
 

 

  
Abstract—In this work the design and implementation of an 

application to track multiple agents in a indoor Wireless Sensor Actor 
Network (WSAN) is proposed. We developed a tracking algorithm 
that falls into the category of the radio frequency localization/tracking 
methods, that exploit the strength of the wireless communications 
among fixed and mobile agents to establish the position of the mobile 
ones. The algorithm resorts to an Extended Kalman Filter to process 
the agents measurements and reach a desired level of tracking 
performance. The tracking application, namely Teseo, is composed by 
a low-level NesC management software for the agents side and a Java 
graphical interface provided to users connected to mobile agents. A 
detailed description of the operations performed by Teseo is given, 
accompanied both by simulations to validate the tracking algorithm 
and experiments on a real testbed to test Teseo. 
 

Keywords—Wireless sensor network, tracking, localization, 
Kalman filter, embedded systems, TinyOS, NesC 

I. INTRODUCTION 
N recent years, the employment of Wireless Sensor Actor 
Networks (WSANs) to gather data from the environment 

have been increasingly envisaged for building management 
systems and environment control [1], [2], thanks to their 
versatility of use, easiness of deployment, pervasiveness of 
data, adaptability to system/environment variations [3], [4], 
[5]. Examples in this sense are given by Heating and 
Ventilation Air Conditioning (HVAC) systems [6] employing 
more and more advanced control techniques that would benefit 
from a detailed mapping of the internal building parameters; by 
event detection and surveillance systems, where the 
heterogeneity of agent devices and the computational grid 
created by the network itself allow the definition of data fusion 
policies [7], [8]; by localization and tracking systems where the 
wireless devices can exploit the received power signal during 
broadcast/peer-to-peer communication to perform position 
estimation [9]. 

The growing interested for the WSANs has been supported 
by the diffusion of small and cheap devices, capable of radio 
frequency (RF) communication, computation, and memory, 
although of limited resources. An example in this sense is the 
Tmote Sky [10], an ultra low power IEEE 802.15.4 compliant 
wireless device, which has become a reference in the academia 
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for the early development of algorithms and applications for 
WSANs. These devices are based on the TinyOS operative 
system [11] and are programmed in NesC [12], a C-derived 
language specifically developed for embedded systems. 

A. Contribution 
The work presented in this paper belongs to framework of 

the RF-based localization and tracking, and in particular to the 
multi-agent tracking problem, where a set of mobile devices 
(i.e. mobile nodes) are moving within a network of fixed (and 
known) position similar devices (i.e. fixed nodes), with which 
they communicate through a RF channel exchanging 
information on the surrounding. 

In this paper we introduce an easy to implement and fast 
responsive Extended Kalman Filter (EKF) approach for the 
RF-based localization and tracking, and we describe the 
implementation stages of Teseo application we developed, 
which is a combination of NesC and Java software. We show 
how the implementation in this framework is particularly 
challenging since the tracking procedure requires correct 
communication, scheduling, and synchronization among the 
devices to work properly and attain the expected performance. 
Moreover, the limited resources available to the embedded 
devices calls for efficient coding solutions, both in terms of 
memory and computational power. The code is available freely 
as open-source on Sourceforge [13], distributed under the 
GNU General Public License, Version 3, 29th June 2007, 
whom copyrights are owned by the Free Software Foundation. 

B. State of the art 
In the framework of distributed systems composed of not-

expensive embedded devices, one immediate advantage of RF-
based tracking with respect to other methodologies is that the 
former does not need additional hardware components such as 
ultrasound, infrared, or light modules, to generate the 
localization signal that is then measured to compute the angle 
of arrival, the time of arrival, or time difference of arrival [14]. 

Differently, the RF-based method parasitically exploits the 
communication flow that is anyway ongoing among the nodes, 
and the measurement techniques is relying on the Radio Signal 
Strength (RSS) either basically inverting the relation between 
the distance and the received power (radio-channel model), or 
matching the received power with a pre-compiled map of the 
environment linking power values to positions. Common 
references for the former range-based methods and the latter 
range-free methods are respectively [15] and [16]. 
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In this context, it appears how the accuracy in the 
localization/tracking strongly depends on the quality of the 
specific embedded hardware devices and how the algorithmic 
solutions aim at providing software correction procedure to 
improve the basic performance of the system. 

In particular, a solution is sought that, whereas guaranteeing 
a certain level of tracking accuracy, is easy to implement, does 
not require high resources to the embedded device, is robust to 
failures, and quick enough to converge for real-time use. 

C. Paper organization 
Sec. 2 introduces the channel model adopted by the tracking 

algorithm, while in Sec. 3 we describe our proposed algorithm 
for determining mobile nodes positions through an EKF [17] 
approach. Sec. 4 briefly explains the interactions between the 
agents and the client, Sec. 5 and Sec. 6 are dedicated to the 
explanation of the design of Teseo both for the NesC and Java 
coding. Sec. 7 contains simulations of the core algorithm based 
on an exemplary WSAN configuration. Sec. 8 concludes. 

In general, we will use bold fonts to indicate vectorial 
quantities, plain italic fonts to indicate scalar ones, capital 
vertical fonts to indicate matrices. 

