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Abstract – The problem on normal low-velocity
impact of an elastic falling body upon a pre-stressed or-
thotropic plate possessing curvilinear anisotropy is studied
with consideration for the changes in the geometrical
dimensions of the contact domain. At the moment of
impact, shock waves (surfaces of strong discontinuity) are
generated in the target, which then propagate along the
plate during the process of impact. The classification of
transient waves propagating in a thin pre-stressed plate
possessing curvilinear orthotropy is presented. Behind
the wave fronts upto the boundary of the contact domain,
the solution is constructed with the help of the theory of
discontinuities and one-term ray expansions. Nonlinear
Hertz’s theory is employed within the contact region.
For the analysis of the processes of shock interaction
of the elastic sphere with the pre-stressed orthotropic
plate, a nonlinear integro-differential equation has been
obtained with respect to the value characterizing the local
indentation of the impactor into the target, which has been
solved analytically in terms of time series with integer and
fractional powers. The particular case of a pre-stressed
transversely isotropic plate is analyzed in detail. A critical
review of the approaches for investigating the transient
wave propagation in isotropic and pre-stressed orthotropic
plates impacted by falling objects is presented.

Keywords – Wave theory of impact, orthotropic plate
possessing curvilinear anisotropy, transversely isotropic
plate, ray method, Hertz’s contact law, dynamic contact in-
teraction, surface of strong discontinuity

1 Introduction
The problems connected with the analysis of the shock in-
teraction of thin bodies (rods, beams, plates, and shells)
with other bodies have widespread application in various
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fields of science and technology. The physical phenomena
involved in the impact event include structural responses,
contact effects and wave propagation. These problems are
topical ones just as from the viewpoint of fundamental re-
search in applied mechanics, so also with respect to their
applications. Since these problems belong to the problems
of dynamic contact interaction, their solution is connected
with severe mathematical and calculation difficulties. To
overcome this impediment, a rich variety of approaches and
methods has been suggested, what is embodied in a great
quantity of articles and reviews (see e.g. a long list of ref-
erences in [1] and [2]).

The state-of-the-art article [1] highlights in more de-
tail one of the important but scantily known aspect of the
given problem, namely: the influence of the transient waves
generated at the moment of impact upon the process of the
shock interaction of solids, and the connection of this as-
pect with other facets of this challenge is shown as well.

An impact response analysis requires a good estimate
of contact force throughout the impact duration. Low-
velocity impact problems, which also took the local in-
dentation into account, have been solved by many authors.
Reference to the state-of-the-art papers [1, 2] shows that
in most studies it was assumed that the impacted structure
was free of any initial stresses. But this does not adequately
reflect the real multidirectional complex loading states that
the materials experience during their service life.

In practice, the composite facing of a structure may be
under a preload, e.g., a sandwich structure with laminate
facing under bending loads, jet engine fan blades subjected
to centrifugal forces [3]. Even when stationary on the run-
way a composite airframe is under pre-stress [4]. The other
example of great practical interest is the analysis of impact
response of pipes pressurized for hydro-tests subjected to
dropped tools [5].

Very few works have reported on the impact response
of anisotropic and composite plates and beams subjected
to an initial uniaxially tensile preloading [6]-[9], as well as
biaxial preloading [4, 5], [10]-[12], in so doing only rect-
angular plates are considered as the targets.

The impact behaviour under compressive preloads is
addressed in even fewer papers [4, 5], [13]-[16]. This
preloading condition is yet more complex because plate
buckling becomes an issue for relatively thin compos-
ite structures [14]. Analytical investigation of the low-
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velocity impact response of circular orthotropic and trans-
versely isotropic plates possessing curvilinear anisotropy
under compressive preloding has been carried out recently
by Rossikhin and Shitikova in [15] and [16], respectively.
The equations of plate motion take the rotary inertia and
transverse shear deformations into account. In the case of
the orthotropic target [15], the changes in the geometrical
dimensions of the contact domain have been ignored and
the contact interaction is modeled by a linear spring, and
a force arising in it is the linear approximation of Hertz’s
contact force. Stability or instability of the plate is estab-
lished by analyzing the behavior of transient waves gen-
erating in the plate at the moment of impact, which fur-
ther propagate along its median surface as ‘diverging cir-
cles’. In the case of the transversely isotropic target [16],
which was impacted by a long elastic thin cylindrical rod,
the waves of strong discontinuity are generated in the plate
and begin to propagate. Behind the fronts of these waves,
the solution is constructed in terms of ray series, the coef-
ficients of which are the different order discontinuities in
partial-time derivatives of the desired functions, and a vari-
able is the time elapsed after the wave arrival at the plate’s
point under consideration. The ray series coefficients are
determined from recurrent equations within an accuracy
of arbitrary constants, which are then determined from the
conditions of dynamic contact interaction of the impactor
and the target. The found arbitrary constants allow one to
construct the solution both within and out of the contact
region.

In the present paper, the problem on normal low-
velocity impact of an elastic sphere upon a pre-stressed or-
thotropic plate possessing curvilinear anisotropy is studied
with the consideration of the changes in the geometrical di-
mensions of the contact domain. Behind the wave fronts
upto the boundary of the contact domain, the solution is
constructed with the help of the theory of discontinuities
and one-term ray expansions, while the nonlinear Hertz’s
theory is employed within the contact region [17].

It should be noted that after the publication of the re-
view paper [1], the authors are still interested in the field
and have made some advanced contributions to the wave
theory of impact [16]-[20]. And of course we are still trace
new publications in the field trying not to miss important
technical papers. Thus, recently our attention was attracted
by a paper [21] published online by Springer on July 9,
2011 followed by the hard version in Acta Mechanica. This
paper is written in the best traditions of rebus compilers,
since it is difficult if not impossible for a reader without a
strong background in the wave theory of impact to under-
stand anything from what the author is doing in this pape
nor and how he has received each of his statements, i.e.
each result is to be hardly comprehended. Having got ac-
quainted with the cited article, the authors of this paper, to
their great surprise, have found that only one equation was
written there without mistakes!

The paper by Loktev [21] is devoted to the anal-
ysis of the impact response of a circular simply sup-
ported pre-stressed orthotropic plate possessing curvilinear
anisotropy. Moreover, the impact occurs not at the center of
the curvilinear anisotropy, which coincides with the center
of the orthotropic plate, but at its arbitrary point.

