

Abstract — This paper presents a application generator based on

UML specification. The tool is capable of generating the source code

in various programming languages from the same specification. The

main characteristics of the existent tools are explained in brief. Main

generator capabilities and merits are presented as well as an example

of usage based on a relatively simple scenario. The tool extensibility

is described as a mean of making the tool to suit a wide range of

needs.

Keywords — application generator, CASE, source code templates,

UML, XML/XSL transformations

I. INTRODUCTION

At present and in the future, the technology development is

accompanied by an increase in applications’ complexity. Code

generators are used to increase code quality and decrease

development time, since their goal is to generate repetitive

source code while maintaining a high consistency level of the

generated program code.

Code generation assumes the mission of writing repetitive

code parts, leaving to programmers more time to concentrate

on specific code. The generators provide more productivity;

generate great volumes of code, which would take much longer

if coded manually. Consistent code quality is preserved

throughout the entire generated part of a project. Required

coding conventions are consistently applied, unlike

handwritten code, where the quality is subject to variation. In

case of finding errors in generated code, the errors can be

corrected in short time through revising of templates and re-

running the process of code generation [1].

Code generators are delivered with limited set of solutions

for common problems in a target domain and allow only

limited possibility for extension [5].

Some tools generate only parts of applications while the

others generate whole applications. Code generators are

especially suited for database-based applications where large

number of forms with similar functionality is needed.

This work was supported by grants # 036-0361983-3137 and # 036-

0361983-2022 by the Croatian Ministry of science, education and sports.

K. Fertalj is with the Department of Applied Computing at the Faculty of

Electrical Engineering and Computing, University of Zagreb, Croatia (phone:

385-1-6129918; fax: 385-1-6129915; e-mail: kresimir.fertalj@fer.hr).

M. Brcic just graduated from Computer Science at the Department of

Applied Computing, Faculty of Electrical Engineering and Computing,

University of Zagreb, Croatia (e-mail: mario.brcic@fer.hr).

Generators usually have their own Integrated Development

Environments (IDE) because, for instance, a professional Web

application development today is not possible without a good

HTML designer, a code editor, a Web page preview and often

a debugger [18].

The developers need tools that will be able to generate code

for most common and most repetitive functions. As every

developer has his own method of development, it is up to

her/him to choose the product he will be able to work with. In

an ideal situation the produced code would be the code the

developer would himself make manually knowing the best

practices in solving particular problems, having a good

knowledge and experience in the area, and having a reasonable

amount of time for development.

It is nearly impossible to imagine that an existing generator

will produce such code, which the developer will never have to

modify or customize. Sometimes, the effort of learning how to

use the generator and to think in its terms is not justified

considering the size/scope of a project. If that is the case, then

using a combination of proprietary custom-built framework

and third party solutions to specific problems might be a better

way to proceed.

A couple application generators have resulted from the

authors’ research and development [6], [23]. The experience

gathered was used as a foundation when modeling a new tool.

The old tool [7], [8] was used in several projects, with the

generated code rate ranging from 10%-90%. Higher

percentage was achieved in projects with a large number of

straightforward data processing forms. The usage of the

generator would be more frequent if the generator had been

capable of generating custom code fragments in an easy way.

Later, another tool was built and has been used in building

Web-based applications [24]. The generated systems consisted

of many different applications, Web pages, and forms which

were rather unique in nature. Despite their uniqueness,

fractions of code were isolated and converted into XML/XSL

templates. Generally, templates could contain code in any

programming language. The tool included the support for code

generation based on database structure, and generation of

documentation. It was expandable with user defined parameter

types and dependencies. The generator overcame some

problems found in various commercial tools [23], [25], [26]. It

was suitable for programmers who wanted complete control of

the code generation process, but was still missing modeling

capabilities.

A Source Code Generator Based on UML

Specification

Kresimir Fertalj, Mario Brcic

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

10

The source code generator presented in this paper is based

on UML specifications and on templates written in XML/XSL.

UML specifications are greatly enriched with calls to

parameterized snippets whose implementation is delegated to

the templates while they are carrying semantic description of

the model’s requisites. The generator is relying on an existing

UML tool for delivery of UML capabilities and on its

extendible architecture [2].