II. CHANNEL MODELING 

The performances of tracking algorithms are influenced by 
the effects of noises and disturbances introduced into the 
communication channel, so it is necessary to identify these 
contributions as accurately as possible [18]. The measurements 
of received power exchanged by agents in a Wireless Sensor 
Actor Network (WSAN) are affected by objects in the 
environment (such as walls or furniture) that cause attenuation, 
reflection, diffraction and diffusion effects. Moreover, errors 
that vary over time are caused by generic noises and 
interferences. Based on these considerations, we present a 
general channel model which takes into account different kind 
of disturbances. Then we focus on a reduced channel model, 
subject to particular assumptions, that we employ to design the 
multi-agent tracking algorithm. 

A. General model 
As we previously stated, to model the channel in an indoor 

environment it is necessary to consider different factors: the 
free-space path loss, that expresses the power loss due to 
dissipation of energy in the channel, the fading phenomena, like 
shadowing and multi-path, that express the variability of the 
channel. 

A WSAN is usually treated as a graph , where 
the set  of the nodes (i.e. agents) communicate along the 
edges (i.e. communication links) specified by the set . Given a 
node , the set  collects its 
neighbors. 

In our context the WSAN is primarily composed of a set  
of  nodes in fixed positions, that do not know a priori their 
neighbors , , but instead they know their 
positions , in the 2-dimensional space. 

A well agreed channel model is the log-distance path loss 
model [19], where the received power is linked to the 
transmission power through a log-normal model of path loss, 
and other contribution terms are added to take into account of 
the other disturbing effects. The model that describes the 
wireless channel between two nodes, in terms of received 
power , is the following [20]:  

  (1) 

where  and  are the receiver and transmitter node, at a 
distance  (  being the classical Euclidean 
norm). Moreover,  is the transmitted power,  is the 
transmission offset between the nominal and the effectively 
transmitted power (which is usually reported in the datasheet 
of the devices);  represents the path loss;  
represents the channel asymmetry factor;  models the 
slow fading components while the  represents the fast 
ones, and  represents the measured received strength 
offset of the receiving node. 

A. Simplified model 
The parameters of (1) depend on the environment where the 

WSAN is deployed and the specific hardware of the wireless 
devices. In general, to perform a channel parameter 
identification, the model of (1) is simplified assuming that the 
transmission power of the sensors is set at the maximum level 
(i.e.  dBm, ) so that the transmitter offset is 
almost zero,  dBm. Furthermore, we consider that 

, , since the offsets can be easily compensated 
exploiting a distributed strategy1 [20]. 
Lastly, the fast fading effect  is removed, by averaging 
the received power over a set of  consecutive 

measures: . 

It follows that the average received power  becomes: 

  (2) 

Since the components of slow fading and channel asymmetry 
are independent Gaussian random variables of variance  

and  respectively, they can be combined into one zero-mean 
random variable  with variance equal to : 

  (3) 

 
1 Experimental evidence indicates that agent offsets  are not negligible 

and can be substantially large for some nodes (up to 6 dBm). The effect of this 
offset is to bias the estimate of the distance between two nodes, which is 
particularly harmful in tracking applications. 
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From (3) it is clear that  and  are the only parameters that 
determine the model of the communication channel. Being the 
components of slow fading and channel asymmetry 
independent Gaussian random variables, we can use a 
(distributed) least-squares estimator to estimate those 
parameters, as it has been addressed in [19]. 

III. TRACKING ALGORITHM 

In this section we describe our proposed algorithm for 
determining mobile nodes positions. 

Suppose that in the WSAN a set  of  mobile nodes can 
freely move. Thus the WSAN is overall constituted by  
agents, in the set . 

The proposed algorithm, that allows to estimate the 2-
dimensional position of a mobile node is based on the 
assumptions that, at each time step ,  each mobile node 

, , knows: 
• the coordinates  of each fixed node ; 
• the average power  received from each 

 fixed node over a period of 
time , where  is the set of the  
neighbors of node  in the period  
(notice that  changes at each time 
step ); 

• the channel parameters  and ; 
Aim of the algorithm is the disjoint estimation of the 

coordinates  of the mobile 
nodes, at each time step .  

A. State-space model 
Define the quantities 

  

and 

  

For each mobile node  we have the state model: 

  (4) 

and the measurements model: 

  (5) 

where  is the matrix of known positions , with 
 of the fixed nodes and  is the state of the 

system, i.e. the 2-dimensional position of each mobile node 
;  is the output of the system, made of  

powers stored by the mobile node and available at the time . 
The process noise  and the measurement noise  are 
uncorrelated, white, with zero mean and variance  
and , respectively. 

As we can see, the state transition model is linear and the 
matrix A is the identity matrices, denoting a typical behavior of 
a simple random walk. Thus the mobile node is represented as 
a point mass moving on the 2-dimensional plane, surrounded 
by a cloud of Gaussian uncertainty. 

The model of the measures is rather constituted by the 
channel model (3), which is non-linear. Notice how the 
measurement model is time variant, i.e. its dimension varies at 
each time step  according to the number  of the collected 
power measurements. Specifically, at each time step  a mobile 
node  collects  averaged measurements  from its 
dynamic neighbors , .  

B. Structure of the algorithm 
Assume without loss of generality that . We 

define  to indicate the position of the only 
mobile node . The idea behind the algorithm is to 
operate two different types of filtering depending on the 
number . If  the mobile node updates its state 
following an open-loop approach, otherwise it uses an EKF 
technique. 