In Introduction of [21], a short review of papers deal-
ing with the application of Uflyand–Mindlin type plates,
which allow one to consider transient wave propagation in
the target after the impact by a falling object, is presented,
and in particular one of our papers [15] is cited with the
following short comments:

“In Ref. 7 (paper [15] in our list of refer-
ences), the external radial force compressing the
round plate, the dynamic behaviour of which was
described by simplified equations (here and be-
low italic is used by these authors) for a buckling
and a turning angle of the normal to the radius,
was presented”.

And this is despite the fact that hyperbolic equations of
motion of a prestressed orthotropic plate possessing curvi-
linear anisotropy were derived by Rossikhin and Shitikova
[15] in the polar coordinate system with due account for
transverse shear deformations and rotary inertia starting
from the equations describing its statical behavior [22].
The paper [15] pioneers in studying the dynamic stability of
a precompressed circular plate with respect to shock load-
ing, and buckling was not even mentioned, since buckling
problems are usually solved in statical formulations.

However, for some reason, the other paper by
Rossikhin and Shitikova [16] devoted to the similar prob-
lem as in [21] has not been cited. The equations of motion
of the plate are practically the same, although the trans-
versely isotropic plate impacted by an elastic rod with a
plane circular end has been considered in [16].

It was a great surprise to these authors to read in the
conclusion of Introduction [21] that “in the aforementioned
papers, the wave processes taking place in the target after
the impact were not taken into account”. But it is not the
case at all! It could be noted that the wave theory of impact
was initiated in [23] and [24], and it is developed uninter-
ruptedly by researchers from various countries (see e.g. the
review of papers in the field in [1]).

Thus, the second aim of this paper is to show the in-
consistency and falseness of the calculating scheme pre-
sented in Loktev [21], which further will be referred to
as the ‘L scheme’, and to suggest an alternative effective
approach allowing one to consider the impact response
of a prestressed orthotropic plate possessing curvilinear
anisotropy, as well as to analyze its dynamic stability with
respect to transient loading.
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2 On a critique of the governing
equations and boundary condi-
tions

In Sect. 2 of [21], the problem of impact of a spherical
body upon an orthotropic plate is formulated. In what fol-
lows, all quotations from [21] used in the given paper, i.e.
equations of motion, initial and boundary conditions, the
method of solution and calculation scheme and so, on will
be referred to as the ‘L equations of motion, initial and
boundary L conditions, the L method of solution and cal-
culation L scheme’, respectively, and will be properly indi-
cated.

Thus, we will proceed from the equations of motion of
a target following [21]:

“the round-shaped simply supported over the
contour orthotropic plate, the displacements of
whose points are determined from the Uflyand–
Mindlin equations [Ref. 4] (paper [25] in our list
of references) in a dimensionless form that rep-
resent the generalized Hooke’s law considering
geometrical nonlinearity of the plate’s material,
is studied:
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Erσr = Eθσθ, K = 5/6, Er, Eθ and σr, σθ
– the coefficients of elasticity and Poisson’s ra-
tios for r and θ directions, respectively;Grz ,Gθz
– the moduli of rigidity for rz and θz planes,
respectively; w(r, θ) – the normal displacement
of the median plane; u(r, θ) and v(r, θ) – the
tangential displacements of the medial surface
with respect to r and θ coordinates, respectively;
ϕ(r, θ) and ψ(r, θ) – the arbitrary functions of
r and θ coordinates, ρ – the density, h – the
plate’s thickness, q – the load, R1 – the radius
of the spherical indenter, 4r = 1

r
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)
,
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∂θ2 ,N – the external longitudinal force
operating in a radial direction, Mr – the external
bending moment the vector of which is directed
along the radius,Mz – the external rotational mo-
ment, the vector of which is directed along the
normal to the median plane of the target.”

First of all it should be noted that Eqs. (1L) contain
so many mistakes, starting from the erroneous record of
terms involving the external forces and moments in the di-
mensionless form (it seems likely that the author of these
equations does not know the dimensions of internal as well
external forces and moments used in the theories of plates
and shells!). Thus, the correct dimensionless values should
be the following:
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ρc1
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ρc1h
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,

(1)
as well as a mystery moment (its physical meaning together
with the value α1 has not been explained)

M∗ =
12R1 cosα1

h
q∗.
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In the first equation of (1L), the third term should be multi-
plied by c3/c1, while in its sixth term the derivative ∂ψ/∂θ
should appear instead of ∂ϕ/∂θ. In the last two equations
of (1L), the Poisson’s coefficient σθ is added to the coef-
ficient c3, the dimension of which is equal to the squared
velocity! The correct coefficient is (σθc1 + c3)/c1.

It would be shown later that the negative inertia terms
in the first and last equations from (1L) are also incorrect,
since such a choice results in erroneous velocities of tran-
sient wave propagation.

It is evident from Eqs. (1L) that they do not involve
‘the generalized Hooke’s law considering geometrical non-
linearity of the plate’s material’. It is well known fact that
the curvilinear anisotropy does not couple with the effect
of geometrical nonlinearity by any means [22].

The statement of the boundary conditions follows Eqs.
(1L):

“the simply supported over the contour round
plane is described by the following boundary
conditions:

w
∣∣∣
r=R

= 0,
∂2w

∂r2

∣∣∣
r=R

= 0, (2L)

where R – the radius of the plate.”

It is intriguing fact that only two boundary conditions
(2L) have been prescribed for a set of five governing Eqs.
(1L). Moreover, the second condition (the absence of the
bending moment on the plate’s boundary) is valid only for
a classical plate, and it is not satisfied for the plate under
consideration.

From the above quotation a reader could recognize
that Eqs. (1L) were determined from the Uflyand–Mindlin
equations in [25]. However it is not the case. Equations
(1L) were derived neither by Uflyand [26] nor by Mindlin
[27], and certainly not in [25].

