−d).

Take any vector y = Ax such that x > 0 , and define

r = d−Ax⊕ (Ax)−d > 0.

From the definition of r , we have two inequalities

r ≥ d−Ax, r ≥ (Ax)−d.

Right multiplication of the first inequality by x− together
with (1) give rx− ≥ d−Axx− ≥ d−A . Then we obtain
x ≤ r(d−A)− and (Ax)− ≥ r−1(A(d−A)−)− .

Further substitution into the second inequality results in

r ≥ r−1(A(d−A)−)−d = r−1∆2,

whence it follows directly that r ≥ ∆ .
It remains to verify the equality r = ∆ when we take

x = ∆(d−A)− . Indeed, substitution of this vector x gives

r = ∆d−A(d−A)− ⊕∆−1(A(d−A)−)−d = ∆.

Finally note that the above vector x corresponds to the
vector y = ∆A(d−A)− ∈ A .

Examples of a subspace A = span(a1,a2) and a vector
d in the idempotent space R

2
max,+ are given in Fig. 5.

Now we turn to evaluation of the distance from the vector
d to the half-spaces A1 and A2 .

Lemma 2: If a vector d is regular, then it holds that

ρ(A1,d) = min
Ax≤d

ρ(Ax,d) = ∆2,

ρ(A2,d) = min
Ax≥d

ρ(Ax,d) = ∆2,

where the minimum is respectively attained at

x1 = (d−A)−, x2 = ∆2(d−A)−.

Proof: Similarly as in Lemma 1 we can verify the equality
ρ(A1,d) = ρ(A2,d) = ∆2 provided that A is not a row
regular matrix. Let us show that the equality remains valid
when the matrix A is row regular.

By multiplying the inequality Ax ≤ d by x− from the
right and applying (1) we get A ≤ Axx− ≤ dx− . Further
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Fig. 5. A linear span A and a vector d in R
2
max,+ when ∆ = 1 (top)

and ∆ > 1 (bottom).

multiplication by d− from the left results in the inequality
d−A ≤ x− , which then gives x ≤ (d−A)− .

Therefore, for any vector Ax ∈ A1 , we have

ρ(Ax,d) = (Ax)−d ≥ (A(d−A)−)−d = ∆2.

It is clear that ρ(Ax1,d) = ∆2 if x1 = (d−A)− .
Consider an arbitrary vector Ax ∈ A2 . Application of

(2) to the vector (d−A)− yields d−A ≥ (A(d−A)−)−A .
Taking into account the condition that Ax ≥ d , we further
have d−Ax ≥ (A(d−A)−)−Ax ≥ (A(d−A)−)−d .

Now we can conclude that for Ax ∈ A2 , it holds

ρ(Ax,d) = d−Ax ≥ (A(d−A)−)−d = ∆2.

It remains to see that substitution x2 = ∆2(d−A)− gives
ρ(Ax2,d) = ∆2d−A(d−A)− = ∆2 .

Note that when ∆ < ∞ the minimum distance from d
to the half-spaces A1 and A2 is achieved at the respective
vectors y1 = A(d−A)− and y2 = ∆2A(b−A)− .

A geometric illustration of the above result in the idem-
potent space R

2
max,+ is given in Fig. 6.

B. Arbitrary Nonzero Vector

Now we examine the distance between the linear span A
and an arbitrary vector d 6= 0 .
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Fig. 6. The sets A1 and A2 , and the vector d in R
2
max,+ when

∆ = 1 (top) and ∆ > 1 (bottom).

Theorem 1: For any vector d 6= 0 it holds that

ρ(A,d) = min
x∈Xn

+

ρ(Ax,d) = ∆,

where the minimum is attained at x = ∆(d−A)− .
Proof: Note that for the case when d is regular, the proof

is given in Lemma 1. Now we suppose that the vector d 6= 0

has zero components. Due to Proposition 1, it will suffice to
examine only the case when A and d are consistent.

Let us define the sets of indices I = {i|di = 0} and
J = {j|aij > 0, i ∈ I} . In order to provide the minimum of
ρ(Ax,d) , we must put xj = 0 for all j ∈ J . This makes it
possible to exclude from consideration all components of d
and the rows of A with indices in I , as well as all columns
of A with indices in J . By eliminating these elements, we
obtain a new matrix A′ and a new vector d′ .

Denote the linear span of the columns in A′ by A′ .
Considering that the vector d′ has no zero components, we
apply Lemma 1 to get

ρ(A,d) = ρ(A′,d′) = ∆A′(d′) = ∆′.