The choice of two approaches derives from the fact that we 
want to provide the EKF a minimum number of measures to 
update the estimate . That minimum has been arbitrarily 
set equal to 3, recalling somewhat the constraint that appears 
in the algorithms based on trilateration/triangulation methods. 
If the measures available in the various sampling instants are 
less than 3, the algorithm expects to leave the filter in an open 
loop. The mobile node continues to regard as an estimate of 
the current position the last estimated position based on 
measurements received, but increasing step by step the 
variance of the filtering error. This approach forces the filter to 
consider the mobile node still in the same position both if there 
is packet loss (or the mobile node is simply in a dead zone) and 
if the acquired measurements are somehow corrupted. 

Now let's see in detail the two types of filtering presented. 
Every period  the mobile node  identifies the set 

, i.e. the  neighboring nodes, based on the 
measurements that it has collected in that time interval. 

If  the function  is linearized near the point 
, which is the best estimation of the mobile node 

state at the instant . Then the Jacobian: 
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  (6) 

is computed, which yields  

  

Then, the minimum variance linear estimator  of the 
state , based on the observations , is computed 
through the recursive algorithm: 

  

where the minimum variance linear predictor  is 
given by 

  

with  variance of the innovation process 
 and  gain of the filter. 

If  we have: 

  

that jointly become: 

  

outlining clearly the effect of the stationary solution. 
The scheme of the algorithm is summarized by Alg. 1 in Fig. 1. 

The use of the EKF approach lies on the fact that it is easy to 
implement and it does not require significant computational 
resources, thanks to the structure of the filter itself and to the 
size of the system. The proposed variant EKF is intrinsically 
time-varying and it does not admit regime solutions, even if the 
system is stable, but nothing can be said regard observability 
(of the linearized system, because  is variable). Therefore, as 
it is well-known, there is no guarantee that the EKF converge. 

 
The initial conditions of the algorithm are defined as 

, with  and 
. Since these quantities are not known in 

advance, specific estimation techniques can be used to get a 
guess. Trilateration, bounding box or least-square methods are 

some of the simplest and most popular for estimating the initial 
position [21]. 

 
 

 
Fig. 1 scheme of the tracking algorithm for a generic mobile agent 

 
The use of the EKF requires knowledge of the standard 

deviation  of model noise  and standard deviation  
of measurement noise . Regarding  we opted for an 
empirical calibration. Assuming that the mobile node is 
anchored to a human user, its variance, at each , 
can be set equal to that associated to a typical human motion, 
and therefore to define the diagonal elements of . If we 
considered the fastest man in the world, with a sampling time 
of  ms between two consecutive estimations, the variance 
model would correspond to  m , which can be thought 
as an upper bound to the variance.  is usually available from 
the specific of sensing device with whom measurements are 
performed. Since, in this case, the measuring instrument is the 
communication channel, all the variances of the fading effects 
and asymmetry of the channel should be accurately evaluated. 
In Sec. 4 a practical example for a specific device is given. 

IV. SOFTWARE DESIGN 
A set of indexed mobile nodes  

moves within a network of indexed fixed nodes 
, each node running a TinyOS 
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module and communicating via wireless, assuming the 
parameters of the radio channel as known [20]. 

Also, each mobile node is connected to a client (laptop) 
through a USB connection, with the client performing the 
multi-agent tracking (MAT) computation envisaged by the 
algorithm in Sec. 3 and implementing Java classes for the 
Graphical User Interface (GUI). 

When one (or more) mobile node  starts the tracking 
process: 

1. every  ms  alerts its client  to be ready, sending 
via USB  pings every  ms; afterwards,  
sends via wireless  pings every  ms; 

2. as  receives a ping from , it enables a timer that 
starts the MAT procedure every  ms; 

3. the set of fixed nodes  that gets in touch with  
starts to broadcast  messages every  ms, for a 
period not exceeding  ms; 

4.  stores one by one the messages received from the 
, filtering them according to a predefined Receive 

Signal Strength (RSS) threshold ( ), and 
forwards these messages to ; 

5.  stores the messages and every  ms estimates the 
position of , showing it in a GUI. 

Fig. 2 outlines the schema of MAT scheduling, for a complete 
cycle of the algorithm of  TIMER_STEP ms. It compares 
with the same time scale the operating modes of the fixed 
nodes, the mobile node and the client. Scheme of Fig. 2, 
although complete, is simplified, as it does not highlight the 
randomness linked to the execution of some events. However, 
it is significant for understanding the temporal evolution of the 
processes that constitute the main algorithm. 

The whole software can be divided into two main blocks, 
according to the programming language: NesC for the nodes 
and Java for the client. Since in the considered context the 
peer-to-peer behavior among nodes appears of major interest, 
it will be dealt more in detail in the remainder of the paper. 

V. IMPLEMENTATION: NESC FOR NODES 
Four message types are defined to exchange information 

among different devices Fig. 3: 
 mote_ctrl_msg, to start/stop the MAT process. A stop 

signal interrupts any communication in progress; vice 
versa, a start forces mobile nodes to begin a new cycle 
of the algorithm. This message is sent via USB from 

 to ; 
 ping_client_msg, to ping the clients. It is used by  to 

inform  that a MAT is ready to start and to send 
configuration settings. This message is sent via USB 
from  to ; ping_node_msg, to ping fixed nodes. 
It is used by  to ping the  in the communication 
ranges. This message is broadcast by  via radio; 

 data_msg, to measure RSS values. When  receives 
this message, it computes RSS and sends the 

information to , enabling the position estimate. This 
message is broadcast via radio by  to  and via 
USB by  to . 

 
Fig. 3 Messages exchange between devices. Red arrows indicate 

data_msg, purple arrow mote_ctrl_msg, green arrow ping_client_msg 
and blue arrows ping_node_msg. 