The most important characteristic of the generator described

in this article is the preserved flexibility towards the target

programming language, accomplished by code generation

through two transformations; first into an intermediate code

and then into the code of a selected target language. Since the

complexity of UML model can vary from simple to highly

complex, the tool provides wizards for creation of the most

common complex model parts based on input settings.

II. COMMERCIAL SOLUTIONS

Many commercial products of different applications and

approaches to generation are available on the market. In this

paper, the categorization based on inputs and outputs [1] is

used.

In the first category, code mungers, there are many tools.

Graphic languages, such as UML, can be used as input

language. Most of UML based generators do not have their

own UML development environment. Instead, they use UML

specifications made in other tools as input in the form of XMI

or some other interchangeable format. Such working mode,

although exceptionally flexible, can face the problem in

extraction of all the data from specification due to different

UML tools’ particularities and varieties.

On the other hand, the UML development environment can

be a better option because it offers improved control over the

whole process and avoids compatibility issues between the

specification and the code generator. Again, the code

generating functionality, configurability, flexibility and

extendibility are generally less extensive than those of the

aforementioned {code mungers without UML IDE}. Sybase

PowerDesigner is an example for such a tool.

Tools with specifications in non-graphic languages also

belong to this category. Their disadvantage, besides the use of

non-graphic language for specification definition, is the

reduced control over specification deriving from smaller

manageability and intuitivity. MyGeneration is an example for

such tool.

Inline code expanders have proven to be rather efficient in

web applications with expanded code written in a server-side

script language. While these tools can be efficient in their

limited application area, they are less extendible than the first

category, since the mere choice of an expandable language

reduces our possibilities. An example of inline code expander

is Iron Speed Designer which expands HTML code with ASP

tags and code-behind files.

Tool categorization as a partial class generator or a tier

generator depends on its templates. Tools in this category are

template–based and flexible. They rarely provide a graphical

language for specification definition and instead they rely on

database metadata and tabular metadata inputs, making them

non-intuitive and awkward. MyGeneration and CSLA.NET

demonstrate these characteristics.

Finally, one should mention the web applications separately

[23]. Because of their platform independency, widespread

availability, easy maintenance and other advantages [21] they

are taking a large part of market once held exclusively by

stand-alone applications. That process has several

consequences. Web applications are becoming increasingly

similar in their features and usage to stand-alone applications.

Modern development tools try to unite the development of

stand-alone and Web applications by introducing the use of

same languages, offering the same or similar controls, thus

enabling more and more developers already familiar with

stand-alone application development to become Web

developers. Object-oriented development which is dominant in

stand-alone application development, but until recently rarely

used in Web applications is now becoming increasingly

popular in Web application development.

Still, web application development requires coding in

different languages (e.g. a combination of HTML, CSS and an

object-oriented code-behind language) that is trickier than just

supporting different databases because of the difference

between languages, which are far beyond syntax variations and

include different approach to problem solving. Therefore, new

techniques emerge such as tag-based generation of rich

components [22].

III. BASIC PRINCIPLE

The main idea of the tool presented in this paper is code

generation based on UML specifications, where specifications

are expected to be as rich as possible and elastic with regard to

the target language. Model descriptions can be target language

dependant or target language independent. Target language

independent descriptions are stored in attributes defined in

shared profiles while target language dependant ones are saved

in attributes defined in profiles specific for the target language.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

11

Figure 1 Main working principle

Code generating is conducted through two chained

transformations. The first transformation is similar to UML

model XMI serializer [3] with the difference that the

intermediate code file is generated for each model element.

This model element is then defined as a separate-file entity. All

data stored in the UML model are rewritten in the form of an

XML file of predefined format, called platform independent

code (PIC). Templates for the first transformation are

independent and invariant in respect to the target language.

A second transformation follows. It is accomplished by

using the XSLT processor and modularly written XSLT

templates for each target language. The input in this

transformation is the PIC file and the templates applied to it.

The output of XSLT processor is the target language source

code file as the result of template’s specifications. The task of

code munging is performed in the final phase as the PIC is

being transformed into the target language via XSLT

templates.

