

Abstract—In this work the design and implementation of an

application to track multiple agents in a indoor Wireless Sensor Actor
Network (WSAN) is proposed. We developed a tracking algorithm
that falls into the category of the radio frequency localization/tracking
methods, that exploit the strength of the wireless communications
among fixed and mobile agents to establish the position of the mobile
ones. The algorithm resorts to an Extended Kalman Filter to process
the agents measurements and reach a desired level of tracking
performance. The tracking application, namely Teseo, is composed by
a low-level NesC management software for the agents side and a Java
graphical interface provided to users connected to mobile agents. A
detailed description of the operations performed by Teseo is given,
accompanied both by simulations to validate the tracking algorithm
and experiments on a real testbed to test Teseo.

Keywords—Wireless sensor network, tracking, localization,
Kalman filter, embedded systems, TinyOS, NesC

I. INTRODUCTION
N recent years, the employment of Wireless Sensor Actor
Networks (WSANs) to gather data from the environment

have been increasingly envisaged for building management
systems and environment control [1], [2], thanks to their
versatility of use, easiness of deployment, pervasiveness of
data, adaptability to system/environment variations [3], [4],
[5]. Examples in this sense are given by Heating and
Ventilation Air Conditioning (HVAC) systems [6] employing
more and more advanced control techniques that would benefit
from a detailed mapping of the internal building parameters; by
event detection and surveillance systems, where the
heterogeneity of agent devices and the computational grid
created by the network itself allow the definition of data fusion
policies [7], [8]; by localization and tracking systems where the
wireless devices can exploit the received power signal during
broadcast/peer-to-peer communication to perform position
estimation [9].

The growing interested for the WSANs has been supported
by the diffusion of small and cheap devices, capable of radio
frequency (RF) communication, computation, and memory,
although of limited resources. An example in this sense is the
Tmote Sky [10], an ultra low power IEEE 802.15.4 compliant
wireless device, which has become a reference in the academia

F. Zanella and A. Cenedese are with the Information Engineering
Department, University of Padova, via Gradenigo 6/B, 35131, Padova, ITALY
(phone: 0039-049-8277600; fax: 0039-049-8277699; e-mail:
filippo.zanella@dei.unipd.it, angelo.cenedese@unipd.it).

for the early development of algorithms and applications for
WSANs. These devices are based on the TinyOS operative
system [11] and are programmed in NesC [12], a C-derived
language specifically developed for embedded systems.

A. Contribution
The work presented in this paper belongs to framework of

the RF-based localization and tracking, and in particular to the
multi-agent tracking problem, where a set of mobile devices
(i.e. mobile nodes) are moving within a network of fixed (and
known) position similar devices (i.e. fixed nodes), with which
they communicate through a RF channel exchanging
information on the surrounding.

In this paper we introduce an easy to implement and fast
responsive Extended Kalman Filter (EKF) approach for the
RF-based localization and tracking, and we describe the
implementation stages of Teseo application we developed,
which is a combination of NesC and Java software. We show
how the implementation in this framework is particularly
challenging since the tracking procedure requires correct
communication, scheduling, and synchronization among the
devices to work properly and attain the expected performance.
Moreover, the limited resources available to the embedded
devices calls for efficient coding solutions, both in terms of
memory and computational power. The code is available freely
as open-source on Sourceforge [13], distributed under the
GNU General Public License, Version 3, 29th June 2007,
whom copyrights are owned by the Free Software Foundation.

B. State of the art
In the framework of distributed systems composed of not-

expensive embedded devices, one immediate advantage of RF-
based tracking with respect to other methodologies is that the
former does not need additional hardware components such as
ultrasound, infrared, or light modules, to generate the
localization signal that is then measured to compute the angle
of arrival, the time of arrival, or time difference of arrival [14].

Differently, the RF-based method parasitically exploits the
communication flow that is anyway ongoing among the nodes,
and the measurement techniques is relying on the Radio Signal
Strength (RSS) either basically inverting the relation between
the distance and the received power (radio-channel model), or
matching the received power with a pre-compiled map of the
environment linking power values to positions. Common
references for the former range-based methods and the latter
range-free methods are respectively [15] and [16].

Teseo: a multi-agent tracking application in
wireless sensor networks

Filippo Zanella and Angelo Cenedese

I

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

42

In this context, it appears how the accuracy in the
localization/tracking strongly depends on the quality of the
specific embedded hardware devices and how the algorithmic
solutions aim at providing software correction procedure to
improve the basic performance of the system.

In particular, a solution is sought that, whereas guaranteeing
a certain level of tracking accuracy, is easy to implement, does
not require high resources to the embedded device, is robust to
failures, and quick enough to converge for real-time use.

C. Paper organization
Sec. 2 introduces the channel model adopted by the tracking

algorithm, while in Sec. 3 we describe our proposed algorithm
for determining mobile nodes positions through an EKF [17]
approach. Sec. 4 briefly explains the interactions between the
agents and the client, Sec. 5 and Sec. 6 are dedicated to the
explanation of the design of Teseo both for the NesC and Java
coding. Sec. 7 contains simulations of the core algorithm based
on an exemplary WSAN configuration. Sec. 8 concludes.

In general, we will use bold fonts to indicate vectorial
quantities, plain italic fonts to indicate scalar ones, capital
vertical fonts to indicate matrices.

II. CHANNEL MODELING

The performances of tracking algorithms are influenced by
the effects of noises and disturbances introduced into the
communication channel, so it is necessary to identify these
contributions as accurately as possible [18]. The measurements
of received power exchanged by agents in a Wireless Sensor
Actor Network (WSAN) are affected by objects in the
environment (such as walls or furniture) that cause attenuation,
reflection, diffraction and diffusion effects. Moreover, errors
that vary over time are caused by generic noises and
interferences. Based on these considerations, we present a
general channel model which takes into account different kind
of disturbances. Then we focus on a reduced channel model,
subject to particular assumptions, that we employ to design the
multi-agent tracking algorithm.