To avoid potential overlaps among tasks, commands or 
events related to various operation states of the nodes, nodes 
are treated as finite state machines, implying that the operations 
of different node states cannot interfere with each other. The 
feasible states of fixed nodes  are: 

 IDLE: inactivity; 
 TRANSMISSION: broadcasting data_msg; 

while mobile node  is characterized by the states: 

 SEND_CLIENT: sending ping_client_msg; 
 SEND_NODE: sending ping_node_msg; 
 AUDIT_NODE: auditing data_msg; 
 DO_NOTHING: inactivity. 

In addition,  is enabled/disabled by  through the 
following commands: 

 START_MN: starts mobile node; 
 STOP_MN: stops mobile node. 
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Figure 2 Scheduling of tasks, timers, and communication events of node and client devices during MAT 
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A. Mobile node activity 
To understand through an example the function covered by 

each of the routine of module MobileNodeP, involved in the 
MAT algorithm, we simulate a normal operation of the mobile 
node during the tracking procedure. In the description of the 
source code will not be mentioned TinyOS modules of 
MobileNodeP: they are an integral part of the configuration file 
MobileNodeC whose purpose is to delineate both the 
programmer and the compiler how the various components are 
interconnected. 

B.1. Boot 
When a mobile node  is turned on, the boot sequence 

commences. In the function booted() of interface Boot 
peripherals and environment are initialized, moving  in the 
states DO_NOTHING and WAIT_CMD:  waits to receive a 
START_MN command by client . 

It is also enabled the user button of the mobile node to allow 
user to start, START_MN, or stop, STOP_MN, the mobile 
node regardless of the client. 

The transmission frequency is set to CHANNEL_RADIO by 
command setChannel(uint8_t) of CC2420Config interface. If 
the event syncDone(error_t) signals that the routine is 
terminated correctly then radio and serial communication are 
turned on. 

If all operations are carried out properly all the LEDs are 
switched on, otherwise it is sufficient that any one LED is off 
to indicate that there is a problem in the init. Notified events 
startDone(error_t) of CC2420 and RS232 peripherals, a call to 
setPower(message_t*, uint8_t) of CC2420Packet sets to 
POWER_RADIO the transmission power of ping_node_msg. 

After this operations, mobile node waits for a command 
from the client side. 

B.2. Clock Step 
When  receives a START_MN from , it starts the 

timer ClockStep that every  TIMER_STEP ms launches 
the fired() event. With this instance, the MAT algorithm 
begins:  moves to the SEND_CLIENT state, all packets 
counters are reset, and timer ClockSendPingClient starts. 

B.3. Clock Send Ping Client 
When  TIMER_SEND_PING_CLIENT ms elapse, 

 is repeatedly informed of the start of the MAT process, 
for a number of times equals to  
MAX_PING_CLIENT_MSG. This activity is performed by 
posting task sendPingClientMsg(), which forwards messages 
ping_client_msg to the serial port. Then  moves to the 
SEND_NODE state, stops the timers related to 
ping_client_msg sending, and starts the timer 
ClockSendPingNode. 

B.4. Clock Send Ping Node 
When  TIMER_SEND_PING_NODE ms are elapsed, 

task sendPingNodeMsg(), periodically posted by the timer, 
broadcasts  MAX_PING_NODE_MSG messages 
of type ping_node_msg, specifying the identification number 
(ID) TOS_NODE_ID of the node  and the settings of the 
selected transmission channel. When  stops to ping fixed 
nodes  in range, it moves to the AUDIT_NODE states and 
stops the timer ClockSendPingClient. Then it waits to receive 
data_msg messages. 

B.5. Receive data_msg 
The fixed nodes  that receive at least one 

ping_node_msg respond to the mobile node  sending their 
data_msg messages. From these messages  extracts the 
values of RSSI, shifted by a RSSI_OFFSET offset, using the 
command getRssi(int8_t) of interface CC2420Packet. 
Messages with RSS greater than the threshold RSS_BOUND 
are stored in a FIFO queue, Queue<data_msg>, of size 
QUEUE_DATA_SIZE. 

Then,  invokes task sendDataMsg(), which forwards to 
the serial port all the data_msg messages contained in the 
queue; this is done only if the queue has not already been 
emptied in a previous sending.  remains in the 
AUDIT_NODE state until timer ClockStep fires again, 
hereupon the mobile node returns to the initial conditions, 
ready to begin a new cycle. Anytime, the user retains the ability 
of stopping the algorithm execution with the command 
STOP_MN. In this case all timers are stopped and  enters 
the IDLE state. 
  

B. Fixed node activity 
Similarly to the previous subsection, to describe the 
implementation of module FixedNodeP, we simulate the 
normal operation of the routines involved in the MAT 
algorithm. 

B.1. Boot 
When one fixed node  turns on, TinyOS starts the boot 

sequence. In the function booted() peripherals and environment 
are initialized, moving  to the IDLE state, meaning that the 
fixed node  waits to receive a ping_node_msg message from 
a mobile node , via radio communication. 

The transmission frequency is set to CHANNEL_RADIO and 
if the event syncDone(error_t) signals that the synchronization 
has been completed correctly, the radio and serial 
communication are turned on. 