Considering that the two transformations are concatenated,

where the result of the first transformation is the input to the

second, it can be formulated that a transformation pipeline has

been established.

IV. UML SPECIFICATION

The tool described in this paper is based on specifications

modeled in UML. Model complexity can vary from simple to

highly complex with rich descriptions by means of stereotypes

and tagged values. The generator relies on existing StarUML

tool [2] for manipulation over UML specifications through its

open Application Programming Interface (API).

A. Expressing actions

Actions can be expressed in the target language code, as in

the case of PowerDesigner, but the preferred way is through a

platform independent language in the form of snippet calls. An

element's actions are specified by hand-coding in tagged value

BodyPICFragment, which expects the intermediate code in

XML format.

Snippets participate as model parameters, semantically

required to realize action, while the details of realization are

delegated to the snippet's realization in the target language.

This approach has shown to be most effective as it is a high-

level description of an action, leaving enough freedom for the

optimal implementation on the target platform. If it were using

a lower level to describe an action, such a description would

be too closely bound to a specific platform and it would reduce

the specification portability.

The next fragment presents InsertIntoSelectedTableForm

snippet call within a method:

<cdgn:InsertIntoSelectedTableForm>

 <!--Calling insert form for selected table-->

 <cdgn:ParamIndexes>

 <cdgn:ParamIndex Value="0" Ordinal="0" />

 </cdgn:ParamIndexes>

</cdgn:InsertIntoSelectedTableForm>

From the example, it is evident that the object parameter’s

indices are the parameters to snippets. Indices relate to

parameters bound to a model’s element (in this case

operation), and they are assigned to it through the

SnippsParams tagged value in the UML specification. The

tagged values make a collection of the model’s elements

required for all snippet calls from that object. Now the

parameter indices in the collection are the parameters supplied

to calls of snippets. The intermediate code where the object’s

parameters have been specified is given in the following

fragment:

<cdgn:SnippsParams>
 <cdgn:Element Name="SelectForm.tableCB"
 Path="::Design
 Model::proj2::Controls::SelectForm.tableCB"
 Stereotype="ControlInstance" Ordinal="0" />
</cdgn:SnippsParams>

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

12

In the case of an illustrative snippet generation into C#, we get the following code:

Type form = Type.GetType("proj2.Promjenaproj2_" + tableCB.SelectedValue.ToString())
object forma= Activator.CreateInstance(form, bind.DataSource)
MethodInfo method = form.GetMethod("Show", new Type[0],null)
method.Invoke(forma, null)

From the presented code, it becomes obvious that the

snippet implementation in C# relies on .NET platform specific

features. If it were for some other platform, the solution could

turn quite different. If a lower level specification of actions

were used, it would be detrimental to the platform

independency, because the formulations of solution to the

same problem can differ in basic concepts due to different

platforms.

If the action code were intended to be written in a specific

target language, the code should be placed inside XML tags

specifying that language. The C# example is given in the

following fragment:

<cdgn:TargetCode Language=”Cs”>
 …
 C# code
 …
</cdgn:TargetCode>

Although the user can write action code in the specific target

language, it should be done so only in particular situations

because such action code reduces specification platform

portability. Most of information should be stored in the

platform independent part of metadata. The distinction

between platform dependent and independent parts of a model

is accomplished by separation into different profiles, which

can be included in specification if necessary.

V. INTERMEDIATE CODE

The first step of generation process is the PIC generation.

PIC is the code notation comparable to pseudo-code. It is a set

of XML directions for transformations to generate the final

target code.

PIC is a hybrid of:

• XMI-like form, giving the description of pertinent

UML specification in XML.

• Intermediate code of the programming language,

because UML component descriptions contain

coded snippets' calls and the target language code

fragments.

The code level is variable. In some occasions, it can be low,

resembling to the target language due to general characteristics

of the object-oriented languages. However, the level can be

high when implementation details are delegated to a target

language prone to optimization. In all the cases all metadata

have to be supplied.

VI. CODE GENERATING

The specification must be properly designed in order for the

generator to be able to transform it to the target code.

