

Abstract—This paper is divided into the two main parts. The first

part deals with a planning algorithm being used in tactical decision

support systems, which has been developed at the University of

Defence in Brno. In the first part, there is presented improved

versions of the original algorithm which are demonstrated while

searching for an optimal path for a ground autonomous robot in a

general environment. The article shows two different approaches for

the algorithm improvement, along with their basic principles. The

possibilities of the improvement are analyzed on two particular

examples and the results of the new versions are compared with the

original algorithm. In the second part, the article presents the issue of

tactical decision support systems. The state of development of these

systems is presented here, along with an example of their utilization.

Keywords—Planning algorithm, optimal path-finding algorithm,

autonomous vehicles, tactical decision support systems

I. INTRODUCTION

ACTICAL decision support systems have started being

trends in combat management recently; all modern armies

are interested in these new possibilities. Especially the US

Army has been dealing with this issue deeply within its

program Deep Green; it is a system for decision support

intended for commanders of the US Army [1].

The purpose of those systems is to use computer technology

for effective and accurate predictions of possible situation

scenarios and to facilitate evaluation of potential results of

commanders’ decisions. Predictions are based on thorough

analysis of a present situation considering huge amount of

input parameters. The systems are characteristic by their

advanced prediction capabilities.

The University of Defence in Brno also deals with these

issues within its research program. Presently, there are several

projects on using autonomous vehicles for increasing the

efficiency of commanders in operations. One of the key

projects is the development of a ground autonomous vehicle

for reconnaissance and combat purposes. Within the project,

we developed an experimental autonomous robot to

demonstrate and verify algorithms and principles of

autonomous motion in a general environment [2], [3], [4].

Manuscript received October 7, 2011.

P. Stodola is with the University of Defence, Brno, Czech Republic

(e-mail petr.stodola@unob.cz).

J. Mazal is with the University of Defence, Brno, Czech Republic (e-mail:

jan.mazal@unob.cz).

The article considers an improvement of the optimal path-

finding algorithm which the robot uses during its movement

from its current position to the target position (the algorithm is

used also for other tasks of tactical decision support – see

chapter VII). There are presented two different variants of the

improvement in the article, along with deeper analysis and

evaluation.

II. ORIGINAL OPTIMAL PATH-FINDING ALGORITHM

While moving, the robot uses the algorithm based on Floyd-

Warshall principle with essential structural and optimization

modifications which makes the algorithm computationally

usable for vast data structures with more than 10
6
 nodes. The

algorithm is designed for parallel processing and is

implemented on a graphical processor in CUDA integrated

development environment [5].

The basic prerequisite for the algorithm is evaluation of all

graph edges by non-negative integers (costs). An example of

the algorithm function in the real terrain is shown in Fig. 1.

Costs were set according to influence of several factors:

 terrain relief,

 vegetation,

 waters,

 roads,

 visibility of the threatening element.

Fig. 1 Example of the optimal path-finding algorithm function

Planning algorithm and its modifications

for tactical decision support systems

Petr Stodola, Jan Mazal

T

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 99

Fig. 1 presents the path found from the initial position to the

target position. In Fig. 2, there is shown the cost map for the

graph edges from Fig. 1. Values are coded in gray shades.

Fig. 2 Cost map for the environment from Fig. 1

The algorithm belongs among discrete methods; the

environment is sampled by the Sukharev grid [6]. Adjacent

nodes in the grid create graph edges on which the algorithm is

applied. Every node has 8 edges to adjacent nodes according

to Fig. 3.

Fig. 3 Graph edges for each node in the grid

The algorithm is able to find all variants of the shortest

paths when there are more of them. For illustration, Fig. 4

presents three variants of the shortest path from the initial

point to the target point. All three paths are evaluated by the

same cost. It is apparent that the Euclidean distance of the

middle path is lesser than the distance of the remaining two.

The main problem is the fact that the algorithm is not able to

recognize the Euclidean shortest path what is a quite important

criterion for optimal autonomous motion of unmanned

vehicles.

Fig. 4 Three variants of the shortest path

There are designed two new versions of the algorithms in

the following text dealing with the presented issue.