Notified event startDone(error_t), a call of 
setPower(message_t*, uint8_t) sets to POWER_RADIO the 
transmission power of data_msg messages. After this operation 
the fixed node is ready to receive messages from the network. 
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B.2. Receive ping_node_msg 
When  receives a first ping_node_msg from a mobile 

node , identified by a unique , , it 
starts the timer TimeToSend that every  
TIMER_TRANSMISSION ms launches its event fired(). In this 
stage, before moving to the TRANSMISSION state, the node  
computes the maximum number of data_msg to be sent to the 
mobile node , that is given by: 

  

where  and  are the times previously defined. This action 
is carried out in order to reduce network traffic. Indeed, in 
doing so, the fixed node  stops the transmission of data_msg 
messages before the mobile node in range  enters in the next 
step of the algorithm. The  number is recalculated 
every time since it is proportional to the  of the first 
ping_node_msg received, that may change due to the packet 
loss phenomena affecting in general the wireless channel, and 
in particular the tracking applications [5]. This bound in the 
transmission of the data_msg message forces  to move to the 
state IDLE after  ms, here remaining unless it 
receives other ping_node_msg by some moving  present in 
the environment. 

B.3. Clock Send Data Node 
When  ms elapse, the task sendDataMsg(), periodically 

posted by the timer, sends  data_msg messages in 
broadcast, specifying the TOS_NODE_ID of the fixed node  
and leaving empty the fields reserved to the RSS values.  
As  ends to transmit, it returns to the IDLE state and the 
timer TimeToSend is stopped; then  waits for any other 
message sent by any mobile node  in range. 

VI. IMPLEMENTATION: JAVA FOR CLIENT 
The software client, named Teseo, has to accomplish the 

following two tasks: 

1. executing the MAT algorithm from the data transmitted 
by the mobile node, based on the network retrieved 
information; 

2. managing the output flow and the system setup phase 
by means of a friendly user interface. 

To provide the user with an intuitive interface a Java frame, 
instance of the class JFrame, has been designed. The package 
is made of the classes: 

 Teseo: main frame of the GUI, entry point of the 
client. It defines the following nested classes: 

− MapPanel: panel that displays the graphical 
elements present in the environment (e.g. 
fixed nodes, mobile node, planimetry); 

−  EstimateTimerTask: task that executes the 
routines of class Estimation; 

− Estimation: object that collects all the 
methods and variables to compute the 
position estimation of the mobile node; 

 Constants: interface for shared constants; 
 DataMsg: just alike data_msg; 
 MoteCtrlMsg: just alike mote_ctrl_msg; 
 PingClientMsg: as ping_client_msg; 
 Channel: object to manage the transmission channel 

model and the characteristic parameters; 
 Node: object that defines a node as an entity made 

up of a set of 2-dimensional coordinates and an ID; 
 Coordinate2D: generic 2-dimensional coordinates; 
 VariantExtendedKalmanFilter2D: the EKF 

implementation for the 2-dimensional tracking case 
described in Sec. 4. 

The frame is depicted in figure Fig. 4, where there can be 
highlighted four basic elements: The menu bar, the command 
console, the graphical environment and the informative panel. 

 
Fig. 4 view of the GUI Teseo 

The menu bar is made up four items, shown in Fig. 5 

 
Fig. 5 menu bar of the frame 

Clicking on File  Save a JFileChooser appears. It allows to 
save a text file that is a summary of the mobile node positions 
estimated by the EKF in the current run. The name of the file is 
formatted taking into account the current date and hour: 
Teseo_<dd_MM_yy-HHmm>.txt. From JMenu View it is 
possible to show/hide some elements of the frame, like the 
Verbose System Information (VSI) (linked to the 
JCheckBoxMenuItem VSI) and the fixed nodes distributed in 
the graphical environment (JCheckBoxMenuItem Beacons). 
Instead, JMenu Settings allows to set: 
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• the parameters  and  of the transmission channel, 
through the JDialog of Fig. 6 callable by JMenuItem 
Channel. The parameters of the JDialog, as they 
appears in Fig. 6, are initialized in the method 
initMyComponents() of the frame;  

 
Fig. 6 Dialog window for the configuration of the channel 

• times  (  K_T_U ms) and  (  K_TAU_U ms), 
that are respectively the refresh time of the GUI, i.e. the 
sampling time of the mobile node position visualization, 
and the delay with whom the trace of the path of the 
mobile node starts to be plotted (the delay corresponds 
to the  ms after the reception of the first 
PingClientMsg). Both values can be chosen by the 
scrollable bars of the dialog windows associated to the 
JMenuItem Trace. Values assigned to  and  of 
JDialog in Fig. 7 cames from the default initialization 
brought by initMyComponents() method. 

 
Fig. 7 dialog window of the trajectory settings  and  

The graphical environment is a MapPanel, extension of the 
class JPanel, that collects a set of methods to show the 
movement in  of the mobile node in the surrounding 
environment. It consists of the layout of the building in which 
are positioned the nodes and of a set of icons useful to point 
the positions of the fixed nodes and the different positions of 
the mobile node. In Fig. 8 is given an example of the 
MapPanel during a MAT process of a single mobile node. 
 

The command console of Fig. 9 allows to interact with the 
mobile node, specifying the virtual serial port of the client to 
which the mobile node is connected. Buttons Start and Stop are 
used to start/stop the communication between frame and 
mobile node.  

 
Fig. 9 consolle di comando del frame 

 
Fig. 8 graphical environment of the frame. The red squares are the 

active fixed nodes at that time, the blue squares are the inactive fixed 
nodes, the green square is the mobile node and the red path is the 

trajectory of the mobile node 

In Fig. 10 there are shown the flow charts of the routines 
start() and stop(). 