The specification is properly designed if:

• All mandatory data, such as attribute types and

association role names, is supplied

• Valid input data, obeying the existing rules.

The tool provides a feature generating in roles used for

generating more than one source code entity from the same

model element. The feature was created as a response to the

needs in generating business object layer, but can be used as

needed in generating any part of specification. The settings for

generating in roles can be specified in GenParameters.xml

target language specific settings file. At the moment the

preservation of manually added code is not enabled for model

elements that use the pertinent feature.

VII. SECOND TRANSFORMATION TEMPLATES

The templates are written in XSLT/XML. Their task is the

transformation of intermediate code into the target language

code. Currently, only the templates for C# and MSSQL have

been produced. The templates for other languages can be

written easily. The requirement on a template is to be stored

inside its own subfolder of the generator's folder. The

subfolder name must match the pattern:

<LanguageName>Templates (e.g. the existing subfolders are:

CsTemplates, MSSQLTemplates). The starting point for the

second transformation is basic.xslt, unless stated otherwise via

specified tagged values.

Template folders also contain XML files with data type

mapping and configuration data.

A. Metadata

The user can define her/his own metadata for each

transformation with the only constraint that it must be in XML

form. Metadata for a single template must be enlisted in

parameter file, which contains all the inputs to the template

and also a list of locations for other pertinent metadata files.

Location of the parameter file is supplied to the relevant

element through the ParameterFile tagged value.

The location of a special starting point template can be

supplied to the element, if it is not the standard basic.xslt.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

13

VIII. WIZARDS

UML models can become very complex when it comes to

describing details of the parts of the system, demanding a lot

of metadata in the form of marked values. These metadata

usually have to adhere to certain rules, therefore demanding

that the user knows the elements of the profile. Due to this

complexity, the tool includes wizards that use the input

settings to generate complex models for often-used concepts,

such as forms of user interface and business objects.

The following are the wizards offered:

• DBReverse – wizard for reverse engineering of

database

• DBAccess – wizard for systems used for data

manipulation; input, alternation and erasing data in

the database

• UIDesigner – wizard for user interface. Definitions

of the user interface are generated based on

definition in the interface designer

• DBConceptTransform – wizard for transformation

of conceptual model into the physical model.

IX. EXAMPLE OF USE

In this section, an example of using the tools is shown. The

example of usage shows the construction of a complex

application with minimal effort due to usage of the wizard,

although the same could have been done by manual designing.

Resulting specification is available for manual changes. With

minimal additional adjusting, the project can be generated in

languages for which patterns had been written.

For UML specifications, StarUML tool is used and the

generator is connected via an open API. The generated

specification has to be located within the model ”Design

model“ of the UML specification.

A. Database model creation

The database model can be created from scratch, or it can be

created by reverse engineering of the existing database using

the DBReverse wizard. In our case, we start with conceptual

description of a completely new database.

Figure 2 Conceptual database description

After having been conceptually described, the database

should be transformed into the relational scheme, suitable for

generating. It does not include N:N relationships or associative

classes [17], but they are transformed into simpler forms. It is

assumed that the data model should be brought into the third

normal form [9], [10]. Conversion from the conceptual to

relational form is done using the proprietary

DBConceptTransform.

Tables of the UML class are stereotyped by „Table“. In this

phase the profile ZIRgenDB, that contains all the platform-

independent elements of the description of the database, is the

mostly used. It is possible to use the platform-dependent

profiles with additional descriptions of the database.

At the end of this phase, the layer of data storage is ready to

be generated in some of the languages of the database

management systems for which patterns are available.

B. Database founded application model construction

When constructing a model of multi-layer application, the

goal is to create an application of similar functionality as

offered by Iron Speed Designer and MyGeneration with basic

patterns. UML model of such an application is extremely

complex with a lot of data and extensive usage of different

profiles provided. In order to manually construct the model,

the abilities of the generator should be well known, as should

be the profiles that contain instruments for expression of the

necessary concepts.

In this case, the complexity and great demands on the

programmer are bridged by DBAcess wizard that creates entire

aforementioned architecture, starting with the layer for

accessing data through stored procedures and business objects

to user interface.