As it has been shown in [15], equations of the 1L-type
could be obtained from the five fundamental differential
equations suggested in [22], which describe the equilibrium
of an orthotropic plate with a cylindrical anisotropy for the
case when all radial planes crossing the axis of anisotropy
are the planes of elastic symmetry. It was assumed in [22]
that the pole of anisotropy, i.e. a point of intersection of
the axis of anisotropy and the median plane of the plate, is
the origin of the cylindrical set of coordinates rθz, and the
z-axis is directed along the axis of anisotropy. The Am-
bartsumian equations have the form [22]:
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where Erσθ = Eθσr (note that this very important re-
lationship for an orthotropic plate possessing cylindrical
anisotropy was written in Eqs.(1L) with a mistake),Dr,Dθ

and Cr, Cθ are rigidities due to bending and compression-
tension in the r− and θ- directions, respectively, Dk and
Ck are rigidities due to torsion and shear, respectively,
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In Eqs. (1A), ϕ(r, θ) and ψ(r, θ) are arbitrary desired
functions in the coordinates r, θ (which do not coincide
with those in Eqs. (1L) as it will be shown below) are con-
nected with the transverse forces Qr and Qθ, respectively,
by the following formulae:

Qr =
h3

12
ϕ, Qθ =

h3

12
ψ. (2A)

The boundary conditions for the case of a simply sup-
ported circular plate with R radius are the following [22]:

Nr = 0, Mr = 0, Trθ = 0, Hrθ = 0, w = 0, (3A)

where Nr and Trθ are internal tangential forces, and Mr

and Hrθ are internal bending moment and torque, respec-
tively, per unit length of the plate’s middle surface.
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For describing the dynamic behavior of the circular
orthotropic plate subjected to transient loading, Rossikhin
and Shitikova [15] suggested first to replace the functions
ϕ and ψ in Eqs. (1A) with
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where K is the shear coefficient, the magnitude of which
is chosen further as 5/6, ϕr(r, θ, t), and ϕθ(r, θ, t) are the
angles of rotation of the normal to the plate in the r− and
θ−axes directions, respectively.

Substituting (2) into Eqs. (1A), in so doing dividing the
last two of them by r, and introducing into the right-hand
sides of the final equations the following forces of inertia,
respectively:
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The set of Eqs. (5)-(9) is subjected to the boundary
conditions (3A), where the internal forces and moments
have the form
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For axially symmetric problems, the functions u, w
and ϕr are independent of θ, but v = 0 and ϕθ = 0, and
therefore the set of Eqs. (5)-(9) goes over into one uncou-
pled equation for u and a set of two coupled equations for
w and ϕr, which was used in [15] for the analysis of the dy-
namic stability of a circular pre-stressed elastic orthotropic
plate impacted by a falling flat-end rod.

3 Loktev’s classification of transient
waves

At the end of Sect. 2 in [21], a reader could find very ‘im-
pressive’ remarks

“In Eq. (1L), c1, c2, c3, c4, c5 represent the
square of the velocities of independent waves,
i.e., waves in the non-prestressed target; coef-
ficients 1 and 2 correspond to the longitudinal
waves of the tension-compression propagating in
r and θ directions, respectively; coefficient 3 cor-
responds to the shear wave of the longitudinal
sections in rθ plane; coefficients 4 and 5 corre-
spond to the transverse shear waves in rz and θz
planes, respectively.”

which result further in the classification of transient waves
(surfaces of discontinuity) suggested in Fig. 1L in [21]:

1. LWR - the quasilongitudinal wave of
tension-compression propagating in r-direction,

2. LWθ - quasilongitudinal wave of tension-
compression propagating in θ-direction,

3. TRWRθ - quasitransverse shear wave
propagating in rθ plane,

4. TRWRZ - quasitransverse shear wave
propagating in rz plane,
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5. TRWθZ - quasitransverse shear wave
propagating in θz plane.

This classification is worth of notable attention, since
it is based on the utilization of those elastic moduli which,
from the Loktev point of view, should enter into the veloc-
ities of the corresponding “independent” transient waves
propagating in a non-prestressed plate, what points to the
complete incompetence of its author in the field.

The waves propagating with the velocities
√
c2 and√

c5 do not exist in nature. These virtual waves, to be
named as carousel-type waves, exist only in Loktev’s imag-
ination.

However, this fact does not embarrass Loktev at all,
and in Sect. 3.1 of [21] (which, by the way, has no any
connection with the further part of the paper under con-
sideration), the author describes the method with the help
of which he assertedly obtained the force N and moments
Mr andMz dependence of the velocities of the enumerated
above five waves based on the condition of compatibility
(3L):

“Applying the procedure described in Ref. 6
(paper [25] in our list of references), from the
obtained equations at k = −1, one can come
to the system written in terms of displacements
and waves’ velocities. The result of the solution
of the following system is represented graphi-
cally in Figs. 2,3,4 in the form of dependencies
G(x) = f(N,Mr,Mz).”

First of all it should be emphasized that this ‘proce-
dure’ was pioneered in [24], and afterwards it was applied
by many researchers (see review papers [28, 1]), and thus
it is very shamelessly to assign this procedure to the name
of the author of [25].

Secondly, this brings up the question: Why did not he
present these dependences G(x) = f(N,Mr,Mz) in [21]
(moreover that they have rather simple form and could be
found easily)? Instead of this, he drew the curves appeared
from no quarter in Figs. 2L–4L (it should be noted that in
these figures the dimensions of both abscissa and ordinate
are incorrect, while the correct abscissa isG/

√
c1 and ordi-

nates areN∗,M∗r andM∗z ), which could not be constructed
without the knowledge of these dependences.

Generally speaking, with the help of the compatibility
condition (3L)

G

[
∂x,(k)

∂α

]
= −

[
x,(k+1)

]
να +

δ
[
x,(k)

]
δt

να,

(3L)
where G–the normal velocity of the expansion
of the wavefront; [x,(k) ] = x,+(k)−x,

−
(k) =

[∂kx/∂tk]–the discontinuity in the derivatives of

the k-degree by time t from the unknown func-
tion x on the wave surface Σ; the upper indices
“+” and “-” indicate that the value is found di-
rectly in front of and behind the wavefront, re-
spectively; x takes values φ, ψ, w, u, v; the mag-
nitude α takes values r, θ; να(νr = cosφ, νθ =
cos θ)–the components of the normal vector to
the wave surface; δ/δt – δ-time derivative.

it is impossible to determine the velocities of nonstationary
waves from the set of Eqs. (1L) due to the simple reason
that such a condition of compatibility does not exist. More-
over, dimensionless Eqs. (1L) are subjected to the bound-
ary conditions (2L) and the compatibility conditions (3L)
written in dimension form!