 
Fig. 10 Flowchart of the start/stop of the mobile node and the client 

The informative panel displays the numerical value of the 2-
dimensional coordinates of the mobile node estimate locally by 
the running MAT algorithm. It also shows the ID of the mobile 
node and the number of steps performed by the mobile node 
that has been notified to the client. Pressing the 
JToggleButton Trace Path the tracing option can be 
enabled/disabled. 
 

The constructor of the frame Teseo() is the first method 
automatically called by the Java virtual machine, therefore it is 
used to initialize the form. The init is divided into a design side, 
which instantiates the Swing and AWT palette of the frame via 
the method initComponents(), and a source side, which is 
related to the method initMyComponents(). The source side 
resets the estimation, allocates and initializes the variables and 
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objects to it in charge, and completes the instantiation of a set 
of elements of the frame: 

• VSI update. 
The Verbose System Information is displayed. This is 
a JTextArea within a JScrollPane, placed in a 
JDialog external to the frame, which acts as output 
both to report any anomalies in the use of the client, 
as the occurrence of some Exception, and to tell the 
user information about the client, such as setting 
parameters intrinsic to it. The VSI can be 
hidden/shown through the option Settings  View of 
the menu. Fig. 11 gives an example of a VSI 
information flow; 

 
Fig. 11 screenshot of the VSI during the use of Teseo client 

• Init of client-node communication. 
It is set to serial the type of packet source, and it is 
chosen a default serial port, the USB0 (/dev/ttyUSB0) 
with its baud rate, which is  baud for the 
Tmote Sky. The resulting COM port is labeled with 
the syntax serial@/dev/ttyUSB0:tmote. 

• Init of tracing settings. 
Time values  and  AUDIT_TIME are set to 

 ms and  ms. These values, 
editable by the menu Settings  Trace, pose some 
temporal constraints on the visualization of the 
trajectory of the mobile node in the MapPanel. 

• Init of channel parameters. 
It is instantiated the transmission channel defined by 
the class Channel, setting the  and  parameters 
with two default values that are merely suggestive: 

 dBm and . It is also set to 
 dBm the transmission power of each node  

at the distance of  m. 

• Init of the map. 
It is Initialized the graphic environment in which the 
mobile node is displayed, by invoking the method 
initEnvironment(String) of the class MapPanel, that 
receives as input parameters one of the maps stored in 
the maps directory of the package teseo. 

After the initialization phase, the frame remains in an idle 
state, as long as the user not only connects the client to the 
mobile node but also starts the node. Defining the input source 
to the client, via the control panel, it is possible to start the 
mobile node by pressing the Start button. Doing so, the 
ActionEvent of the JButton calls the routine start(), which 
establishes a connection with the mobile node, if it is not been 
done before, by calling the method connect(String). This 
method creates an object PhoenixSource to automate both the 
reading and the dispatching of packages and the restarting of 
the communication port. The PhoenixSource is coupled to an 
object MoteIF which provides an interface Java at the 
application level to receive messages from and send messages 
to the Tmote Sky. At this point, the JFrame is registered as a 
MessageListeners of the MoteIF for each of the types of 
messages DataMsg, MoteCtrlMsg, PingClientMsg. If the 
connection is successful, the command,START, is forwarded 
to the mobile node using the function send(int, Message) of 
object MoteIF. 

The button relegated to the Stop of the mobile node behaves 
similarly: at the pressure of the corresponding JButton, the 
ActionEvent calls the routine stop(), which immediately 
forwards the command STOP to the mobile node, after 
verifying that Teseo is connected to it. Then, if the mobile node 
is successfully stopped, the routine disconnects the client, 
calling the method disconnect(String) which unregisters the 
listeners of the messages and executes the shutdown() of the 
PhoenixSource. From the moment the mobile node is no 
longer in the state DO_NOTHING, the frame becomes 
sensitive to receive messages transmitted via USB (serial) from 
the mobile node. The message_t received are handled by the 
synchronized method messageReceived(int, Message), which 
performs certain operations depending on the type of the 
received message. If it is a PingClientMsg and if it is the first 
one of this type that the client has received, the frame: 

• gains knowledge of the ID of the mobile node with 
whom the client is connected and it stores its frequency 
and transmission power; 

• synchronizes itself with the mobile node. To do this it is 
instantiated a Timer, which schedules the execution of 
a EstimateTimerTask at a fixed rate of  
AUDIT_TIME ms. EstimateTimerTask is a subclass of 
the class TimerTask and it implements the interface 
Runnable: when the AUDIT_TIME ms are passed, the 
method run() of TimerEstimate is invoked, which calls 
the method estimate2D() of class Estimation, global 
variable of the frame. 
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Then the method ends by updating the counter of the steps 
performed by the mobile node and, if at least one DataMsg is 
not yet arrived, it resets the HashMap<Integer, Node> of the 
MapPanel class, related to the fixed nodes that formed the 
group of nodes used by the mobile node in the previous 
estimate. If it is a DataMsg and if it is the first one of this type 
that the client has received since the last position estimation 
executed, the frame resets the HashMap<Integer, Node> of 
the MapPanel. Then, if the fixed node to which the DataMsg 
belongs is present in the map, it is added, with his ID, to the 
HashMap<Integer, Node> of the MapPanel and its 
coordinates are added into the Vector<Coordinate2D> of the 
Estimate together with the measure of the RSS that is put in 
column of the Vector<Integer> of the class Estimate. The 
method messageReceived int, Message), as mentioned, 
continues to discriminate messages for  ms, and then 
decreed the beginning of the process of mobile node position 
estimation, assigned to the class Estimate. Before the timer 
expires, the client must be able to form the set of fixed nodes 
assigned to the current step, assuming that the mobile node is 
inside a communication range that allows him to communicate 
with a non-empty group of fixed nodes, in order to allow the 
MAT algorithm to make an estimate that is not the simple 
evolution of the state of an open-loop system. For a deeper 
understanding of the functioning of the client will now be 
outlined, one by one, the classes Channel, Estimate, 
MapPanel, VariantExtendedKalmanFilter that are those 
that most characterize the MAT algorithm. 