A. General model
As we previously stated, to model the channel in an indoor

environment it is necessary to consider different factors: the
free-space path loss, that expresses the power loss due to
dissipation of energy in the channel, the fading phenomena, like
shadowing and multi-path, that express the variability of the
channel.

A WSAN is usually treated as a graph , where
the set of the nodes (i.e. agents) communicate along the
edges (i.e. communication links) specified by the set . Given a
node , the set collects its
neighbors.

In our context the WSAN is primarily composed of a set
of nodes in fixed positions, that do not know a priori their
neighbors , , but instead they know their
positions , in the 2-dimensional space.

A well agreed channel model is the log-distance path loss
model [19], where the received power is linked to the
transmission power through a log-normal model of path loss,
and other contribution terms are added to take into account of
the other disturbing effects. The model that describes the
wireless channel between two nodes, in terms of received
power , is the following [20]:

 (1)

where and are the receiver and transmitter node, at a
distance (being the classical Euclidean
norm). Moreover, is the transmitted power, is the
transmission offset between the nominal and the effectively
transmitted power (which is usually reported in the datasheet
of the devices); represents the path loss;
represents the channel asymmetry factor; models the
slow fading components while the represents the fast
ones, and represents the measured received strength
offset of the receiving node.

A. Simplified model
The parameters of (1) depend on the environment where the

WSAN is deployed and the specific hardware of the wireless
devices. In general, to perform a channel parameter
identification, the model of (1) is simplified assuming that the
transmission power of the sensors is set at the maximum level
(i.e. dBm,) so that the transmitter offset is
almost zero, dBm. Furthermore, we consider that

, , since the offsets can be easily compensated
exploiting a distributed strategy1 [20].
Lastly, the fast fading effect is removed, by averaging
the received power over a set of consecutive

measures: .

It follows that the average received power becomes:

 (2)

Since the components of slow fading and channel asymmetry
are independent Gaussian random variables of variance

and respectively, they can be combined into one zero-mean
random variable with variance equal to :

 (3)

1 Experimental evidence indicates that agent offsets are not negligible

and can be substantially large for some nodes (up to 6 dBm). The effect of this
offset is to bias the estimate of the distance between two nodes, which is
particularly harmful in tracking applications.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

43

From (3) it is clear that and are the only parameters that
determine the model of the communication channel. Being the
components of slow fading and channel asymmetry
independent Gaussian random variables, we can use a
(distributed) least-squares estimator to estimate those
parameters, as it has been addressed in [19].

III. TRACKING ALGORITHM

In this section we describe our proposed algorithm for
determining mobile nodes positions.

Suppose that in the WSAN a set of mobile nodes can
freely move. Thus the WSAN is overall constituted by
agents, in the set .

The proposed algorithm, that allows to estimate the 2-
dimensional position of a mobile node is based on the
assumptions that, at each time step , each mobile node

, , knows:
• the coordinates of each fixed node ;
• the average power received from each

 fixed node over a period of
time , where is the set of the
neighbors of node in the period
(notice that changes at each time
step);

• the channel parameters and ;
Aim of the algorithm is the disjoint estimation of the

coordinates of the mobile
nodes, at each time step .

A. State-space model
Define the quantities

and

For each mobile node we have the state model:

 (4)

and the measurements model:

 (5)

where is the matrix of known positions , with
 of the fixed nodes and is the state of the

system, i.e. the 2-dimensional position of each mobile node
; is the output of the system, made of

powers stored by the mobile node and available at the time .
The process noise and the measurement noise are
uncorrelated, white, with zero mean and variance
and , respectively.

As we can see, the state transition model is linear and the
matrix A is the identity matrices, denoting a typical behavior of
a simple random walk. Thus the mobile node is represented as
a point mass moving on the 2-dimensional plane, surrounded
by a cloud of Gaussian uncertainty.

The model of the measures is rather constituted by the
channel model (3), which is non-linear. Notice how the
measurement model is time variant, i.e. its dimension varies at
each time step according to the number of the collected
power measurements. Specifically, at each time step a mobile
node collects averaged measurements from its
dynamic neighbors , .

B. Structure of the algorithm
Assume without loss of generality that . We

define to indicate the position of the only
mobile node . The idea behind the algorithm is to
operate two different types of filtering depending on the
number . If the mobile node updates its state
following an open-loop approach, otherwise it uses an EKF
technique.

The choice of two approaches derives from the fact that we
want to provide the EKF a minimum number of measures to
update the estimate . That minimum has been arbitrarily
set equal to 3, recalling somewhat the constraint that appears
in the algorithms based on trilateration/triangulation methods.
If the measures available in the various sampling instants are
less than 3, the algorithm expects to leave the filter in an open
loop. The mobile node continues to regard as an estimate of
the current position the last estimated position based on
measurements received, but increasing step by step the
variance of the filtering error. This approach forces the filter to
consider the mobile node still in the same position both if there
is packet loss (or the mobile node is simply in a dead zone) and
if the acquired measurements are somehow corrupted.

Now let's see in detail the two types of filtering presented.
Every period the mobile node identifies the set

, i.e. the neighboring nodes, based on the
measurements that it has collected in that time interval.

If the function is linearized near the point
, which is the best estimation of the mobile node

state at the instant . Then the Jacobian:

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

44

 (6)

is computed, which yields

Then, the minimum variance linear estimator of the
state , based on the observations , is computed
through the recursive algorithm:

where the minimum variance linear predictor is
given by

with variance of the innovation process
 and gain of the filter.

If we have:

that jointly become:

outlining clearly the effect of the stationary solution.
The scheme of the algorithm is summarized by Alg. 1 in Fig. 1.

The use of the EKF approach lies on the fact that it is easy to
implement and it does not require significant computational
resources, thanks to the structure of the filter itself and to the
size of the system. The proposed variant EKF is intrinsically
time-varying and it does not admit regime solutions, even if the
system is stable, but nothing can be said regard observability
(of the linearized system, because is variable). Therefore, as
it is well-known, there is no guarantee that the EKF converge.