III. VERSION WITH 16 EDGES FROM EACH NODE

The version in this chapter is very easy to implement since

the only change in comparison with the original version is

extending the number of edges from each node of the grid

from 8 to 16. The principle is shown in Fig. 5 on the left.

Fig. 5 on the right presents integer costs which are based on

the Euclidean distances of individual edges.

Fig. 5 Graph edges from each node in the grid and their costs

The principle of extending the number of edges does not

solve the problem completely. It is only way how to reduce the

problem slightly. Moreover, the double amount of edges

results in the significant increase of the running time of the

algorithm. Deeper evaluation of the method is presented in the

following text.

IV. VERSION WITH ADDITIONAL ANALYSIS OF THE PATH

The second approach for the problem solution uses

additional analysis of the path found by the original algorithm.

When there are more paths (e.g. as in Fig. 4), then it is

possible to use whichever one.

The principle consists in sequential processing of particular

path sections and checking if the sections are possible to be

shortened by lines with the shortest Euclidean distance. The

algorithm is presented in Fig. 6 in pseudocode. The function

FindPath (path[], size, A, B) searches for the

shortest path from points A to B by the original algorithm.

Points of this path are stored in array path; total number of

points is in variable size.

1. FindPath (path[], size, A, B)

3. start = 0

4. newsize = 0

5. while (start <= size) do

6. for (i = start to size) do

7. if (TestPath(path[],start,i) == FALSE) do

8. newsize += AddPath(newpath[],start,i–1)

9. start = i

10. break for

11. Store newpath, newsize

Fig. 6 The algorithm with additional analysis of the path found

11 11

11

11

11

11 11

11

7 7 5

7 7

5 5

5

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 100

In the algorithm, there are two functions TestPath and

AddPath. The function TestPath (path[], start, i)

examines the path section stored in array path between points

with indexes start and i. The function returns TRUE if cost

of the path section is the same as cost of the path given by a

line between both points, or FALSE otherwise. The principle

is demonstrated in Fig. 4 where the middle path is given by a

line between two points and it has the same cost as both

adjacent paths.

The function AddPath (newpath[], start, i–1)

stores a new path section given by a line between points of the

original path with indexes start and i–1. It returns the

number of points added to the new path.

As a result of the algorithm, we have a new path with the

same cost but with lesser (or the same at worst) Euclidean

distance. The big advantage of the principle is its linear

running time O (size) where size is the number of points of the

path found by the original algorithm.

V. EVALUATION AND COMPARISON OF NEW VERSIONS

This chapter evaluates and compares the original algorithms

with the new versions. Evaluation was taken place in our

simulator of the experimental autonomous vehicle [7]. Fig. 7

shows the environment configuration where the analysis was

conducted. The area is of size about 12 × 12 meters. Black

squares represent obstacles in the area.

Fig. 7 Environment configuration for analysis

Fig. 8, 9, and 10 present paths of the autonomous vehicle

acquired from the simulator. Green color shows the path from

the initial to the target position; costs of individual graph

nodes are coded in gray shades. The path computed by the

original algorithm is in Fig. 8; Fig. 9 presents the path from the

algorithms with 16 edges and Fig. 10 presents the path from

the version with additional analysis. We can see progressive

improvement of the results in figures.

Fig. 8 Optimal path computed by the original algorithm

Fig. 9 Optimal path computed by the algorithm

with 16 edges from each node

Target position

Initial position

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 101

Fig. 10 Optimal path computed by the algorithm

with additional analysis

Table I shows several parameters obtained from the

experiments. It is apparent that the algorithm with 16 edges

provided better results than the original algorithm;

nevertheless the average running time was more than twice

longer which was caused by the double number of edges. The

total distance covered was about 2.5 % shorter. Number of

algorithm launches was smaller as the algorithm was able to

move by two points in one direction (see Fig. 5).

The algorithm with additional analysis of the path found

seems to be the best option. The average running time was

affected only insignificantly (about 0.6 ms); it is caused by the

linear running time of additional analysis. The total distance

covered was about 3.4 % shorter. Fig. 10 shows that there is

the path with the Euclidean shortest distance.