A. Channel 
This class implements the channel model presented in Sec. 2. 

The constructor requests to set the transmission power  of 
all fixed nodes, the attenuation  of the channel and the loss 
factor . Method getPower(double) returns the value of power 

, i.e. the power of the mobile node  function of the 
distance from the fixed node . The  distance between two 
nodes is given by the method get2Dnorm(double, double, 
double, double). Essential to compute the estimation is the 
method getDerivativesPower(double, double, double), that 
returns the elements of (6). 

B. VariantExtendedKalmanFilter 
This class hold the model and dynamic of the EKF, 

implementing Alg. 1. It uses the JAMA (JAva MAtrix package) 
library [22], version 1.0.2, a linear algebra package that 
provides user-level classes for constructing and manipulating 
real, dense matrices. The constructor of the class builds matrix 

 of the state model, method setInitialCondition() fixes the 
initial conditions, as they has been defined in Sec. 3. Instead, 
method update(double[][], double[][], Channel) is designed 
to implement Alg. 1. 

C. Estimate 
This class is focused on the synchronized method 

estimation2D(), which is divided into the following sequential 
operations: 

• copy in different arrays the values stored by the vectors 
Vector<Coordinate2D> and Vector<Integer>, which 
are passed to method update(double[][], double[][], 
Channel) of VariantExtendedKalmanFilter2D. 
Vector<Integer> stores the measures of RSS made by 
the mobile node in reception of DataMsg messages 
from fixed nodes, while Vector<Coordinate2D> stores 
the corresponding  positions of the fixed nodes; 

• execution of the update routine own by the class 
VariantExtendedKalmanFilter2D. This routine, core 
of the MAT algorithm, returns, in a period of 1 ms 
circa, the estimation of the  position of the mobile 
node. This values is then stored in a global 
Coordinate2D variable of Estimation class; 

• management of mobile node position. It is saved in the 
object Node of MapPanel; then it is added both to 
Vector<Node>, that collects all the estimated positions 
that has to be logged, and to Vector<Node> of tracing 
option, under some constraints given by the delay  
and the sampling time . Moreover, some variable are 
reset and the estimate2D() method terminates clearing 
vectors Vector<Coordinate2D> and Vector<Integer> 
and notifying to the frame that the estimation process is 
finished. 

At this point the JFrame is ready to wait a new 
PingClientMsg message, to be followed by other DataMsg 
message used to produce a new estimate of the position of the 
mobile node. 

D. MapPanel 
MapPanel is a sub class of the JPanel which aim is to 

coordinate the visualization of the graphical environment of the 
map. Teseo holds a global instance of MapPanel, initialized 
invoking the routine initEnvironment(String). The first activity 
of the MapPanel is to upload both the image file of the default 
map and the locations of fixed nodes, deployed in advance 
within the various locations on the map. To simplify this 
configuration step it has been implemented a parser that reads 
the settings directly from text configuration files identified by 
the extension .map. The parsing is performed by the method 
parseMapFile(String) which is passed as a parameter the name 
of the configuration file, contained in the subdirectory /maps of 
package teseo. The successful completion of parsing operation 
depends on the following rules: 

• first line of the file has to contain the name of image file 
of the map. This file has .jpg extension, and its 
dimension must be equal to x  pixels; 

• second line has to point the position of the origin of the 
2-dimensional referral system, used to measure the 
position of the nodes in the environment. The unit of 
the origin should be in pixels; 

• third line has to indicate the length in meters of a screen 
pixel. This is an essential factor of scale in order to 
display properly the position of the nodes (fixed or 
mobile) in the GUI; 
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• following lines have to list the details of each fixed 
node. The details are the ID, the abscissa, the ordinate 
and the z-axis of the nodes. The values are separated by 
a comma and the unit of the coordinates is in meters. 