The initial conditions of the algorithm are defined as

, with and
. Since these quantities are not known in

advance, specific estimation techniques can be used to get a
guess. Trilateration, bounding box or least-square methods are

some of the simplest and most popular for estimating the initial
position [21].

Fig. 1 scheme of the tracking algorithm for a generic mobile agent

The use of the EKF requires knowledge of the standard

deviation of model noise and standard deviation
of measurement noise . Regarding we opted for an
empirical calibration. Assuming that the mobile node is
anchored to a human user, its variance, at each ,
can be set equal to that associated to a typical human motion,
and therefore to define the diagonal elements of . If we
considered the fastest man in the world, with a sampling time
of ms between two consecutive estimations, the variance
model would correspond to m , which can be thought
as an upper bound to the variance. is usually available from
the specific of sensing device with whom measurements are
performed. Since, in this case, the measuring instrument is the
communication channel, all the variances of the fading effects
and asymmetry of the channel should be accurately evaluated.
In Sec. 4 a practical example for a specific device is given.

IV. SOFTWARE DESIGN
A set of indexed mobile nodes

moves within a network of indexed fixed nodes
, each node running a TinyOS

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

45

module and communicating via wireless, assuming the
parameters of the radio channel as known [20].

Also, each mobile node is connected to a client (laptop)
through a USB connection, with the client performing the
multi-agent tracking (MAT) computation envisaged by the
algorithm in Sec. 3 and implementing Java classes for the
Graphical User Interface (GUI).

When one (or more) mobile node starts the tracking
process:

1. every ms alerts its client to be ready, sending
via USB pings every ms; afterwards,
sends via wireless pings every ms;

2. as receives a ping from , it enables a timer that
starts the MAT procedure every ms;

3. the set of fixed nodes that gets in touch with
starts to broadcast messages every ms, for a
period not exceeding ms;

4. stores one by one the messages received from the
, filtering them according to a predefined Receive

Signal Strength (RSS) threshold (), and
forwards these messages to ;

5. stores the messages and every ms estimates the
position of , showing it in a GUI.

Fig. 2 outlines the schema of MAT scheduling, for a complete
cycle of the algorithm of TIMER_STEP ms. It compares
with the same time scale the operating modes of the fixed
nodes, the mobile node and the client. Scheme of Fig. 2,
although complete, is simplified, as it does not highlight the
randomness linked to the execution of some events. However,
it is significant for understanding the temporal evolution of the
processes that constitute the main algorithm.

The whole software can be divided into two main blocks,
according to the programming language: NesC for the nodes
and Java for the client. Since in the considered context the
peer-to-peer behavior among nodes appears of major interest,
it will be dealt more in detail in the remainder of the paper.

V. IMPLEMENTATION: NESC FOR NODES
Four message types are defined to exchange information

among different devices Fig. 3:
 mote_ctrl_msg, to start/stop the MAT process. A stop

signal interrupts any communication in progress; vice
versa, a start forces mobile nodes to begin a new cycle
of the algorithm. This message is sent via USB from

 to ;
 ping_client_msg, to ping the clients. It is used by to

inform that a MAT is ready to start and to send
configuration settings. This message is sent via USB
from to ; ping_node_msg, to ping fixed nodes.
It is used by to ping the in the communication
ranges. This message is broadcast by via radio;

 data_msg, to measure RSS values. When receives
this message, it computes RSS and sends the

information to , enabling the position estimate. This
message is broadcast via radio by to and via
USB by to .

Fig. 3 Messages exchange between devices. Red arrows indicate

data_msg, purple arrow mote_ctrl_msg, green arrow ping_client_msg
and blue arrows ping_node_msg.

To avoid potential overlaps among tasks, commands or
events related to various operation states of the nodes, nodes
are treated as finite state machines, implying that the operations
of different node states cannot interfere with each other. The
feasible states of fixed nodes are:

 IDLE: inactivity;
 TRANSMISSION: broadcasting data_msg;

while mobile node is characterized by the states:

 SEND_CLIENT: sending ping_client_msg;
 SEND_NODE: sending ping_node_msg;
 AUDIT_NODE: auditing data_msg;
 DO_NOTHING: inactivity.

In addition, is enabled/disabled by through the
following commands:

 START_MN: starts mobile node;
 STOP_MN: stops mobile node.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

46

Figure 2 Scheduling of tasks, timers, and communication events of node and client devices during MAT

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

47

A. Mobile node activity
To understand through an example the function covered by

each of the routine of module MobileNodeP, involved in the
MAT algorithm, we simulate a normal operation of the mobile
node during the tracking procedure. In the description of the
source code will not be mentioned TinyOS modules of
MobileNodeP: they are an integral part of the configuration file
MobileNodeC whose purpose is to delineate both the
programmer and the compiler how the various components are
interconnected.

B.1. Boot
When a mobile node is turned on, the boot sequence

commences. In the function booted() of interface Boot
peripherals and environment are initialized, moving in the
states DO_NOTHING and WAIT_CMD: waits to receive a
START_MN command by client .

It is also enabled the user button of the mobile node to allow
user to start, START_MN, or stop, STOP_MN, the mobile
node regardless of the client.

The transmission frequency is set to CHANNEL_RADIO by
command setChannel(uint8_t) of CC2420Config interface. If
the event syncDone(error_t) signals that the routine is
terminated correctly then radio and serial communication are
turned on.

If all operations are carried out properly all the LEDs are
switched on, otherwise it is sufficient that any one LED is off
to indicate that there is a problem in the init. Notified events
startDone(error_t) of CC2420 and RS232 peripherals, a call to
setPower(message_t*, uint8_t) of CC2420Packet sets to
POWER_RADIO the transmission power of ping_node_msg.

After this operations, mobile node waits for a command
from the client side.

B.2. Clock Step
When receives a START_MN from , it starts the

timer ClockStep that every TIMER_STEP ms launches
the fired() event. With this instance, the MAT algorithm
begins: moves to the SEND_CLIENT state, all packets
counters are reset, and timer ClockSendPingClient starts.