If a point of the contact force application does not coin-
cide with the pole of the curvilinear anisotropy of the plate,
as it takes place in the L-problem considered in [21], then
the condition of compatibility should take another form,
namely [29]:

G
[
∂Zj/∂x

i
]

= − [∂Zj/∂t] νi + νiδ[Zj ]/δt

−GΓmjn[Zm]νnνi +GΓmji [Zm] +Ggαβgik[Zj,α]xkβ , (14)

where Zj are the covariant components of the desired vec-
tor, gij and gαβ are the covariant components of the met-
ric tensors of the space and the wave surface, respectively,
gαβgαγ = δβγ , νi and νi are the contravariant and co-
variant components of the vector normal to the wave sur-
face, xiβ = ∂xi/∂uβ , xi are the curvilinear spatial coor-
dinates, uβ are the curvilinear surface coordinates, Γmji are
the spatial Christoffel symbols, and an index after a comma
denotes the covariant derivative with respect to the corre-
sponding surface coordinate.

This is connected with the fact that a partial derivative
with respect to the spatial coordinate should be substituted
by the covariant derivative with respect to the same coordi-
nate, while the δ-derivative is substituted with

D[Zj ]
Dt

=
δ[Zj ]
δt
−G[Zm]Γmjiν

i,

and further it is needed to take into account that the physical
components of the values Zj in the orthogonal system of
coordinates have the following form:

(Zj)phys = Zj
√
gjj ,

where the summation over the j-index is absent.
Moreover, in this case the velocities of waves depend

on the direction of their propagation, what results in the
distortion of the wave front during its propagation.

Thus, if the wave velocities are considered as constant
values independent of the direction of their propagation, as
it was proposed in [21], then the point of the contact force
application must coincide with the pole of the curvilinear
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anisotropy of the plate. If in this case the spatial coordi-
nates coincide with the ray coordinates, then the compati-
bility condition is written in the following form:

G

[
∂Z

∂r

]
= −[Z,(1) ] +

δ[Z]
δt

. (15)

It should be noted that the ray coordinates are the sys-
tem of the orthogonal coordinates connected with the wave
surface, namely: two coordinate lines lie on the wave sur-
face, while the third one is directed along the normal to this
surface, i.e., along the ray.

The compatibility condition (15) was derived in
Rossikhin and Shitikova [30], wherein it was shown that
it could be generalized over the physical components of
vector and tensor values. This condition has allowed novel
investigations to be made in the field of wave dynamics,
since with its help it has been made possible to solve a lot of
dynamic problems dealing with shock interaction of plates
and shells with bodies of finite dimensions [1, 16, 20].

The author of [21] does not realize that each formula
and each model has its own validity limits, and one cannot
transcend these limits, since outside of the validity limits a
useful formula goes over into its antipode and becomes a
malignant one.

By the way, he has already used the compatibility con-
dition of incorrect dimension in the problem of impact of a
sphere upon a spherical shell of the membrane type [31],
resulting in the solution wherein “kilometers” are added
with “kilograms”, but the surprising thing is that this fact
has not been understood by both the authors and the review-
ers of this opus (a critique of this paper could be found in
[20]).

Since the compatibility condition (15) is of the first or-
der, while the set of Eqs. (1L) is of the second order, then
in order to eliminate this drawback we should substitute Z
by ∂Z/∂r in (15). Thus formula (15) takes the form

G

[
∂2Z

∂r2

]
= −

[
∂2Z

∂r∂t

]
+
δ

δt

[
∂Z

∂r

]
,

or with due account for (15) we have

G2

[
∂2Z

∂r2

]
= [Z,(2) ]− 2

δ[Z,(1) ]
δt

+
δ2[Z]
δt2

. (16)

This formula is the second-order condition of compat-
ibility. How could it be used?

First of all it is needed to rewrite it in the form

[Z,(2) ] = G2

[
∂2Z

∂r2

]
+ 2

δ[Z,(1) ]
δt

− δ2[Z]
δt2

. (17)

or in the dimensionless form

[Z̄,(2) ] = Ḡ2

[
∂2Z̄

∂r̄2

]
+ 2

δ[Z̄,(1) ]
δτ

− δ2[Z̄]
δτ2

, (18)

where Z̄ is the dimensionless form of the value Z, and
Ḡ2 = G2/c1 is the dimensionless squared velocity.

The condition of compatibility (17) is valid inside
the layer of the width n, within which the desired values
change monotonically and continuously from the value Z+

to the value Z−. This layer is introduced to interpret the
surface of strong discontinuity propagating with the nor-
mal velocityG. Since the dimensionless values to be found
from Eqs. (1L) are continuous on the wave surface of
strong discontinuity, then differentiating all equations in
(1L) one time with respect to the time and then substituting
all second-order time-derivatives with their values accord-
ing to (18), after the integration of the obtained set of equa-
tions two times with respect r from −1/2 n to 1/2 n and
going to the limit at n = 0 we find the following relation-
ships:
from the first and third equations of (1L), with the corrected
values of external loads according to (1),

(1 + Ḡ2)[ϕ̇]−M∗r [u̇] = 0, (19)

M∗r [ϕ̇]− (1− Ḡ2 −N∗)[u̇] = 0, (20)

from the second equation of (1L)(
c4
c1
−N∗ − Ḡ2

)
[ẇ] = 0, (21)

and finally from the forth and the fifth equations(
c3
c1
− Ḡ2

)
[v̇] = 0, (22)

(
c3
c1

+ Ḡ2

)
[ψ̇] = 0. (23)

Supposing the values [ẇ] = [v̇] = [ψ̇] = 0, while

[ϕ̇] 6= 0, [u̇] 6= 0, (24)

then the determinant of the homogeneous set of Eqs. (19)
and (20) should be vanished. As a result we have

Ḡ4 +N∗Ḡ2 −
(

1−N∗ −M∗r
2
)

= 0. (25)

Solving (25) we have

Ḡ2
1,2 = −1

2
N∗ ±

√(
1− 1

2
N∗
)2

−M∗r
2. (26)

Note that in all Loktev’s equations it is assumed that
negative magnitudes of the longitudinal force correspond
to tensile pre-loading, while positive ones refer to compres-
sion pre-loading.