When starting the wizard, one of the databases from current

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

14

specification is selected, and then the tables whose data are to

be manipulated are chosen from it via interface. Elements of

the layers for data access and business logic for all tables are

then created as specifications and user interface is created only

for the selected tables.

The new user interface can be accessed with UIDesigner

that enables graphical editing of the form; adding of new

controls, defining of their features.

Figure 3 Generated UI for OrgUnit table

ZIRgen and ZIRgenUI are the most used profiles, both with

platform independent features. ZIRgen profile features basic

characteristics of the generator, while ZIRgenUI features the

characteristics needed to describe the user interface. It is

possible to use platform dependant profiles for more precise

specification in wanted platforms.

The next layer to be generated from this part of the model

should access the data within CRUDQ stored procedures that

handle direct work with tables: insert, reading, changing,

erasing and listing.

Figure 4 CRUDQ stored procedures in UML

specification

The next paragraph shows a PIC code fragment aimed for

data inserting via stored procedures:

<cdgn:BodyFrag
xmlns:cdgn="http://www.fer.hr/ZIRgen">
 <cdgn:CreateStoredProcedure />
</cdgn:BodyFrag>

which is further expanded with metadata in the first

transformation, i.e. the creation of complete PIC system

description.

The next layer is the layer of business objects generated

based on some of the existing architectures written for the

platform. Business objects contain a part of the layer for

accessing data as well as business logic. Often, they also

contain a part of functionality tied to user interface.

In case of this generator, everything depends on

implementation of the patterns. For C# they currently do not

contain functionality that would be part of the user interface.

When selecting an OO language as target, from the model of

the database, basic abstract classes of business objects are

generated within the space of the base name. They are created

from the elements of the tables and views that hold all business

objects necessary metadata. Also, as described in the model,

user business object classes are generated in the UserOpen

namespace. These classes inherit the base classes, expanding

their basic functionality, mainly business logic, with user-

added code.

Finally, the last layer of our multi-layer application is the

layer of user interface and presentation. These two layers are

usually joined in one, in a form such as windows forms.

However, for web pages they remain separated, since the

presentation is a part of the web browser. For example, in the

case of Windows forms, event handling code and business

object binding code are generated in whole from the user

interface model elements.

When generating all the layers, except the one of business

objects, the generator behaves like a layer generator. An entire

layer is generated and it can function even without the user

code. When generating business objects, the tool acts like a

generator of partial classes. Basic classes with basic

functionality are generated, while the rest of the functionality

and the business logic are left for the programmer to

implement within inherited classes.

X. PRESERVATION OF CODE MANUALLY ADDED BY USER

Programmers could tag the manually written code with some

special labels or some special descriptors placed into program

comments. At the time of repeated generation, a source code

analysis should be performed in order to isolate the manually

written code. The isolated portions of code must automatically

be transferred into the newly generated code, to their proper

positions. Two significant shortcomings can be noticed at the

first glance. Manual coding of special comments, along with

the code that should be written, lay additional stress on the

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

15

programmer, who is forced to focus on two concurrent

activities – program coding and tagging. Hence, this technique

is expected to be time consuming and error prone. An

intelligent source code analyzer needs to be developed, which

would isolate manually written code and which would insert it

at the proper position in re-generated program. In fact, an

additional analyzer should be developed for each of the

programming languages supported by the tool.

An alternative can be to compare the manually changed files

to the files produced in subsequent steps of generation. The

originally devised procedure described in [8] relies on basic

file comparison algorithms [11][12], [13], [14].

A good compromise to aforementioned alternatives can be

preserving of the manually written code achieved by using

special, for that purpose intended regions in the code.

Existence of the regions is specified already in UML

specification by tagged values tied to elements of the model.

Regions can be the following:

• BeforeNamespace

• BeforeCode

• StartCode

• EndCode

• AfterCode

A region is defined by its beginning and end, and the code

within it becomes secured from possible future erasure by the

generator since the code had been saved. Boundaries are

marked by specially formatted comments for the beginning and

for the end, formulated as follows:

startGenComment-elementGUID-regionName-{B for

region start | E for region end }-endGenComment

The elements written in italics are changeable.