B.3. Clock Send Ping Client
When TIMER_SEND_PING_CLIENT ms elapse,

 is repeatedly informed of the start of the MAT process,
for a number of times equals to
MAX_PING_CLIENT_MSG. This activity is performed by
posting task sendPingClientMsg(), which forwards messages
ping_client_msg to the serial port. Then moves to the
SEND_NODE state, stops the timers related to
ping_client_msg sending, and starts the timer
ClockSendPingNode.

B.4. Clock Send Ping Node
When TIMER_SEND_PING_NODE ms are elapsed,

task sendPingNodeMsg(), periodically posted by the timer,
broadcasts MAX_PING_NODE_MSG messages
of type ping_node_msg, specifying the identification number
(ID) TOS_NODE_ID of the node and the settings of the
selected transmission channel. When stops to ping fixed
nodes in range, it moves to the AUDIT_NODE states and
stops the timer ClockSendPingClient. Then it waits to receive
data_msg messages.

B.5. Receive data_msg
The fixed nodes that receive at least one

ping_node_msg respond to the mobile node sending their
data_msg messages. From these messages extracts the
values of RSSI, shifted by a RSSI_OFFSET offset, using the
command getRssi(int8_t) of interface CC2420Packet.
Messages with RSS greater than the threshold RSS_BOUND
are stored in a FIFO queue, Queue<data_msg>, of size
QUEUE_DATA_SIZE.

Then, invokes task sendDataMsg(), which forwards to
the serial port all the data_msg messages contained in the
queue; this is done only if the queue has not already been
emptied in a previous sending. remains in the
AUDIT_NODE state until timer ClockStep fires again,
hereupon the mobile node returns to the initial conditions,
ready to begin a new cycle. Anytime, the user retains the ability
of stopping the algorithm execution with the command
STOP_MN. In this case all timers are stopped and enters
the IDLE state.

B. Fixed node activity
Similarly to the previous subsection, to describe the
implementation of module FixedNodeP, we simulate the
normal operation of the routines involved in the MAT
algorithm.

B.1. Boot
When one fixed node turns on, TinyOS starts the boot

sequence. In the function booted() peripherals and environment
are initialized, moving to the IDLE state, meaning that the
fixed node waits to receive a ping_node_msg message from
a mobile node , via radio communication.

The transmission frequency is set to CHANNEL_RADIO and
if the event syncDone(error_t) signals that the synchronization
has been completed correctly, the radio and serial
communication are turned on.

Notified event startDone(error_t), a call of
setPower(message_t*, uint8_t) sets to POWER_RADIO the
transmission power of data_msg messages. After this operation
the fixed node is ready to receive messages from the network.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

48

B.2. Receive ping_node_msg
When receives a first ping_node_msg from a mobile

node , identified by a unique , , it
starts the timer TimeToSend that every
TIMER_TRANSMISSION ms launches its event fired(). In this
stage, before moving to the TRANSMISSION state, the node
computes the maximum number of data_msg to be sent to the
mobile node , that is given by:

where and are the times previously defined. This action
is carried out in order to reduce network traffic. Indeed, in
doing so, the fixed node stops the transmission of data_msg
messages before the mobile node in range enters in the next
step of the algorithm. The number is recalculated
every time since it is proportional to the of the first
ping_node_msg received, that may change due to the packet
loss phenomena affecting in general the wireless channel, and
in particular the tracking applications [5]. This bound in the
transmission of the data_msg message forces to move to the
state IDLE after ms, here remaining unless it
receives other ping_node_msg by some moving present in
the environment.

B.3. Clock Send Data Node
When ms elapse, the task sendDataMsg(), periodically

posted by the timer, sends data_msg messages in
broadcast, specifying the TOS_NODE_ID of the fixed node
and leaving empty the fields reserved to the RSS values.
As ends to transmit, it returns to the IDLE state and the
timer TimeToSend is stopped; then waits for any other
message sent by any mobile node in range.

VI. IMPLEMENTATION: JAVA FOR CLIENT
The software client, named Teseo, has to accomplish the

following two tasks:

1. executing the MAT algorithm from the data transmitted
by the mobile node, based on the network retrieved
information;

2. managing the output flow and the system setup phase
by means of a friendly user interface.

To provide the user with an intuitive interface a Java frame,
instance of the class JFrame, has been designed. The package
is made of the classes:

 Teseo: main frame of the GUI, entry point of the
client. It defines the following nested classes:

− MapPanel: panel that displays the graphical
elements present in the environment (e.g.
fixed nodes, mobile node, planimetry);

− EstimateTimerTask: task that executes the
routines of class Estimation;

− Estimation: object that collects all the
methods and variables to compute the
position estimation of the mobile node;

 Constants: interface for shared constants;
 DataMsg: just alike data_msg;
 MoteCtrlMsg: just alike mote_ctrl_msg;
 PingClientMsg: as ping_client_msg;
 Channel: object to manage the transmission channel

model and the characteristic parameters;
 Node: object that defines a node as an entity made

up of a set of 2-dimensional coordinates and an ID;
 Coordinate2D: generic 2-dimensional coordinates;
 VariantExtendedKalmanFilter2D: the EKF

implementation for the 2-dimensional tracking case
described in Sec. 4.

The frame is depicted in figure Fig. 4, where there can be
highlighted four basic elements: The menu bar, the command
console, the graphical environment and the informative panel.