If M∗r = 0, then from (26) we find

Ḡ2
1 = 1−N∗, Ḡ2

2 = −1. (27)

Now assuming that [ϕ̇] = [u̇] = [v̇] = [ψ̇] = 0, while

[ẇ] 6= 0, (28)
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then from (21) we have

Ḡ2
3 =

c4
c1
−N∗. (29)

Finally putting in (22) and (23)

[v̇] 6= 0, [ψ̇] 6= 0, (30)

and considering that [ẇ] = [ϕ̇] = [u̇] = 0, we find

Ḡ2
4 =

c3
c1
, Ḡ2

5 = −c3
c1
. (31)

Since the velocities could not take on negative magni-
tudes, then the set of Eqs. (1L) is incorrect one.

4 Existing classification of transient
waves propagating in a thin pre-
stressed plate possessing curvilin-
ear orthotropy

In order to correct the situation, it is suffice to change the
signs ahead of the values ∂2ϕ/∂τ2 and ∂2ψ/∂τ2 in Eqs.
(1L). In other words, Eqs. (5)-(9) should be utilized.

As a result instead of formulas (25) and (26) we obtain

Ḡ4 − 2
(

1 +
1
2
N∗
)
Ḡ2 + 1 +N∗ −M∗r

2 = 0, (32)

Ḡ2
1,2 = 1 +

1
2
N∗ ±

√
1
4
N∗2 +M∗r

2, (33)

where N∗ > 0 and N∗ < 0 correspond to the initial
tensile and compression longitudinal forces, respectively,
while formulas (29) and (31) will take the form

Ḡ2
3 =

c4
c1

+N∗, (34)

Ḡ2
4 = Ḡ2

5 =
c3
c1
. (35)

Note that relationship (33) coincides with formula
(20b) in [16] if in the latter put the moments of the second
order equal to zero and consider Nr to be a compressional
force.

Thus, we have obtained four waves of strong disconti-
nuity in the form of diverging circles (while there are five
in [21]).

Two of them, the first and the second, are irrotational
(longitudinal) waves, and their characteristics are defined
by relationships (33) and (24), which show that the veloc-
ities of these waves depend on N∗ and M∗r and are inde-
pendent of M∗z . As this takes place, the discontinuities in
the velocities of particles’ displacements are directed along
the radius of the circle.

Two other waves, the third and the fourth, are equivolu-
minal (shear) waves, and their characteristics are defined by

relationships (28), (34) and (30), (35), respectively. More-
over, the third wave is the wave of transverse shear, since
on its front the discontinuity in the velocity of particles’
displacement is directed along the z-axis. On the fourth
wave, the discontinuities in the velocities of particles’ dis-
placements are directed along the tangent to the circle (to
the wave front), i.e., they locate in the plane of the plate.

Alternative graphs of the transient wave velocities as
functions of the external force components N∗ and M∗r are
presented in Figs. 1 and 2, respectively. The third figure
is of no necessity, since all wave velocities are independent
of the torsional moment M∗z .

The velocity Ḡ2
3 depends only on N∗, and the N∗-

dependence of Ḡ2
3 is linear (see a dotted line in Fig. 1). The

velocity Ḡ2
4 = const, i.e. it is independent of N∗ and M∗r .

Comparing the corresponding figures with each other,
we ascertain that the character of the curves behaviour pre-
sented in Figs. 1 and 2 has nothing in common with those
shown in Figs. 1L-3L [21]. This result has been proposed
in the beginning of our study (maybe more precise to say
‘our inquiry’). It seems likely that Figs. 1L-3L are figment
of the imagination of the author of [21].

5 Loktev’s approach for the analy-
sis of impact response of a pre-
stressed orthotropic plate involv-
ing curvilinear anisotropy

Now we proceed to the final part of [21], i.e., to Sect. 3.2
in [21], wherein the solution is constructed for a plate de-
scribed by the set of five Eqs. (1L) which is impacted
by a sphere. This part is the naturality of how the au-
thor’s incompetence to obtain the lore either shelters behind
scientific-like phrases or is replaced by the figment.

Thus, Loktev [21] writes:

“To determine the contact force and the dy-
namic buckling of the plate at the point of impact
interaction, the system of Eqs. (1L) is written
in the Laplace space. For its solution, one can
present the unknown displacements and the load
q(τ, r, θ) caused by the concentrated force of the
interaction in the contact area P (t) as a series
of expansion in terms of the Legendre polyno-
mial Ref. 16 (paper [32] in our list of references),
which satisfy the boundary conditions (2L)

x̃ =
∞∑
n=0

∞∑
m=0

x2n,mP2n+1

(
cos

πr

2R

)
cos(mθ),

(4L)

q̃1 =
P (p)
πR2

c

∞∑
n=0

∞∑
m=0

(4n+ 3)P2n+1

(
cos

πr1
2R

)
×P2n+1

(
cos

πr

2R

)
cos(mθ),
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Figure 1: The characteristic curves of the N∗-dependence
of squared velocities Ḡ2

1,2. The value M∗r is chosen as a
parameter which is assumed to be smaller than unit; dashed
lines correspond to the case when M∗r = 0

Figure 2: The characteristic curves of the M∗r -dependence
of squared velocities Ḡ2

1,2. The value N∗ is chosen as a
parameter which is assumed to be smaller than 1/2; dashed
lines correspond to the case when N∗ = 0

where r1–the coordinate of the point, where the
dynamic contact takes place; the tilde above the
variable shows that this magnitude is used in the
Laplace space.”

The authors of this paper argue that the solution
constructed by Loktev in Sect. 3.2 of [21] based on Eqs.
(1L)-(4L) is no more than fiction. In troth, the following
arguments support such a conclusion:

(1) The governing set of Eqs. (1L) is incorrect, and it has
been erroneously written in the dimensionless form;

(2) Five governing equations should be subjected to five
boundary conditions (3A), where the internal forces and
moments are defined by (10)-(13), and seven initial condi-
tions, since two additional initial conditions are needed for
the initial value of the local bearing of the plate’s material
and its velocity at the point of contact interaction with an
impactor according to the assumed contact law.

It is amazing that for Loktev [21] it is sufficient only
two boundary conditions (2L) (it was shown above that the
second condition is invalid for a plate under consideration),
when he substituted expansions for five unknown functions
x̃ in Eqs. (1L), as well as only two initial conditions (10L)!