Furthermore, we note that the minimum ρ(A′x′,d′) is
attained if x′ = ∆′(d′−A′)− , where x′ is a vector of order
less than n .
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The matrix A differs from A′ only in that it has extra
zero rows and columns. Clearly, both matrices appear to be
row regular or irregular simultaneously.

Suppose that both matrices are row regular. Taking into
account that the vector d′ is obtained from d by removing
zero components, we have

∆′ =
√

(A′(d′−A′)−)−d′ =
√

(A(d−A)−)−d = ∆.

Since the optimal vector x differs from x′ only in
extra zero components, we conclude that ρ(Ax,d) achieves
minimum at x = ∆(d−A)− .

Using the same proof scheme as above, it is not difficult
to extend the result of Lemma 2 as follows.

Lemma 3: For any vector d 6= 0 , it holds that

ρ(A1,d) = min
Ax≤d

ρ(Ax,d) = ∆2,

ρ(A2,d) = min
Ax≥d

ρ(Ax,d) = ∆2,

where the minimums are respectively attained at

x1 = (d−A)−, x2 = ∆2(d−A)−.

To conclude this section, let us formulate a direct conse-
quence of Theorem 1. First note that the residual ∆ satisfies
the condition ∆ ≥ 1 . The equality ∆ = 1 means that the
vector d belongs to the linear span A = span{a1, . . . ,an} ,
whereas the inequality ∆ > 1 implies that d is outside A .
In other words, the following assertion is valid.

Lemma 4: A vector d belongs to a linear span of columns
of a matrix A if and only if ∆ = 1 , and if so it holds that
d = Ax , where x = (d−A)− .

In the next sections, we consider applications of the result
to analysis of linear dependence and to solution of linear
equations and inequalities.

IV. LINEAR DEPENDENCE

First we give conditions for a vector d ∈ X
m to be

linearly dependent on vectors a1, . . . ,an ∈ X
m , or equiv-

alently, to admit a representation in the form of a linear
combination d = x1a1 ⊕ · · · ⊕ xnan .

We define the matrix A = (a1, . . . ,an) and then calcu-
late the residual ∆ = ∆A(d) =

√
(A(d−A)−)−d .

As a slight modification of Lemma 4, we arrive at the
following statement.

Lemma 5: A vector d is linearly dependent on vectors
a1, . . . ,an if and only if ∆ = 1 .

Now we formulate a formal criterion that a system
a1, . . . ,an is linearly independent. We use the notation
Ai = (a1, . . . ,ai−1,ai+1, . . . ,an) to represent a matrix
obtained from A by removing column i , and introduce

δ(A) = min
1≤i≤n

∆Ai(ai).

Lemma 6: The system of vectors a1, . . . ,an is linearly
independent if and only if δ(A) > 1 .

Proof: Clearly, the condition δ(A) > 1 involves that
∆Ai(ai) > 1 for all i = 1, . . . , n . It follows from Lemma 5

that in this case none of the vectors a1, . . . ,an is a linear
combination of others, and so the system of vectors is
linearly independent.

Let a1, . . . ,an and b1, . . . , bk be two systems of nonzero
vectors. These systems are considered to be equivalent if
each vector of one system is a linear combination of vectors
of the other system.

Consider a system a1, . . . ,an that can include linearly
dependent vectors. To construct an equivalent independent
system (a basis of the system), we implement a sequential
procedure that examines the vectors one by one to decide
whether to remove a vector from the system or not.

At each step i = 1, . . . , n , the vector ai is removed if
∆Ãi

(ai) = 1 , where the matrix Ãi is composed of those
columns in Ai , that are retained after the previous steps.
Upon completion of the procedure, we get a new system of
vectors ã1, . . . , ãk , where k ≤ n .

Proposition 3: The system ã1, . . . , ãk is a linearly inde-
pendent system that is equivalent to a1, . . . ,an .

Proof: According to the way of constructing the system
ã1, . . . , ãk , each vector ãi coincides with a vector of the
initial system a1, . . . ,an . Since at the same time, for each
aj , it holds that aj ∈ span{ã1, . . . , ãk} , both systems are
equivalent. Finally, due to Lemma 6, the system ã1, . . . , ãk

is linearly independent.