Fig. 4 view of the GUI Teseo

The menu bar is made up four items, shown in Fig. 5

Fig. 5 menu bar of the frame

Clicking on File Save a JFileChooser appears. It allows to
save a text file that is a summary of the mobile node positions
estimated by the EKF in the current run. The name of the file is
formatted taking into account the current date and hour:
Teseo_<dd_MM_yy-HHmm>.txt. From JMenu View it is
possible to show/hide some elements of the frame, like the
Verbose System Information (VSI) (linked to the
JCheckBoxMenuItem VSI) and the fixed nodes distributed in
the graphical environment (JCheckBoxMenuItem Beacons).
Instead, JMenu Settings allows to set:

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

49

• the parameters and of the transmission channel,
through the JDialog of Fig. 6 callable by JMenuItem
Channel. The parameters of the JDialog, as they
appears in Fig. 6, are initialized in the method
initMyComponents() of the frame;

Fig. 6 Dialog window for the configuration of the channel

• times (K_T_U ms) and (K_TAU_U ms),
that are respectively the refresh time of the GUI, i.e. the
sampling time of the mobile node position visualization,
and the delay with whom the trace of the path of the
mobile node starts to be plotted (the delay corresponds
to the ms after the reception of the first
PingClientMsg). Both values can be chosen by the
scrollable bars of the dialog windows associated to the
JMenuItem Trace. Values assigned to and of
JDialog in Fig. 7 cames from the default initialization
brought by initMyComponents() method.

Fig. 7 dialog window of the trajectory settings and

The graphical environment is a MapPanel, extension of the
class JPanel, that collects a set of methods to show the
movement in of the mobile node in the surrounding
environment. It consists of the layout of the building in which
are positioned the nodes and of a set of icons useful to point
the positions of the fixed nodes and the different positions of
the mobile node. In Fig. 8 is given an example of the
MapPanel during a MAT process of a single mobile node.

The command console of Fig. 9 allows to interact with the
mobile node, specifying the virtual serial port of the client to
which the mobile node is connected. Buttons Start and Stop are
used to start/stop the communication between frame and
mobile node.

Fig. 9 consolle di comando del frame

Fig. 8 graphical environment of the frame. The red squares are the

active fixed nodes at that time, the blue squares are the inactive fixed
nodes, the green square is the mobile node and the red path is the

trajectory of the mobile node

In Fig. 10 there are shown the flow charts of the routines
start() and stop().

Fig. 10 Flowchart of the start/stop of the mobile node and the client

The informative panel displays the numerical value of the 2-
dimensional coordinates of the mobile node estimate locally by
the running MAT algorithm. It also shows the ID of the mobile
node and the number of steps performed by the mobile node
that has been notified to the client. Pressing the
JToggleButton Trace Path the tracing option can be
enabled/disabled.

The constructor of the frame Teseo() is the first method
automatically called by the Java virtual machine, therefore it is
used to initialize the form. The init is divided into a design side,
which instantiates the Swing and AWT palette of the frame via
the method initComponents(), and a source side, which is
related to the method initMyComponents(). The source side
resets the estimation, allocates and initializes the variables and

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

50

objects to it in charge, and completes the instantiation of a set
of elements of the frame:

• VSI update.
The Verbose System Information is displayed. This is
a JTextArea within a JScrollPane, placed in a
JDialog external to the frame, which acts as output
both to report any anomalies in the use of the client,
as the occurrence of some Exception, and to tell the
user information about the client, such as setting
parameters intrinsic to it. The VSI can be
hidden/shown through the option Settings View of
the menu. Fig. 11 gives an example of a VSI
information flow;

Fig. 11 screenshot of the VSI during the use of Teseo client

• Init of client-node communication.
It is set to serial the type of packet source, and it is
chosen a default serial port, the USB0 (/dev/ttyUSB0)
with its baud rate, which is baud for the
Tmote Sky. The resulting COM port is labeled with
the syntax serial@/dev/ttyUSB0:tmote.

• Init of tracing settings.
Time values and AUDIT_TIME are set to

 ms and ms. These values,
editable by the menu Settings Trace, pose some
temporal constraints on the visualization of the
trajectory of the mobile node in the MapPanel.

• Init of channel parameters.
It is instantiated the transmission channel defined by
the class Channel, setting the and parameters
with two default values that are merely suggestive:

 dBm and . It is also set to
 dBm the transmission power of each node

at the distance of m.

• Init of the map.
It is Initialized the graphic environment in which the
mobile node is displayed, by invoking the method
initEnvironment(String) of the class MapPanel, that
receives as input parameters one of the maps stored in
the maps directory of the package teseo.

After the initialization phase, the frame remains in an idle
state, as long as the user not only connects the client to the
mobile node but also starts the node. Defining the input source
to the client, via the control panel, it is possible to start the
mobile node by pressing the Start button. Doing so, the
ActionEvent of the JButton calls the routine start(), which
establishes a connection with the mobile node, if it is not been
done before, by calling the method connect(String). This
method creates an object PhoenixSource to automate both the
reading and the dispatching of packages and the restarting of
the communication port. The PhoenixSource is coupled to an
object MoteIF which provides an interface Java at the
application level to receive messages from and send messages
to the Tmote Sky. At this point, the JFrame is registered as a
MessageListeners of the MoteIF for each of the types of
messages DataMsg, MoteCtrlMsg, PingClientMsg. If the
connection is successful, the command,START, is forwarded
to the mobile node using the function send(int, Message) of
object MoteIF.

The button relegated to the Stop of the mobile node behaves
similarly: at the pressure of the corresponding JButton, the
ActionEvent calls the routine stop(), which immediately
forwards the command STOP to the mobile node, after
verifying that Teseo is connected to it. Then, if the mobile node
is successfully stopped, the routine disconnects the client,
calling the method disconnect(String) which unregisters the
listeners of the messages and executes the shutdown() of the
PhoenixSource. From the moment the mobile node is no
longer in the state DO_NOTHING, the frame becomes
sensitive to receive messages transmitted via USB (serial) from
the mobile node. The message_t received are handled by the
synchronized method messageReceived(int, Message), which
performs certain operations depending on the type of the
received message. If it is a PingClientMsg and if it is the first
one of this type that the client has received, the frame:

• gains knowledge of the ID of the mobile node with
whom the client is connected and it stores its frequency
and transmission power;

• synchronizes itself with the mobile node. To do this it is
instantiated a Timer, which schedules the execution of
a EstimateTimerTask at a fixed rate of
AUDIT_TIME ms. EstimateTimerTask is a subclass of
the class TimerTask and it implements the interface
Runnable: when the AUDIT_TIME ms are passed, the
method run() of TimerEstimate is invoked, which calls
the method estimate2D() of class Estimation, global
variable of the frame.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