(3) Odd spherical functions P2n+1

(
cos πr

2R

)
involve the

sums cos(2n + 1) πr2R (n = 0, 1, 2, ...), but the correct
boundary conditions (3A) for the plate under consideration
contain the internal forces and moments (10)-(13) depend-
ing on the first r-derivatives of the five displacement func-
tions. That is why after differentiating one time the func-
tions P2n+1

(
cos πr

2R

)
, there would appear sin(2n + 1) πr2R ,

which do not vanish at r = R.
It should be emphasized that at first glance the reason

to search the solution for a circular plate impacted by a
ball in terms of spherical functions but not in terms of
cylindrical functions is not understandable at all. In the
case of utilizing the latter, the cram would look like more
convictive.

In this place, it is necessary to unlock Loktev’s small
secret. The matter is fact that the problem formulation
and the approach for its solution were borrowed by Loktev
from the paper by Biryukov and Kadomtsev [33], which for
some reason (?!) was not included in the list of references,
while only their earlier paper [32] was cited. As this takes
place, all deficits of the borrowed paper [33] were automat-
ically copied to the Loktev paper [21]. Thus, for example,
formula (5L) for the amplitudes (4L) of the desired values x̃

x2n,m = x0
2n,mε

0 +x1
2n,mε

1 +x2
2n,mε

2 +x3
2n,mε

3, (5L)

where ε = p−2, is written incorrectly (see similar formulas
in [33]), because in this case the limiting theorem of the
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Laplace transform

lim
p→∞

px̃ = x(0) = 0

does not fulfill.
The correct representation should be the following:

x2n,m=
(
x0

2n,mε
0+ x1

2n,mε
1+ x2

2n,mε
2+ x3

2n,mε
3
)
P̃ (p),

where P̃ (p) is the contact force in the Laplace domain.
Moreover, Loktev [21] falls over the scenario of [33]

in such a way that he has forgotten about the differences
in the objects under investigation: the target in [21] is a
circular orthotropic plate possessing curvilinear anisotropy,
the motion of which is described by five equations taking
the rotary inertia and transverse shear deformations into
account; while the target in [33] is a circular sector of a
contour-hinged elastic isotropic spherical shell, the motion
of which is described by three momentless equations of
motion for spherical shells disregarding the rotary inertia
and transverse shear deformations. That is why, Biryukov
and Kadomtsev [33] used in their problem the spherical
functions (4L) subjected to classical boundary conditions
and classical Hertz’s contact law, but Loktev [21] for his
problem had to utilize cylindrical functions subjected to
nonclassical boundary conditions (3A). But it was not
the case. The spherical functions and classical boundary
conditions were transferred from [33] into Loktev’s paper
[21], as well as the entire description of their algorithm for
the solution construction.

(4) As it has been already mentioned above, the con-
tact force should be applied at the pole of curvilinear
anisotropy, i.e., in the center of the plate, otherwise it will
be needed to introduce a new polar set of coordinates with
the pole at the point of impact, what will result in the
transformation of the elastic constants into the functions
of both new coordinates and the coordinates of the force
application point and in the increase of their number till
21. That is why, Loktev’s statement about the solution of
this problem for the case of the contact force application at
any point of the plate is invalid.

(5) The impact on plates involves an interaction between
plate deflection and indentation, therefore the choice of the
contact law is highly important. As the relationship be-
tween the contact force and the indentation, Loktev [21]
used

“the Hertz’s classical model, which describes
the process of the interaction of two bodies at low
initial velocities of the impact,

α(t) = bP (t)2/3, (9L)

where b = ((9π2(k1 +k)2)/16R)1/3, k1 = (1−
σ2

1)/E1, k = (1 − σrσθ)/E, σ1 and E1– the

Poisson’s ratio and the module of rigidity of the
indenter, respectively.”

However, in the strict sense, classical formula (9L), which
is called by Loktev four lines below as “the local plas-
tic compression” (?!), with the contact rigidity coefficient
b (this coefficient in Loktev’s interpretation involves the
plate radius R as the generalized curvature of the interact-
ing bodies instead of 1/R1, and an undefined elastic con-
stantE of the plate’s material and its two in-plane Poisson’s
ratios) is inadmissible in this case.

To these authors’ knowledge, the analytical function of
the contact load in terms of the local bearing of the plate’s
material at the point of contact interaction has not yet been
derived for orthotropic plates in the explicit form, since
experimental observations and numerical calculations re-
vealed that the impact force could not be assumed to be
concentrated at a point, and the contact domain in the case
of an orthotropic plate has an elliptic shape. Sveklo [34]
suggested the contact theory for two anisotropic bodies un-
der compression according to which the contact pressure
is distributed over an elliptical contact region. The result
of Sveklo’s theory is the contact law for anisotropic bodies
which is formally similar to Hertz’s law, i.e.,

P (t) = KHα
3/2, (36)

where α is the relative approach between the contacting
bodies, and KH is a parameter to be evaluated through a
very complicated procedure [12].

A procedure for determining some of the features of
the contact problem for generally anisotropic materials has
also been given by Willis [35], that involves numerical con-
tour integration. Recent works by Swanson [36, 37] have
shown how stresses and deformations can be determined
throughout the contact region for contact of a half-space
and for plates of finite thickness using the approach pro-
posed in [35].

However, for engineering applications many approx-
imate approaches have been suggested for evaluation of
the contact stiffness coefficient KH . First, the tentative
approximations suitable for orthotropic plates, for exam-
ple, were suggested in [38, 39], where coefficient KH de-
pends on the through-the-thickness modulus Ez and the
through-thickness Poissons ratios defined by σrz = εz/εr
and σzr = εr/εz under uniaxial loading in the r- and z-
direction, respectively. It has been noted in [39] that the
tentative approximation (which, generally speaking, could
be used in (9L))

KH = (1− σrzσzr)/Ez (37)

underestimates the contact modulus of typical composite
plates by 10–20%.

It is known fact that the features of many orthotropic
materials are close to those of transversely isotropic mate-
rials. Thus, the problem of impact on transversely isotropic
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plates often is a suitable homogenized approximation of
laminates having many orthotropic plies equally and reg-
ularly distributed in at least three directions. Another case,
when the approximation by a transversely isotropic plate is
appropriate, is that when the shape of the contact region is
weakly elliptical [40].