V. LINEAR EQUATIONS AND INEQUALITIES

Suppose there are given a matrix A ∈ Xm×n and a vector
d ∈ Xm . Consider problems of finding an unknown vector
x ∈ Xn to satisfy the equation

Ax = d, (5)

and the inequality
Ax ≤ d. (6)

In what follows, we assume that the matrix A is already
put into a form that is consistent with the vector d , and use
the notation ∆ = ∆A(d) =

√
(A(d−A)−)−d .

If a matrix A = (a1, . . . ,an) has a zero column, say
ai , then the solution of equation (5) reduces to that of
an equation that is obtained from (5) by removing the
component xi in the vector x together with eliminating
the column ai in A . Each solution of the reduced equation
causes equation (5) to have a set of solutions, where xi takes
all values in X . The solution of inequality (6) with a matrix
A having a zero column reduces in the same way.

Suppose that A = 0 . In this case, any vector x ∈ Xn is a
solution of (5) provided that d = 0 , and there is no solution
otherwise. The solution of (6) is any vector x ∈ Xn .

If d = 0 , then both equation (5) and inequality (6) have
a trivial solution x = 0 , which is unique when the matrix
A has no zero columns.

From here on we assume that the vector d and all columns
in the matrix A are nonzero, and so A is column regular.

A solution x0 of equation (5) is called maximal if it holds
that x ≤ x0 for any solution x .

Issue 1, Volume 7, 2013 20

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



The next result gives a complete solution of inequality (6).
Lemma 7: For any column regular matrix A and vector

b 6= 0 , the solution of inequality (6) exists and is given by

x ≤ (d−A)−. (7)

Proof: Let us ensure that inequalities (7) and (6) are
equivalent to each other. First assume the vector d to be
regular. In much the same way as in Lemma 2, we verify
that inequality (7) follows from (6).

Suppose that inequality (7) holds. Then we have

Ax ≤ A(b−A)− ≤ bb−A(b−A)− = b,

and thus inequality (6) holds as well.
Now assume that the vector d 6= 0 is not regular. In this

case, we use the same proof scheme as in Theorem 1 to
reduce the problem to that with a regular vector and then
apply the above result.

In the following, we examine conditions for the solution
of equation (5) to exist and to be unique, and then describe
the general solution to the equation.

A. Existence and Uniqueness of Solution
Application of previous results brings us to a position to

arrive at the next assertion.
Theorem 2: For any column regular matrix A and

nonzero vector b , the following statements are true:
1) Equation (5) has solutions if and only if ∆ = 1 .
2) If solvable, the equation has a maximal solution

x = (d−A)−.

3) If all columns in A form a minimal system that
generates d , then the above solution is unique.

Proof: The existence condition and the form of a solution
follows from Lemma 4. The result of Lemma 7 says that this
solution is maximal. The uniqueness condition follows from
representation of the vector as a unique linear combination
of its minimal set of generators.

Suppose that ∆ > 1 . In this case equation (5) has no
solution. However, we can define a pseudo-solution to (5)
as a solution of the equation

Ax = ∆A(d−A)−,

which always exists and takes the form

x0 = ∆(d−A)−.

By Theorem 1, the pseudo-solution yields the minimum
deviation between the vectors y = Ax and the vector d in
the sense of the metric ρ . When ∆ = 1 , the pseudo-solution
obviously coincides with the maximum solution.

Consider a problem of finding two vectors x1 and x2

that provide the minimum deviation between both sides of
(5), while satisfying the respective inequalities

Ax ≤ d, Ax ≥ d.

It follows from Lemma 3 that the problem has a solution
that is given by

x1 = (d−A)−, x2 = ∆2(d−A)−.

B. General Solution

To describe a general solution to equation (5), we first
give an auxiliary result that solves (5) when the vector d is
linearly dependent on a subset of columns in the matrix A .

Lemma 8: Let A = (a1, . . . ,an) be a matrix, I be a
subset of column indices of A , and d ∈ span{ai|i ∈ I} .

Then any vector xI = (xi) , where xi = (d−ai)
− if

i ∈ I , and xi ≤ (d−ai)
− otherwise, is a solution to (5).

Proof: Since d ∈ span{ai|i ∈ I} ⊂ span{a1, . . . ,an} ,
there is a solution xI of equation (5), and therefore,

d = AxI =
n⊕

i=1

xiai =
⊕
i∈I

xiai ⊕
⊕
i6∈I

xiai.

Furthermore, the condition d ∈ span{ai|i ∈ I} yields an
equality

d =
⊕
i∈I

xiai,

which is valid when xi = (d−ai)
− for all i ∈ I .