51

Then the method ends by updating the counter of the steps
performed by the mobile node and, if at least one DataMsg is
not yet arrived, it resets the HashMap<Integer, Node> of the
MapPanel class, related to the fixed nodes that formed the
group of nodes used by the mobile node in the previous
estimate. If it is a DataMsg and if it is the first one of this type
that the client has received since the last position estimation
executed, the frame resets the HashMap<Integer, Node> of
the MapPanel. Then, if the fixed node to which the DataMsg
belongs is present in the map, it is added, with his ID, to the
HashMap<Integer, Node> of the MapPanel and its
coordinates are added into the Vector<Coordinate2D> of the
Estimate together with the measure of the RSS that is put in
column of the Vector<Integer> of the class Estimate. The
method messageReceived int, Message), as mentioned,
continues to discriminate messages for ms, and then
decreed the beginning of the process of mobile node position
estimation, assigned to the class Estimate. Before the timer
expires, the client must be able to form the set of fixed nodes
assigned to the current step, assuming that the mobile node is
inside a communication range that allows him to communicate
with a non-empty group of fixed nodes, in order to allow the
MAT algorithm to make an estimate that is not the simple
evolution of the state of an open-loop system. For a deeper
understanding of the functioning of the client will now be
outlined, one by one, the classes Channel, Estimate,
MapPanel, VariantExtendedKalmanFilter that are those
that most characterize the MAT algorithm.

A. Channel
This class implements the channel model presented in Sec. 2.

The constructor requests to set the transmission power of
all fixed nodes, the attenuation of the channel and the loss
factor . Method getPower(double) returns the value of power

, i.e. the power of the mobile node function of the
distance from the fixed node . The distance between two
nodes is given by the method get2Dnorm(double, double,
double, double). Essential to compute the estimation is the
method getDerivativesPower(double, double, double), that
returns the elements of (6).

B. VariantExtendedKalmanFilter
This class hold the model and dynamic of the EKF,

implementing Alg. 1. It uses the JAMA (JAva MAtrix package)
library [22], version 1.0.2, a linear algebra package that
provides user-level classes for constructing and manipulating
real, dense matrices. The constructor of the class builds matrix

 of the state model, method setInitialCondition() fixes the
initial conditions, as they has been defined in Sec. 3. Instead,
method update(double[][], double[][], Channel) is designed
to implement Alg. 1.

C. Estimate
This class is focused on the synchronized method

estimation2D(), which is divided into the following sequential
operations:

• copy in different arrays the values stored by the vectors
Vector<Coordinate2D> and Vector<Integer>, which
are passed to method update(double[][], double[][],
Channel) of VariantExtendedKalmanFilter2D.
Vector<Integer> stores the measures of RSS made by
the mobile node in reception of DataMsg messages
from fixed nodes, while Vector<Coordinate2D> stores
the corresponding positions of the fixed nodes;

• execution of the update routine own by the class
VariantExtendedKalmanFilter2D. This routine, core
of the MAT algorithm, returns, in a period of 1 ms
circa, the estimation of the position of the mobile
node. This values is then stored in a global
Coordinate2D variable of Estimation class;

• management of mobile node position. It is saved in the
object Node of MapPanel; then it is added both to
Vector<Node>, that collects all the estimated positions
that has to be logged, and to Vector<Node> of tracing
option, under some constraints given by the delay
and the sampling time . Moreover, some variable are
reset and the estimate2D() method terminates clearing
vectors Vector<Coordinate2D> and Vector<Integer>
and notifying to the frame that the estimation process is
finished.

At this point the JFrame is ready to wait a new
PingClientMsg message, to be followed by other DataMsg
message used to produce a new estimate of the position of the
mobile node.

D. MapPanel
MapPanel is a sub class of the JPanel which aim is to

coordinate the visualization of the graphical environment of the
map. Teseo holds a global instance of MapPanel, initialized
invoking the routine initEnvironment(String). The first activity
of the MapPanel is to upload both the image file of the default
map and the locations of fixed nodes, deployed in advance
within the various locations on the map. To simplify this
configuration step it has been implemented a parser that reads
the settings directly from text configuration files identified by
the extension .map. The parsing is performed by the method
parseMapFile(String) which is passed as a parameter the name
of the configuration file, contained in the subdirectory /maps of
package teseo. The successful completion of parsing operation
depends on the following rules:

• first line of the file has to contain the name of image file
of the map. This file has .jpg extension, and its
dimension must be equal to x pixels;

• second line has to point the position of the origin of the
2-dimensional referral system, used to measure the
position of the nodes in the environment. The unit of
the origin should be in pixels;

• third line has to indicate the length in meters of a screen
pixel. This is an essential factor of scale in order to
display properly the position of the nodes (fixed or
mobile) in the GUI;

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

52

• following lines have to list the details of each fixed
node. The details are the ID, the abscissa, the ordinate
and the z-axis of the nodes. The values are separated by
a comma and the unit of the coordinates is in meters.