For transversely isotropic plates, the contact region is
circular, and thus Hertzian contact law can be used if the
isotropic modulus is replaced by a combination of five in-
dependent, non-zero components of the stiffness or compli-
ance tensor. It was shown by Turner [41] that the effective
modulus for transversely isotropic quasi-static normal con-
tact can be expressed by

E∗TI =
(

2
α1α3

)
, (38)

where

α1 =
(
Er/Ez − σ2

rz

1− σ2
r

)2

,

α2 =
1 +

(
Er

2Grz
− 1
)
− σrz(1 + σr)

1− σ2
r

,

α3 =
(
α1 + α2

2

)1/2(1− σr
Gr

)
,

what allows to construct the solution for transversely
isotropic plates in the closed form.

Some researchers [42, 43, 15] utilized a linear contact
law, i.e., considered the linearized Hertzian contact de-
formations, in order to investigate the influence of plate’s
orthotropic properties on the dynamic characteristics of
the impact process, in so doing using different equations
describing the motion of orthotropic plates [1].

(6) At the end of Sect. 3.2 in [21] one could read the fol-
lowing:

“After the substitution of the expression for
the target’s buckling (7L) at the given point, i.e.,
at the fixed values of the coordinates r, θ and the
local plastic compression (9L), into Eq. (8L) and
taking into account the conditions (10L), a non-
linear integro-differential equation with regard to
the contact force is obtained, which can be solved
by using the iterative scheme [Refs 16 and 17]
(papers [32] and [44] in our list of references).”

But neither the governing equation nor the iterative scheme
are presented in [21]. Why did not Loktev do this? The
answer is very simple: because such an equation could not
be derived in principle.

We consider that the above arguments are enough to
discredit the solution presented in Sect. 3.2 [21].

Finally, Sect. 4 of [21] terminates the long chain of
mystifications, wherein one could read a ‘serious discus-
sion’ on how the curves in Figs. (1L)-(6L) were constructed
(even without indicating the coordinates of the point of im-
pact interaction!). Thus, the fictional solution is finalized
by the fictitious figures. Finita la Commedia!

But this is not the end of this story. Mr Loktev ine-
briated by his success in publishing [21] has submitted
and published the same paper in Russian [45] ignoring the
Springer’s Copyright on [21]. Of course, two published pa-
pers are much better than one!

6 Alternative approaches for the
analysis of impact response of a
pre-stressed orthotropic plate in-
volving curvilinear anisotropy

Since the method described by Loktev [21] for solving
the problem of the impact response of a pre-stressed or-
thotropic plate involving curvilinear anisotropy will take
us nowhere, below we propose a simple and fine method
allowing us to resolve this problem.

Thus, let us analyze the dynamic behaviour of a cir-
cular pre-stressed orthotropic plate possessing curvilinear
anisotropy. At the moment t = 0 the plate is impacted at
its center, i.e., at the pole of curvilinear anisotropy, by a
spherical mass moving with the velocity V0. The radius of
the plate is presumed to be sufficiently large, in order that
the waves reflected from its edges arrive at the contact re-
gion after the rebounce of the impactor from the target. In
this case, the boundary conditions (3A) could be neglected,
since the plate is assumed to be of infinite extent.

As an axially symmetric problem is considered, the
functions w, u, and ϕr = ϕ are independent of θ, while
v = ϕθ = 0, and the set of five Eqs. (5)-(8) is reduced
to the following set of three equations with due account for
the pre-stress loads N and Mr:(

1 +
N

Cr

)(
∂2u

∂r2
+

1
r

∂u

∂r

)
+
Mr

Cr

(
∂2ϕr
∂r2

+
1
r

∂ϕr
∂r

)
− σθ
σr

u

r2
=

ρ

Cr
ü, (39)

(
1 +

N

hKGrz

)(
∂2w

∂r2
+

1
r

∂w

∂r

)
− ∂ϕr

∂r
− ϕr

r
=

ρ

KGrz
ẅ, (40)

Mr

Dr

(
∂2u

∂r2
+

1
r

∂u

∂r

)
+
∂2ϕr
∂r2

+
1
r

∂ϕr
∂r
− σθ
σr

ϕr
r2

+
hKGrz
Dr

(
∂w

∂r
− ϕr

)
=

ρh3

12Dr
ϕ̈r. (41)

As it has been discussed above, in the general case of
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contact loading of orthotropic materials the contact zone
has an elliptical shape, that is why the fronts of the tran-
sient waves, which are generated in the target at the mo-
ment of impact, have also elliptical form, resulting in the
distortion of rays (normal trajectories to the wave fronts).
This, in its turn, results in the fact that the velocities of
the transient waves begin to be dependent on the direction
of propagation (see, for example, the behaviour of flexural
wave during the impact on an orthotropic glass/epoxy com-
posite laminate photographed with pulsed laser holography
presented in [46]), what significantly complicates the solu-
tion of problems of such a kind and finally does not allow
one to obtain the solution in the analytical form.

Thus, the above Eqs. (39)-(41) involving two different
in-plane Poisson’s rations σr and σθ subjected to the im-
pact loading will initiate the propagation of transient waves
with elliptical-shaped fronts. The analytical solution of this
problem via the ray method is impossible due to the distor-
tion of the rays.

But in the case when σr ≈ σθ the contact region will be
weakly elliptical, and we could use a transversely isotropic
plate as a good approximation. The equations of motion
of the pre-stressed transversely isotropic circular plate with
due account for rotary inertia and transverse shear defor-
mations have the form [47](

1 +
N

D

)(
∂2u

∂r2
+

1
r

∂u

∂r

)
− u

r2

+
Mr

D

(
∂2ϕr
∂r2

+
1
r

∂ϕr
∂r

)
=

ρ

E′
ü, (42)

(
1 +

N

hKGrz

)(
∂2w

∂r2
+

1
r

∂w

∂r

)
− ∂ϕr

∂r
− ϕr

r
=

ρ

KGrz
ẅ, (43)

Mr

D∗

(
∂2u

∂r2
+

1
r

∂u

∂r

)
+
∂2ϕr
∂r2

+
1
r

∂ϕr
∂r

−ϕr
r2

+
hKGrz
D∗

(
∂w

∂r
− ϕr

)
=

ρh3

12E′
ϕ̈r, (44)

where E′ = E/(1 − σ2), σ = σr = σθ, D = E′h, and
D∗ = E′h3/12.