The remaining components with indices i 6∈ I must be
set so as to satisfy inequalities

d ≥
⊕
i6∈I

xiai ≥ xiai.

It remains to solve the inequalities to conclude that for
each i 6∈ I , we can take any xi ≤ (d−ai)

− .
Let I be a set of indices of those columns in A that form

a minimal generating system for the vector d . We denote
the set of all such index sets I by I . It is clear that I 6= ∅
only when equation (5) has at least one solution.

By applying Lemma 8, we arrive at the following result.
Theorem 3: The general solution to equation (5) is a

(possible empty) family of solutions {xI |I ∈ I} , where
each solution xI = (xi) is given by

xi = (d−ai)
−, if i ∈ I,

xi ≤ (d−ai)
−, if i 6∈ I.

(8)

Let us examine a case when the family reduces to one
solution set. Suppose that the columns in A are linearly
independent. Then there may exist only one subset of
columns that form a minimal generating system for d . If
the subset coincides with the set of all columns, then the
solution reduces to a unique vector x = (d−A)− .

As an illustration, consider equation (5) in the idempotent
vector space R

2
max,+ under the conditions that

A =

(
a11 a12
a21 a22

)
, d =

(
d1
d2

)
,

where a11, a12, a21, a22 > 0 and d1, d2 > 0 .
Suppose that ∆ = ∆A(d) = (A(d−A)−)−d = 1 . The

maximal solution of the equation takes the form

x =

(
(d−a1)−1

(d−a2)−1

)
=

(
(d−11 a11 ⊕ d−12 a21)−1

(d−11 a12 ⊕ d−12 a22)−1

)
.

If the vector d is not collinear with any of vectors a1

and a2 , then the solution is unique (see Fig. 7, upper left).
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Fig. 7. A unique (upper left) and non-unique (upper right and bottom)
solutions to the linear equation Ax = d in R

2
max,+ .

Two cases when equation (5) has more than one solution
are shown on the Fig. 7 (upper left and bottom).

In the upper left, the vector d is collinear with a1 and is
not collinear with a2 . The solution of the equation is any
vector x with components

x1 = (d−11 a11 ⊕ d−12 a21)−1,

x2 ≤ (d−11 a12 ⊕ d−12 a22)−1.

In the case depicted in Fig. 7 in the bottom, both vectors
a1 and a2 are collinear with each other and with the vector
d . Under these conditions, there are two families of solution
vectors x′ = (x′1, x

′
2)T and x′′ = (x′′1 , x

′′
2) .

The vectors in the first family are given by

x′1 = (d−11 a11 ⊕ d−12 a21)−1,

x′2 ≤ (d−11 a12 ⊕ d−12 a22)−1,

whereas those in the second family are given by

x′′1 ≤ (d−11 a11 ⊕ d−12 a21)−1,

x′′2 = (d−11 a12 ⊕ d−12 a22)−1.

C. Systems of Equations and Inequalities

Given matrices A and C , and vectors d and b , consider
a problem to find vectors x that simultaneously solves an
equation and an inequality combined into one system

Ax = d,

Cx ≤ b.
(9)

To solve the problem, we denote by I a subset of indices
for those columns in the matrix A that form a minimal
generating system for the vector b , and by I a set of all
such subsets. Furthermore, we define

Ĩ = {I ∈ I|b−ci ≤ d−ai, i ∈ I} ⊂ I,

where ai and ci are columns i in the matrices A and C ,
and recall the notation ∆ = ∆A(d) =

√
(A(d−A)−)−d .

Lemma 9: For any column regular matrices A and C ,
and nonzero vectors d and b , system (9) has solutions if
and only if ∆ = 1 and Ĩ 6= ∅ . The general solution to the
system is a (possible empty) family of solutions {xI |I ∈ Ĩ} ,
where each solution xI = (xi) is given by

xi = (d−ai)
−, if i ∈ I,

xi ≤ (d−ai ⊕ b−ci)
−, if i 6∈ I.

Proof: System (9) is solvable if and only if there exists a
solution to the equation in the system to satisfy the condition
x ≤ (b−C)− , which is equivalent to the inequality at (9).

According to Theorem 3, the solution to the equation is
a family {xI |I ∈ I} , where each member is given by (8).
Consider a solution that corresponds to a subset I ∈ I .
The solution is the vectors xI = (xi) with components
xi = (d−ai)

− , if i ∈ I , and xi ≤ (d−ai)
− , otherwise.