Lines of /maps file are progressively enumerated, excluding
empty lines and comments. The file scan is performed using a
simple text scanner of the Java standard library which can parse
primitive data types and strings using regular expressions. A
Scanner separates the input into various tokens distinguished
by a delimiter pattern, which by default is the whitespace
character. Nodes are saved in a HashMap<Integer, Node>.
Indexing is performed using as key the node IDs, which are
intrinsically unique. If necessary, to access the contents of the
entire map HashMap<Integer, Node>, it is possible to use an
Iterator on the Set of the keys. This set is accessible in one
step through the method keySet() of the class Map<Integer,
Node>. After the completion of the parsing, the method
loadImage(String) loads the icons associated to the mobile
node, the fixed nodes and the virtual origin of the axes. The
mobile node is marked by a green rectangle, while the fixed
nodes, at each step of the MAT algorithm, are blue or red
rectangle. The color of the fixed nodes depends on whether or
not the nodes belongs to the set chosen by the mobile node to
estimate the position in the time interval . If a
fixed node is selected it turns to blue, hence it is red colored.
The origin of the reference system, whose display is optional, is
an olive green viewfinder. Assuming that the loading of some
images is not successful, it is expected to replace the images
with a rectangle of the class Graphics. The last action of the
initialization, afterwards creating Vector<Node> of the Trace
Path functionality, it is the start of the refreshing Thread of
the JPanel, whom sampling time is given by the constant
REFRESH_TIME. The refresh repeatedly calls the method
repaint() which in turn invokes paintComponent(Graphics).
This one draws the map and the origin; the fixed nodes,
iterating drawAnchorNode(Node, Graphics, boolean), if it is
checked the JCheckBoxMenuItem Beacons; the mobile node,
drawMobileNode(Graphics); the trace of the path of the
mobile node, if requested, obtained with a linear interpolation
of the positions. Lines are drawn with the method
drawThickLine(Graphics, int, int, int, int, int, Color). The
positions are taken in chronological order from a
Vector<Node> thanks to an iteration on a Enumeration of
the elements of the vector. Furthermore, starting from a certain
length of track, more than MIN_TRACE_SIZE, the history of
the trace begins to be erased, giving to the path a snake effect.

VII. SIMULATIONS WITH EXPERIMENTAL SETUP
To validate the algorithm described in Sec. 3 simulations

have been performed on the base of the network data derived
from the WSAN installed in the Department of Information
Engineering (DEI) of the University of Padova [5]; the testbed
considered (a portion of the mentioned WSAN) is depicted in
Fig. 12 and comprises Tmote Sky [10] whose Chipcon
CC2420 radio has an accuracy of dBm.

Here, the agents have a distance of about meters from
each other on an almost regular triangular grid of m .
This testbed is partially unstructured with laboratory/office
furniture and equipment, and three partition walls separate two
rooms with an hallway. The agents communicate only through
the wireless channel and. Access points are also present in the
environment, hence the testbed is subject to a reasonable level
of interference and electromagnetic noise.

Fig. 12 architecture of the testbed, covering an area of about 150 m .
The agents communicate only through the wireless channel

All Tmote Sky agents, in groups of up to four elements, are
connected via USB (serial) hubs that provide power supply and
allow to collect log data for debugging intents. The agents are
also connected to embedded computers that act as gateways.
These mini PCs are processing units which interact with the
programming of the agents and they are connected via Ethernet
to a central server from which to monitor, manage and check
the entire WSN.

For the estimation of the channel parameters , in (3) the
least-square method in [19], which is a distributed version of
[20], has been adopted. The results (,
dBm, m) provide the model in Fig. 13.

Fig. 13 power model , as function of distance .
Notice that the plot is limited to distances below meters, since it is

not worth to consider larger intervals

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

53

The packet loss probability in Fig. 14, equal for each agent, is
obtained as a least-square interpolation of experimental data
collected in the testbed of DEI.

Fig. 14 packet loss probability. The red dots are samples computed on

experimental data; the blue line is their least-square interpolation

The movement of an agent is simulated through a random
walk model

where, , and the
variances of model and measure noise and are
respectively given by:

A. Performance evaluation
In general, the performances of any tracking algorithm

depend on different factors, such as density and connectivity of
the beacons, computation and communication costs, fault
tolerance and robustness. In Fig. 15, the position estimation
error is plotted for different algorithm parameters,
as a criteria to evaluate the goodness of the tracking algorithm.

Interestingly, the value of (maximum number of RSS data

that each agent collects from neighbors to average the received
power), over a certain threshold, does not affect significantly
the position estimate, while the promptness of the system slows
down increasing . The system behaves similarly as for the
bound on the received power, and increasing (the
minimum power level acceptable for node-to-node distance
estimation) would lower the number of useful signals in the

localization process. Finally, increasing the measurement noise
variance , worsen the performance, as expected.

Fig. 15 Estimation errors for different simulation parameters

If the extended version of the EKF has become necessary to
deal with the non-linearity of the system, the use of an
Unscented Kalman Filter (UKF) or a Sequential Monte Carlo
(SMC) method has not be considered since these two
approaches are proven to not improve significantly the
performance in terms of localization accuracy. In fact, the
SMC, which is in general a better solution than a UKF [23],
tends to outperform the Kalman as the localization errors
increase and it cannot considerably filter the non-Gaussian
components.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

54

VIII. CONCLUSION
In this work, an application for multi-agent tracking in wireless
networks, with emphasis on the software design and the code
implementation, is presented. The application employs a RF-
channel model to estimate the distance among agents belonging
to the WSAN. To mitigate the nuisances induced by the not
perfect wireless communication, by the implementation in an
unknown and unstructured environment, and by the presence
of noisy measurements, an EKF is designed to provide
corrected estimates of the mobile agent positions. Moreover,
attention has been posed on the timings among the events
occurring within the agent and the synchronization with the
other peers of the network, to ensure the correct sequence and
completion of the tracking procedure. Simulations and
experiments on a real testbed validate the goodness of the
approach and assess it is suitable for a real time implementation
on embedded devices.

ACKNOWLEDGMENT
The authors gratefully acknowledge Eng. Fabio Maran for

his support to develop the simulation environment and
Massimo Marra to collect the experimental data.

REFERENCES
[1] K. Romer, F. Mattern, “The design space of wireless sensor networks”,

IEEE Wireless Communications, vol. 11, no. 6, 2004, pp. 54–61.
[2] L. M. Oliveira, J. J. Rodrigues, “Wireless sensor networks: a survey on

environmental monitoring”, Journal of Communications, vol. 6, no. 2,
2011, pp. 143–151.

[3] Z. Bojkovic, B. Bakmaz, “A survey on wireless sensor networks
deployment”, WSEAS Transactions on Communications, vol. 7, no. 12,
2008, pp. 1172–1181.