The semantics of the changeable elements:

• startGenComment – denotes the beginning of a

comment in selected language. Preferably the comment

should span a row, but if the target language does not

support it then it serves as a simple designation for the

comment begin.

• elementGUID_– every element in StarUML has its own

GUID, a unique identifier that univocally ties each element

to its regions.

• regionName – is one of the following:

BeforeNamespace, BeforeCode, StartCode, EndCode,

AfterCode

• endGenComment – signs the end of the comment. This

element is optional since many languages provide

comments that span the row.

Example of a region in C# inside a method and manually

added code inside it:

private OrgUnitU()
{

 //ZIRgen-uKQrNSRdk0Cy1K2jT8qXjQAA-StartCode-B
 Console.WriteLine("Manually added code");
 //ZIRgen-uKQrNSRdk0Cy1K2jT8qXjQAA-StartCode-E

}

When a code is generated anew in the same language, the

generator extracts those regions and inserts them in the

newly generated code. Currently, user added code

preservation has been achieved only for C#, and only for the

elements of the model that cause the generation of just a

single file in the target language that is, not using the

generating in roles.

After regenerating the file from the example the manually

added code is extracted and stored in the PIC file as given

in the next method definition fragment:

 <cdgn:Method Name="OrgUnitU" Constructor="true" AccessModifier="private">
 <cdgn:Parameters />
 <cdgn:Body>
 <cdgn:Codezone Name="StartCode" GUID="uKQrNSRdk0Cy1K2jT8qXjQAA">
 <cdgn:TargetCode Language="Cs">
 Console.WriteLine("Manually added code");
 </cdgn:TargetCode>
 </cdgn:Codezone>
 </cdgn:Body>
 </cdgn:Method>

Assuming no changes to the given method, the generated

target language code would be identical to the one above.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

16

XI. THE TOOL EXTENSIBILITY

The tool in this paper can be extended in a number of ways

to suit the user needs. The existing tool capabilities are a good

starting point for creating complex systems, but the user will

always encounter situations where he will need to extend the

tool in order to fulfill his vision. The first transformation is

hard-coded in C#, it can be modified only in the source code.

User can extend several areas:

• Create and extend UML profiles with new prototypes and

tagged values or modifying the existing ones

• Add or alter the second transformation XSLT templates

for supported language

• Add new target language and create second transformation

templates.

A. Creating and extending the UML profile

Creation of UML profile involves creating the XML profile

definition file. In the definition file we declare new stereotypes

and tagged values. With profile creation the user increases

expressiveness in their specifications. New stereotypes depict

entities from a problem domain while new tagged values add

to quantity of specification information.

Below is given the fragment of UML profile definition

defined for user interface purposes:

<?xml version="1.0" encoding="UTF-8"?> <PROFILE version="1.0">
...
<BODY>
 <STEREOTYPELIST>
 <STEREOTYPE>
 <NAME>Form</NAME>
 <DESCRIPTION>Indicates UI form</DESCRIPTION>
 <BASECLASSES>
 <BASECLASS>UMLClass</BASECLASS>
 </BASECLASSES>
 </STEREOTYPE>
 ...
 </STEREOTYPELIST>
 <TAGDEFINITIONSETLIST>
 <TAGDEFINITIONSET>
 <NAME>DataBinding</NAME>
 <BASECLASSES>
 <BASECLASS>UMLAttribute</BASECLASS>
 </BASECLASSES>
 <TAGDEFINITIONLIST>
 ...
 <TAGDEFINITION lock="False">
 <NAME>DescText</NAME>
 <TAGTYPE>String</TAGTYPE>
 <DEFAULTDATAVALUE>
 </DEFAULTDATAVALUE>
 </TAGDEFINITION>
 ...
 </TAGDEFINITIONLIST>
 </TAGDEFINITIONSET>
 </TAGDEFINITIONSETLIST>
 </BODY>
</PROFILE>

In the exemplary profile the stereotype Form has been

defined for description of user interface forms.

Also, the tagged value DescText is defined for definition of

label values for data bound control fields.