Lines of /maps file are progressively enumerated, excluding 
empty lines and comments. The file scan is performed using a 
simple text scanner of the Java standard library which can parse 
primitive data types and strings using regular expressions. A 
Scanner separates the input into various tokens distinguished 
by a delimiter pattern, which by default is the whitespace 
character. Nodes are saved in a HashMap<Integer, Node>. 
Indexing is performed using as key the node IDs, which are 
intrinsically unique. If necessary, to access the contents of the 
entire map HashMap<Integer, Node>, it is possible to use an 
Iterator on the Set of the keys. This set is accessible in one 
step through the method keySet() of the class Map<Integer, 
Node>. After the completion of the parsing, the method 
loadImage(String) loads the icons associated to the mobile 
node, the fixed nodes and the virtual origin of the axes. The 
mobile node is marked by a green rectangle, while the fixed 
nodes, at each  step of the MAT algorithm, are blue or red 
rectangle. The color of the fixed nodes depends on whether or 
not the nodes belongs to the set chosen by the mobile node to 
estimate the position in the time interval . If a 
fixed node is selected it turns to blue, hence it is red colored. 
The origin of the reference system, whose display is optional, is 
an olive green viewfinder. Assuming that the loading of some 
images is not successful, it is expected to replace the images 
with a rectangle of the class Graphics. The last action of the 
initialization, afterwards creating Vector<Node> of the Trace 
Path functionality, it is the start of the refreshing Thread of 
the JPanel, whom sampling time is given by the constant 
REFRESH_TIME. The refresh repeatedly calls the method 
repaint() which in turn invokes paintComponent(Graphics). 
This one draws the map and the origin; the fixed nodes, 
iterating drawAnchorNode(Node, Graphics, boolean), if it is 
checked the JCheckBoxMenuItem Beacons; the mobile node, 
drawMobileNode(Graphics); the trace of the path of the 
mobile node, if requested, obtained with a linear interpolation 
of the positions. Lines are drawn with the method 
drawThickLine(Graphics, int, int, int, int, int, Color). The 
positions are taken in chronological order from a 
Vector<Node> thanks to an iteration on a Enumeration of 
the elements of the vector. Furthermore, starting from a certain 
length of track, more than MIN_TRACE_SIZE, the history of 
the trace begins to be erased, giving to the path a snake effect. 

VII. SIMULATIONS WITH EXPERIMENTAL SETUP 
To validate the algorithm described in Sec. 3 simulations 

have been performed on the base of the network data derived 
from the WSAN installed in the Department of Information 
Engineering (DEI) of the University of Padova [5]; the testbed 
considered (a portion of the mentioned WSAN) is depicted in 
Fig. 12 and comprises  Tmote Sky [10] whose Chipcon 
CC2420 radio has an accuracy of  dBm.  

Here, the agents have a distance of about  meters from 
each other on an almost regular triangular grid of  m . 
This testbed is partially unstructured with laboratory/office 
furniture and equipment, and three partition walls separate two 
rooms with an hallway. The agents communicate only through 
the wireless channel and. Access points are also present in the 
environment, hence the testbed is subject to a reasonable level 
of interference and electromagnetic noise. 

 

Fig. 12 architecture of the testbed, covering an area of about 150 m . 
The agents communicate only through the wireless channel 

All Tmote Sky agents, in groups of up to four elements, are 
connected via USB (serial) hubs that provide power supply and 
allow to collect log data for debugging intents. The agents are 
also connected to embedded computers that act as gateways. 
These mini PCs are processing units which interact with the 
programming of the agents and they are connected via Ethernet 
to a central server from which to monitor, manage and check 
the entire WSN. 

For the estimation of the channel parameters ,  in (3) the 
least-square method in [19], which is a distributed version of 
[20], has been adopted. The results ( ,  
dBm,  m ) provide the model in Fig. 13. 

 
Fig. 13 power model , as function of distance . 
Notice that the plot is limited to distances below  meters, since it is 

not worth to consider larger intervals 
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The packet loss probability in Fig. 14, equal for each agent, is 
obtained as a least-square interpolation of experimental data 
collected in the testbed of DEI. 

 
Fig. 14 packet loss probability. The red dots are samples computed on 

experimental data; the blue line is their least-square interpolation 

The movement of an agent is simulated through a random 
walk model 

  

where, ,  and the 
variances of model and measure noise  and  are 
respectively given by: 

  

A. Performance evaluation 
In general, the performances of any tracking algorithm 

depend on different factors, such as density and connectivity of 
the beacons, computation and communication costs, fault 
tolerance and robustness. In Fig. 15, the position estimation 
error  is plotted for different algorithm parameters, 
as a criteria to evaluate the goodness of the tracking algorithm. 

 
Interestingly, the value of  (maximum number of RSS data 

that each agent collects from neighbors to average the received 
power), over a certain threshold, does not affect significantly 
the position estimate, while the promptness of the system slows 
down increasing . The system behaves similarly as for the 
bound on the received power, and increasing  (the 
minimum power level acceptable for node-to-node distance 
estimation) would lower the number of useful signals in the 

localization process. Finally, increasing the measurement noise 
variance , worsen the performance, as expected. 

 

 

 
Fig. 15 Estimation errors for different simulation parameters 

If the extended version of the EKF has become necessary to 
deal with the non-linearity of the system, the use of an 
Unscented Kalman Filter (UKF) or a Sequential Monte Carlo 
(SMC) method has not be considered since these two 
approaches are proven to not improve significantly the 
performance in terms of localization accuracy. In fact, the 
SMC, which is in general a better solution than a UKF [23], 
tends to outperform the Kalman as the localization errors 
increase and it cannot considerably filter the non-Gaussian 
components. 
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VIII. CONCLUSION 
In this work, an application for multi-agent tracking in wireless 
networks, with emphasis on the software design and the code 
implementation, is presented. The application employs a RF-
channel model to estimate the distance among agents belonging 
to the WSAN. To mitigate the nuisances induced by the not 
perfect wireless communication, by the implementation in an 
unknown and unstructured environment, and by the presence 
of noisy measurements, an EKF is designed to provide 
corrected estimates of the mobile agent positions. Moreover, 
attention has been posed on the timings among the events 
occurring within the agent and the synchronization with the 
other peers of the network, to ensure the correct sequence and 
completion of the tracking procedure. Simulations and 
experiments on a real testbed validate the goodness of the 
approach and assess it is suitable for a real time implementation 
on embedded devices. 
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