The second experiment is more complicated and it is based

on the real environment configuration shown in Fig. 11. There

we can see 24 rectangular obstacles in the area of size about

17 × 29 meters, along with the positions of the initial and the

target points.

Fig. 11 The second example

of environment configuration for analysis

This environment configuration was used for one of many

real tests of our autonomous motion principle. We have

implemented this principle on our experimental autonomous

ground vehicle. The principles of autonomous motion are

composed of several key processes [2]:

 Localization process – is a summary of activities, which

provide an estimate of current vehicle location in an area

where there is no GPS signal.

 Environment reconstruction process – by means of

laser scanner the maps of surrounding environment are

obtained in particular steps that are consequently

incorporated into the overall environment map.

 Optimal path searching process - based upon the data

analysis from the reconstructed maps, each point has its

cost which serves as an input for our algorithm of the

optimal path finding.

TABLE I

RESULTS OF THE ALGORITHM FROM THE PRESENTED EXPERIMENT

Parameter
Original

algorithm

Algorithm

with 16 edges

Algorithm

with additional

analysis

Number of graph

edges
1,280,000 2,560,000 1,280,000

Number of

algorithm launches
455 349 455

Average running

time
57.6 ms 134.1 ms 58.2 ms

Total running time 26.2 s 46.8 s 26.5 s

Total distance

covered by vehicle
15.70 m 15.31 m 15.17 m

Total distance in % 100 % 97.5 % 96.6 %

Initial position

Target position

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 102

 Motion control process – in the last step the vehicle

motion itself is carried out along a route found according

to the vehicle mathematical motion model.

Fig. 12 presents the path along with the vehicle moved in

the real test with the above mentioned principle implemented.

Fig. 12 Motion of the experimental vehicle

in the real environment

The major problem in the real environment is the

localization of the robot, especially the precise determination

of its orientation; any small inaccuracy in determining the

angle of orientation is substantially reflected in the

reconstruction of the obstacles. This problem can be noticed in

the experiment in Fig. 12.

Small errors in determining the orientation were caused by

an incorrect synchronization of the time of position and

orientation calculation of the vehicle by means of model and

time of environment mapping by the laser scanner.

Nevertheless, as the results show, this error does not have a

significant impact on the overall function of the autonomous

motion.

Fig. 13 shows a solution of the same task conducted in our

simulator by the original version of the shortest-path

algorithm. Both maps of the environment (that from the real

space and that from the simulator) are very similar to each

other, suggesting the correct implementation of principles of

autonomous motion.

Fig. 12 Solution of the task computed

by the original algorithm in the simulator

Fig. 14 presents a graph showing the mutual dependence of

the distances run by the vehicle in real application, and in

simulation tasks. The total distance of the path in the real

experiment was 31.06 meters, whereas in the simulation 30.73

meters.

When conducting the experiment, we had only the original

version of the algorithm, therefore we cannot show the same

task computed by the new versions in the real environment.

Nevertheless, we tried both new version of the algorithm in

our simulator. Fig. 15 shows the path computed by the version

with 16 edges from each node of the graph.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 103

Fig. 14 Relationship between distance

in real experiment and simulation

Fig. 15 Optimal path computed by the algorithm

with 16 edges from each node

Fig. 16 shows the path computed by the version of the

algorithm with additional analysis.

Fig. 16 Optimal path computed by the algorithm

with additional analysis

TABLE II

RESULTS OF THE ALGORITHM FROM THE SECOND EXPERIMENT

Parameter
Original

algorithm

Algorithm

with 16 edges

Algorithm

with additional

analysis

Number of graph

edges
5,693,512 11,387,024 5,693,512

Number of

algorithm launches
295 219 295

Average running

time
224.3 ms 540.9 ms 238.3 ms

Total running time 66.2 s 118.5 s 70.0 s

Total distance

covered by vehicle
30.73 m 29.87 m 29.69 m

Total distance in % 100 % 97.2 % 96.6 %

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 104

Table II presents parameters for the second experiment.