BASECLASS value defines the metaclass for which the

tagged value set or stereotype is defined while Lock value

determines element alterability through the StarUML user

interface.

B. Creating second transformation templates

The modular written templates separate functionalities in

different files. Every module must be included in the core

template module. In the future, there can be more than one

core files which could be speed-optimized for certain usages

by including only a subset of modules. Altering existing

templates is easier and could be done as minor extensions or

bug-fixing modifications.

C. Adding a new target language

As the tool provides the capability of generating in any

added target language the user is encouraged to add new, yet

unsupported, languages.

There are several steps in creating the new target language:

1. create language folder in the tool folder, matching the

name pattern <LanguageName>Templates

2. create a start point transformation file basic.xslt

where the second transformation starts by default. The

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

17

override exists in the specification tagged value for specific

start-point transformations.

3. plug in the language to the tool by adding it to the list

in the generator settings file Settings.xml

4. create the rest of templates

5. create type mapping between platform independent

types used in specification to target language types

6. create configuration data that holds language specific

generator settings

XII. CONCLUSION

Functionality of the presented generator acting from UML

specification has its advantages over typical patterns-based

generation. Among advantages are robustness of the system,

configurability via different, elaborate system descriptions and

improved manageability. On the other hand, the shortcoming is

greater complexity due to increased configurability that causes

generator and patterns written for it dealing with great number

of cases in order to secure consistent and functional generated

code.

According to code generator categorization [1], this

generator does not exclusively fit in either of the categories,

but it is a hybrid, featuring characteristics of several types.

Wizards that use input settings to generate UML models are

passive generators. Since during generating translation is

performed, in the first phase, from UML to intermediate code,

and then from the intermediate code to the target language

code, using patterns written in XSLT, the generator obviously

features characteristics of the code-translating generator too.

There is a similarity with generators of mixed code in regard

of the regions intended for preserving user code. It also

features characteristics of partial class generator due to the

way it generates business objects. On the other hand, entire

layers of user interface as well as data layer can be generated

which qualifies it as layer generator too.

A very robust, powerful generator adaptable to user

demands has been created; with an ability to generate in every

language for which it has written patterns. However, potential

users are facing a long learning process if they want to use all

the abilities of the program since extensive possibilities

necessarily incur complex specifications.

Some future developments of the tool described in this

paper may be enhancing of the capabilities for different

platforms [15] and support for some common development

methodologies [16] and approaches [19].

REFERENCES

[1] J. Herrington, Code Generation in Action, Manning,

2003.

[2] M. Lee, H. Kim, J., Lee, StarUML 5.0 Developer Guide

(PDF), http://staruml.sourceforge.net, 2005.

[3] Object Management Group, MOF 2.0/XMI Mapping,

Version 2.1.1, http://www.omg.org/docs/formal/07-12-

02.pdf, 2007.

[4] K. Dollard, Code Generation in Microsoft .NET, Apress,

2004.

[5] A. van Deursen, P. Klint and J. Visser, “Domain-Specific

Languages: An Annotated Bibliography”, ACM Sigplan

Notices, 35(6), 2000, pp. 26 -36.

[6] K. Fertalj, D. Kalpic and V. Mornar, “A Software

Development Method Based on Iterative Prototyping”, In

Proc. The World Multiconference on Systemics,

Cybernetics and Informatics, Orlando, FL, USA, 1999, 83-

90.

[7] K. Fertalj, D. Kalpić and V. Mornar, “Source Code

Generator Based on a Proprietary Specification Language”,

In Proc. The 35th Annual Hawaii International Conference

on System Sciences 2002, Big Island, Hawaii, USA, Jan 7-

10, 2002.

[8] K. Fertalj, D. Kalpić: "Preservation of Manually Written

Source Code in Case of Repeated Code Generation", In

Sahni, S. ed.: Proceedings of the IASTED International

Conference on Computer Science and Technology, May

19-22, 2003, Cancun, Mexico, ACTA Press, Anaheim, CA,

ISBN 0-88986-349-0.