[4] S. M. Torabi, M. A. Samadian, “Covering of problem in wireless sensor
networks”, WSEAS Int. Conf. on Telecommunications and informatics
(TELEINFO09), pp. 88-94

[5] P. Casari, A. Castellani, A. Cenedese, C. Lora, M. Rossi, L. Schenato,
M. Zorzi, “The wireless sensor networks for city-wide ambient
intelligence (WISE-WAI) project”, Sensors, vol. 9, 2009, pp. 4056–4082.

[6] A. Deshpande, C. Guestrin, S. R. Madden, “Resource-aware wireless
sensor-actuator networks”, IEEE Data Engineering, ch. 28.

[7] V. Gupta, R. Pandey, “Data fusion and topology control in wireless
sensor networks”, WSEAS Transactions on Signal Processing, vol. 4, no.
4, 2008, pp. 150–172.

[8] M. Hefeeda, M. Bagheri, “Forest fire modeling and early detection using
wireless sensor networks”, Ad Hoc & Sensor Wireless Networks, vol. 7,
no. 3-4, 2009, pp. 169–224.

[9] A. Cenedese, G. Ortolan, M. Bertinato, “Low density wireless sensors
networks for localization and tracking in critical environments”, IEEE
Transactions on Vehicular Technology, vol. 59, 2010, pp. 2951–2962.

[10] Moteiv, Tmotesky. (2006, May 10). [Online]. Available:
www.snm.ethz.ch/Projects/TmoteSky.

[11] P. Lewis, Tinyos programming, Oct. 2006.
[12] D. Gay, P. Lewis, R. von Behren, et al., “The NesC language: a holistic

approach to network embedded systems”, PLDI, 2003.
[13] F. Zanella, Teseo. (2006) [Online]. Available:

sourceforge.net/projects/teseus.
[14] I. Amundson, X. D. Koutsoukos, “A survey on localization for mobile

wireless sensor networks”, Int. Conf. on mobile entity localization and
tracking in GPS-less environments, 2009, pp. 235–254.

[15] K. Lorincz, M. Welsh, “MoteTrack: a robust, decentralized approach to
RF-based location tracking”, Personal and Ubiquitous Computing, vol.
11, no. 6, 2006, pp. 489–503.

[16] N. Patwari, Location estimation in sensor networks, Ph.D. thesis,
University of Michigan, 2005.

[17] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches, 1st Edition, Wiley-Interscience, 2006.

[18] W. Su, M. Alzaghal “Wireless sensor network: channel propagation
measurements and comparison with simulation”, WSEAS Int. Conf. on
Computers (ICCOMP07), 2007, pp. 208–213.

[19] A. Cenedese, F. Zanella, “Channel model identification in wireless
sensor networks using a fully distributed consensus algorithm”,
University of Padova, 2012, technical report.

[20] S. Bolognani, S. Del Favero, L. Schenato, D. Varagnolo, “Consensus-
based distributed sensor calibration and least-square parameter
identification in WSNs”, Int. Journal of Robust and Nonlinear Control,
vol. 20, no. 2, 2010, pp. 176–193.

[21] A. Boukerche, H. Oliveira, E. Nakamura, A. Loureiro, “Localization
systems for wireless sensor networks”, IEEE Wireless Communications,
vol. 14, no. 6, 2007, pp. 6 –12.

[22] J. Hicklin, C. Moler, P. Webb, R. F. Boisvert, B. M. R. Pozo, K.
Remington, Jama - java matrix package (2005). [Online]. Available:
http://math.nist.gov/javanumerics/jama.

[23] K.-C. Lee, A. Oka, E. Pollakis, L. Lampe, “A comparison between
unscented kalman filtering and particle filtering for rssi-based tracking”,
Workshop on Positioning Navigation and Communication (WPNC),
2010, pp. 157-163.

Filippo Zanella was born in Valdobbiadene (Treviso,
Italy) in 1983. He received his B.S. degree and M.S.
degree in Automation Engineering from the University
of Padova, Padova, Italy, in 2005 and 2008
respectively.
His research interests are in the areas of wireless
cameras/sensors networks and mobile networks with
emphasis on distributed control, estimation and

optimization.
He is currently a Ph.D. Candidate at the Department of Information

Engineering at the University of Padova. He has been a Visiting Student
Researcher at UC Berkeley in 2011 and at UC Santa Barbara in 2012. Dr.
Zanella is Member of IEEE since 2006 and he has been Staff Member of the

IEEE Student Branch of the University of Padova
from 2006 to 2008.

Angelo Cenedese was born in Treviso (Italy) in
1972. He received the Laurea degree in 1999 and the
Ph.D. degree in 2004, both from the University of
Padova, Padova, Italy.
His research interests are in the fields of modeling,
control theory and its applications, active vision,
sensor and actuator networks, with particular

attention to environmental monitoring and control, and camera networks.
He is currently an Assistant Professor with the Department of Information

Engineering, University of Padova. He has been involved in European Union
projects on control and diagnostics of nuclear fusion devices, on methodologies
for adaptive optics systems, and on estimation and control problems in
distributed networked systems. He has coauthored around 70 papers.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

55

http://www.snm.ethz.ch/Projects/TmoteSky
http://sourceforge.net/projects/teseus
http://math.nist.gov/javanumerics/jama

	I. INTRODUCTION
	A. Contribution
	B. State of the art
	C. Paper organization

	II. CHANNEL MODELING
	A. General model
	A. Simplified model

	III. TRACKING ALGORITHM
	A. State-space model
	B. Structure of the algorithm

	IV. Software design
	V. Implementation: NesC for nodes
	A. Mobile node activity
	B.1. Boot
	B.2. Clock Step
	B.3. Clock Send Ping Client
	B.4. Clock Send Ping Node
	B.5. Receive data_msg

	B. Fixed node activity
	B.1. Boot
	B.2. Receive ping_node_msg
	B.3. Clock Send Data Node

	VI. Implementation: Java for client
	A. Channel
	B. VariantExtendedKalmanFilter
	C. Estimate
	D. MapPanel

	VII. Simulations with experimental setup
	A. Performance evaluation

	VIII. Conclusion