There were more than 5 million nodes in the original algorithm

and in the version with additional analysis. The average

running time was longer than 200 ms per one launch. The

additional analysis took only about 14 ms on an average.

The algorithm with 16 edges in each node had more than 11

million nodes in the graph. The average running time was

more than 0.5 sec per one launch. The total distance covered

by the vehicle was about 2.8 % shorter in case of the algorithm

with 16 edges and 3.4 % in case of the algorithm with

additional analysis. These values are very similar to the values

in the previous experiment.

VI. TACTICAL DECISION SUPPORT SYSTEMS

The next part of this article deals with the issue of tactical

decision support systems and its utilization in modern armies.

As already mentioned, these state-of-the-art systems have

started being trends in combat management recently. As an

example can be mentioned the Deep Green concept (see Fig.

17), still in process of development by the US Army (DARPA

since 2008), partly inspired by the honored predecessor Deep

Blue (the software running on the supercomputer developed by

IBM that addresses a chess game).

Fig. 17 The Deep Green concept [1]

US Army is committed to the application of artificial

intelligence methods for processes of command and control, i.e.

specially keeping sustainable support for the decision-making

processes of the commanders, where the optimal reaction of the

commander is constantly recalculated and then submitted as a

proposal, which could be intuitively further developed.

It is not an effort to replace the role of the commander by

computer, but there is the intention to automate most of

"routine and rough" analytical work and thus prepare the

design concept for new custom variants of solutions (COA-

course of action).

On the basis of fundamental similarities of the chess game

and tactical tasks, there are carried out experiments to solve

operational and tactical tasks in a manner based on a similar

approach. Despite the fact the complexity of the conditions in

the real environment cannot be compared with the exact rules

of the desk games, from a philosophical point of view there

exists a close similarity and this similarity may be based on

fundamental concepts and strategies solving operational and

tactical tasks.

Because of the appropriate approximation degree of

mathematical model so many of the tactical tasks is now

solvable in a real time. That was unable in the past, because of

the computer systems performance. The method of solution

converges not only to purely static operational and tactical

tasks, but it moves to the context of the dynamic development

alternatives, which are relevant at the time of the tactical

situation changes.

VII. EXAMPLE OF THE TACTICAL TASK

This chapter deals with an example of utilization of our

algorithm in a frequent task to be solved in tactical decision

support systems. It is a search for optimal location selection

for an implementation of an ambush.

To solve this task you need to start from a particular math

model of the environment, which in our case may be a 3D

array, or a set of multiple 2D arrays, where each layer defines

a particular characteristic. In our model, we consider the types

of objects as follows:

 Vegetation,

 Altitude model,

 Water obstacles,

 Communication.

Furthermore, we expect that the impact will be made

approximately on the same strong opponent and consider for

the time being only two custom tactical elements, one

conducting the attack and the second performing security

tasks. This is the problem of multi-criterion objective, where it

is necessary to lay down or implement the default priorities,

continuity and facts in a solution, namely:

 The key is the location of the strike element and security

element reacts to the position of the strike element and

enemy object.

 The set of solutions is applied only to a set of expected

positions of enemy object.

 Calculations and analysis are based on data that are

currently available and which was quantified and

described in the model; if some of the important aspects

are not integrated into the model, the resulting solution

may not correspond to the reality.

 Criteria and priorities from the perspective of the

parameters of the solutions are chosen by the commander

and their settings have a decisive influence on the

applicability of the solution.

A system that resolves this job, works on the principle of the

probability and the results of a solution calculation creates

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 105

conditions leading to the highest probability to complete the

task, therefore, this system will not ensure domination, but

only suggests, where is the optimal location of an element and

what would be its optimal behavior. The solution consists of

several layers of conditional integration, as shown in Fig. 18.

Fig. 18 Sequence of individual processes for the task of finding the

optimal solution for the implementation of an ambush

Setting the input criteria of solution (decision) is conceived

in the part of the integration model of quantification of input

characteristics, whose description would significantly exceed

the framework of this article. However, in the general

overview it is a set of models of the multi-dimension functions,

and their task is to incorporate the influence of external

conditions and characteristics to the numeric form of the set of

pragmatic coefficients, which are then applied with

mathematical methods and transformations leading to the final

model construction, in which to find the optimal solution is

already trivial.