[9] E.F. Codd, “Further normalization of the data base

relational model”. In R. Rustin (Ed.), Data Base Systems,

Prentice-Hall, Englewood Cliffs, New Jersey, 1972, pp. 33-

64.

[10] C.J. Date, An Introduction to Database Systems, Sixth

Edition, Addison Wesley, Reading, MA, 1994.

[11] P. Heckel, “A Technique for isolating differences between

files”, Comm. ACM, 21(4), April 1978, pp. 264-268.

[12] D. Hirschberg, “A Linear Space Algorithm for Computing

Maximal Common Subsequences”, Comm. ACM, 18(6),

June 1975, pp. 341-343.

[13] W. Miller and E. Myers, “A File Comparison Program”,

Software Practice and Experience, 15(11), 1985, pp. 1025.

[14] E. Myers, “An O(ND) Difference Algorithm and its

Variations”, Algorithmica, 1(2), 1986, pp. 251-256.

[15] K. Fertalj, M. Horvat: “Comparing Architectures of

Mobile Applications”, WSEAS Transactions of

Communications, Vol. 4, No 3, pp. 946-951.

[16] K. Fertalj, N. Hlupić, D. Kalpić: “RUP and XP - A

Modern Perspective”, WSEAS Transactions on Information

Science & Applications, No 8, Vol 3, Aug 2006, pp. 1573-

1581.

[17] P.P. Chen, “The Entity Relationship Model Toward a

Unified View of Data”, ACM Transaction on Database

Systems, Vol. 1, No. 1, 1976, pp. 9-36.

[18] P. Fraternali, “Tools and Approaches for Developing

Data-Intensive Web Applications: A Survey”, ACM

Computing Surveys 1999; 31(3), pp. 227-263.

[19] S. McConnel S, Rapid Development. Redmond: Microsoft

Press; 1996.

[20] J. D. Reilly, Designing Microsoft ASP.NET Applications.

Redmond: Microsoft Press; 2002.

[21] I. Reinhartz-Berger, D. Dori, S., Katz, “OPM/Web -

Object-Process Methodology for Developing Web

Applications”, Annals of Software Engineering 2002; 13(1-

4): pp. 141-161.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

18

[22] Q.L. Chen, T. Shimomura, N.S. Lang, K. Ikeda, “Uniform

Tag-based Rich Component Generation for Web

Application Development”, WSEAS Transactions On

Information Science & Applications, Issue 12, Volume 4,

December 2007, pp. 1431-1438.

[23] T. Helman, K. Fertalj: “A Critique of Web Application

Generators”, In Proceedings of the 25th International

Conference on Information Technology Interfaces, June 16-

19, 2003, Cavtat, Croatia, pp. 639-644.

[24] T. Helman, K. Fertalj: “Application Generator Based on

Parametrized Templates", in L. Budin, V. Lužar-Stiffler, Z.

Bekić, V. Hljuz Dobrić ed.: Proceedings of the 26th

International Conference on Information Technology

Interfaces, June 07-10, 2004, Cavtat, Croatia, SRCE,

Zagreb, pp. 151-157.

[25] J.R. Roger, “Jostraca: A Template Engine for Generative

Programming”, ECOOP Workshop on Generative

Programming; 2002 June 10-14; Malaga, Spain.

[26] J.E. Smith, CodeSmith Template-based Code Generator,

http://www.ericjsmith.net/codesmith/ [4/25/2004]

Kresimir Fertalj is an associate professor at the

Department of Applied Computing at the Faculty of Electrical

Engineering and Computing, University of Zagreb. Currently

he lectures a couple of undergraduate and postgraduate courses

in Computing. His professional and scientific interest is in

computer-aided software engineering, complex information

systems and in project management.

He has written over 90 scientific and professional

publications and participated in conferences locally and

abroad. He participated in a number of information system

designs, implementations and evaluations.

Fertalj is member of ACM, IEEE and PMI.

Mario Brcic is a prospective assistant at the Faculty of

Electrical Engineering and Computing, University of Zagreb.

He graduated from Computer Science at the Faculty of

Electrical Engineering and Computing, University of Zagreb in

2008. His scientific interest is in computer-aided software

engineering.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 2, 2008

19