These vectors include solutions to the inequality at (9) if
and only if (d−ai)

− ≤ (b−ci)
− for all i ∈ I . By collecting

all sets I that provides this condition, we get the set Ĩ .
It remains to see that each set I ∈ Ĩ gives a solution

xI = (xi) , where xi = (d−ai ⊕ b−ci) = (d−ai)
− , if

i ∈ I , and xi ≤ (d−ai ⊕ b−ci)
− , otherwise.

D. An Extended Equation

Consider a problem to solve with respect to the unknown
vector x an extended equation in the form

Ax⊕ b = d, (10)

where A is given matrix, d and b are given vectors.
In what follows, we assume that b ≤ d since if it is not

the case, then equation 10 obviously has no solutions.
We introduce two sets of indices I1 = {i|bi < di} and

I2 = {i|bi = di} . Let A1 and A2 be submatrices composed
of the rows in A with indices from I1 and I2 , respectively.
Similarly, we define subvectors d1 and d2 for the vector
d , and subvectors b1 and b2 for the vector b .

Equation (10) is then equivalent to a system

A1x = d1,

A2x ≤ b2.

In the same way as above, we construct a set I1 to include
all sets of indices of minimal systems of columns in A1 that
generate d1 . Furthermore, we reduce the set I1 to a set Ĩ1
consisting of those I ∈ I1 that provide common solutions
to both equation and inequality. Finally, we introduce the
notation ∆1 = ∆A1

(d1) = (A(d−1 A)−)−d1 .
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Lemma 10: For any column regular matrix A , and
nonzero vectors d and b , equation (10) has solutions if
and only if ∆1 = 1 and Ĩ1 6= ∅ . The general solution
to the system is a (possible empty) family of solutions
{xI |I ∈ Ĩ1} , where each solution xI = (xi) is given by

xi = (d−ai)
−, if i ∈ I,

xi ≤ (d−ai)
−, if i 6∈ I.

Proof: By applying Lemma 9, we immediately get the
existence conditions as well as a general solution in the form
of family {xI |I ∈ Ĩ1} with xI = (xi) given by

xi = (d−1 a
1
i ⊕ b−2 a

2
i )−, if i ∈ I,

xi ≤ (d−1 a
1
i ⊕ b−2 a

2
i )−, if i 6∈ I,

where a1
i and a2

i denote columns i in A1 and A2 .
Since b2 = d2 , we have d−1 a

1
i ⊕ b−2 a

2
i = d−ai which

leads to the solution in the desired form.
An illustration of solutions to equation (10) in R

2
max,+

are given in Fig. 8, where the set of vectors y = Ax ⊕ b
for all x ∈ R2

max,+ is represented with a shaded part of the
strip corresponding to the linear span of columns in A . In
the case when the vector b is outside the strip (upper right
and bottom), this set is extended by adding vertical segments
drawn from the end point of b to the strip.
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Fig. 8. Solutions to the equation Ax⊕ b = d in R
2
max,+

Note that a solution of equation (10) may exist when
equation (5) has no solutions as shown in Fig. 8 (bottom).

REFERENCES

[1] N. N. Vorob’ev, “The extremal matrix algebra,” Soviet Math. Dokl.,
vol. 4, pp. 1220–1223, 1964.

[2] N. N. Vorobjev, “Extremal algebra of positive matrices,” Elektronische
Informationsverarbeitung und Kybernetik, vol. 3, no. 1, pp. 39–72,
January–February 1967. (in Russian)

[3] R. Cuninghame-Green, Minimax Algebra. Berlin: Springer, 1979.
(Lecture Notes in Economics and Mathematical Systems, vol. 166)

[4] F. L. Baccelli, G. Cohen, G. J. Olsder, J.-P. Quadrat, Synchronization
and Linearity. Chichester: Wiley, 1993.

[5] V. N. Kolokoltsov, V. P. Maslov, Idempotent Analysis and its Appli-
cations. Dordrecht: Kluwer, 1997.

[6] G. L. Litvinov, V. P. Maslov, “Correspondence principle for idem-
potent calculus and some computer applications,” in Idempotency.
Cambridge: Cambridge University Press, 1998, pp. 420–443. E-print
arXiv:math.GM/0101021

[7] J. S. Golan, Semirings and Affine Equations Over Them. New York:
Springer, 2003.

[8] B. Heidergott, G. J. Olsder, J. van der Woude, Max-Plus at Work.
Princeton: Princeton University Press, 2005.
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