Fig. 19 presents the result of the task solution in a real

terrain. The yellow circle is the initial position of our unit. The

upper blue area in the red circle is the best position to attack

the enemy; the bottom red circle represents the position

designed to secure our units.

Fig. 19 Result of a task solution in a real terrain

VIII. CONCLUSION

This paper deals with issues of improving the shortest path-

finding algorithm in discrete state space. We designed two

improving variants; both were analyzed and compared on the

two particular examples in our simulator of the experimental

autonomous vehicle.

The obtained results are valid only for the selected

examples. Results can differ in other situations. Nonetheless,

the both versions of the algorithm ensure the same or shorter

path in comparison with the original algorithm. The best

results are provided by the algorithm with additional analysis

of the path.

An advantage of the algorithm with 16 edges from each

node is its easy implementation. On the other hand the running

time is more than double. The additional analysis affects the

total running time negligibly as the running time of the

analysis is linear O (n).

In the second part of the article, there are introduced the

possibilities and importance of tactical decision support

systems. Optimization of tactical activities, although it is not

apparent at the first sight, is subjected to the algorithmic

schema and, therefore there is wide possibility of their

automation as shown in the presented example.

REFERENCES

[1] J. R. Surdu, K. Kittka, “The Deep Green Concept”. Spring Simulation

Multiconference (SpringSim08). Otawa, 2008, pp. 623-631, ISBN 1-

56555-319-5.

[2] P. Stodola, J. Mazal, “Optimal Location and Motion of Autonomous

Unmanned Ground Vehicles”. WSEAS Transactions on Signal

Processing, vol. 6, no. 2, 2010, pp. 68-77, ISSN 1790-5052.

[3] P. Stodola, “Extended Motion Model of Autonomous Ground Vehicle”.

International Journal of Mathematics and Computers in Simulation, vol.

5, no. 1, 2011, pp. 28-35, ISSN 1998-0159.

[4] P. Stodola, J. Mazal, M. Podhorec, M. Ovesny, “3D Laser Scanning

System for Experimental Autonomous Robot”. International Conference

on Military Technologies 2011 (ICMT11), Brno: University of Defence,

2011, pp. 983-988, ISBN 978-80-7231-787-5.

[5] J. Mazal, “Real Time Maneuver Optimization in General Environment”.

Recent Advances in Mechatronics 2008 – 2009, Springer Berlin

Heidelberg, 2009, pp. 191-196, ISBN 978-3-642-05021-3.

[6] M. S. LaValle, “Planning Algorithms”. University of Illinois, 2006,

842 p.

[7] P. Stodola, J. Mazal, M. Ovesny, R. Kremiec, “Simulator of Real

Experimental Autonomous Robot”. International Conference on

Military Technologies 2011 (ICMT11), Brno: University of Defence,

2011, pp. 989-996, ISBN 978-80-7231-787-5.

[8] S. Behzadi, A. A. Alesheikh, “Developing a Genetic Algorithm for

Solving Shortest Path Problem”. WSEAS International Conference on

Urban Planning and transportation (UPT07), Heraklion, 2008. pp. 28-

32, ISBN 978-960-6766-87-9, ISSN 1790-2769.

[9] S. Ebrahimnejad, R. Tavakoli-Moghaddam, “Solving the fuzzy shortest

path problem on networks by a new algorithm”. WSEAS international

Conference on Fuzzy Systems (FS09), Stevens Point, 2009, pp. 28-34,

ISBN 978-960-474-066-6, ISSN 1790-5109.

[10] M. K. Jha, G. A. Karri, M. A. Kang, “Military Path Planning Algorithm

Using Visualization and dynamic GIS”. WSEAS International

Conference on Computer Engineering and Applications (CEA10),

Stevens Point, 2010, pp. 188-193, ISBN 978-960-474-151-9, ISSN

1790-5117.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 106