From the comparison of (39)-(41) and (42)-(44) it is
evident that the equations of motion of the pre-stressed or-
thotropic plate (39)-(41) are reduced to those for the pre-
stressed transversely isotropic plate (42)-(44) as σr → σθ.
Equations (42)-(44) were used in [16] to study the dynamic
response of a pre-stressed transversely isotropic plate im-
pacted by an elastic flat-end rod.

Based on the reasoning presented in Sec.4 it is evi-
dent that Eqs. (42)-(44) admit the propagation of three
waves of strong discontinuity in the form of diverging cir-
cles. Two of them, the first and the second, are irrotational

(longitudinal) waves, the velocities G2
1,2 of which depend

on the values of N∗ and M∗r (33). The third wave is the
equivoluminal wave of transverse shear propagating with
the velocity G2

3 = c23 + N∗, where c23 = KGrz%
−1, and

N∗ = N(%h)−1.
The main force acting along the perimeter of the circu-

lar contact spot is the transverse force Qr, which is defined
by formula (3) with due account for the condition of com-
patibility of the first order (15) and has the form

Qr = −ρhc23G−1
3 W, (45)

where W = ẇ.
The equation of motion of the contact spot with the

radius a and the equation of motion of the impactor with
the radius Rim are written, respectively, as

ρhπa2Ẇ = 2πaQr + P (t), (46)

m(α̈+ Ẇ ) = −P (t). (47)

where m is the mass of the impacting body, P (t) is the
force of the contact interaction between the impactor and
the target, and the radius a of the contact region is

a(t)2 = Rimα(t). (48)

The contact force P (t) is defined by Eq. (36) with the
contact stiffness KH evaluated as

KH =
4
3

√
RimE

∗, (49)

whereE∗ is the effective modulus for normal contact of the
elastic impactor and transversely isotropic plate

1
E∗

=
1− σ2

im

Eim
+

1
ETI

, (50)

Eim and σim are impactor’s elastic modulus and Poisson’s
ratio, respectively, and ETI could be calculated applying
Turner’s [41] formula (38).

Eliminating the value W from Eqs. (46) and (47) and
considering formula (45), we are led to the functional equa-
tion in the value α characterizing the relative approach be-
tween the contacting bodies

α1/2

(
α̈+

KH

m
α3/2

)
+

KH

ρhπRim
α

+dG−1
3

(
α̇+

KH

m

∫ t

0

α3/2(t1)dt1

)
= dG−1

3 V0, (51)

where d = 2R−1/2c23.
The initial conditions

α̇
∣∣∣
t=0

= V0, W
∣∣∣
t=0

= 0 (52)

have been considered during the deduction of (51).
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We shall seek the solution of Eq. (51) in the form of
the series

α(t) = V0t+ α1t
5/2 + b1t

3 + α2t
7/2 + b2t

4 + ... (53)

Substituting (53) in Eq. (51) and equating the coeffi-
cients at equal powers of t, we obtain

α1 = − 4
15

KHV
1/2
0

ρhπRim
< 0,

b1 =
1
9

KHd

ρhπRimG3
> 0, (54)

α2 = − 4
35

KH

V
1/2
0

(
V 2

0

m
+

1
3

d2

ρhπRimG2
3

)
< 0,

b2 =
1
90

KH

ρhπRim

(
KH

ρhπRim
+

d3

V0G3
3

)
> 0

Reference to (54) shows that the series (53) is the al-
ternating series, i.e. it describes oscillating motions.

With the increase in the tensile force, in the limiting
case when N → +∞ and G3 →∞, the particular solution
for α takes the form

α(t) = V0t−
4
15

KHV
1/2
0

ρhπRim
t5/2 − 4

35
KHV

3/2
0

m
t7/2

+
1
90

(
KH

ρhπRim

)2

t4. (55)

Substituting the foundα in Eq. (36), we could calculate
the contact force P (t).

Note that the solution for the case of an isotropic plate
could be obtained via the substitution of

7 Numerical example
As an example, let us consider the impact of a steel sphere
of radius Rim = 25.4 mm with the velocity V0 = 10 m/s
upon a carbon/epoxy plate of thickness h = 8 mm, the elas-
tic constants of which are taken from [37]: Er = 51.3 GPa,
Ez = 12 GPa, E∗TI = 14.61 GPa, Grz = 6 GPa,
σr = 0.292, and σrz = 0.28.

The dimensionless time t̃-dependence of the dimen-
sionless contact force P̃ calculated according to Eqs. (36)
and (53)-(55) is presented in Fig. 3 for different levels
of the press-stress force N∗ including the limiting case
N → +∞, where the dimensionless values are the fol-
lowing:

P̃ = K̃H α̃
3/2, K̃H =

KH

Eimh1/2
, t̃ =

V0

h
t, α̃ =

α

h
.

Reference to Fig. 3 shows that the curve corresponding
to the plate free from initial stresses, i.e., when N∗ = 0,
is the separatrix dividing the curves constructed for tensile
N∗ > 0 and compression N∗ < 0 preloading. It is evident

Figure 3: The dimensionless time-dependence of the di-
mensionless contact force

that the increase in N∗ results in the increase of the contact
duration and the maximum of the contact force.

It is well known that “the difficulty of compressive
preloading is the risk of initial plate buckling as a stabil-
ity failure of the relatively thin specimens under in-plane
compression” [14]. Since the aim of our study is to analyze
the impact response of pre-stressed plates, which show no
inital deflections, then in order to avoid initial buckling we
should limit the amount of pre-stress to a moderate level,
what affects the evaluation of the preload effect. That is
why the second limiting case, whenN∗ → c23 andG3 → 0,
is considered to be unachieved in engineering practice.

8 Particular cases

As we have already mentioned above, the review of pa-
pers analyzing the impact response of elastic isotropic and
anisotropic plates, as well as viscoelastic plates could be
found in [1, 2]. However recently our attention was at-
tracted by another paper by Loktev [48] published online
by Elsevier on October 2, 2011 to appear soon in the Inter-
national Journal of Engineering Science.

This paper [48] could be divided into two parts. Its first
part involves the formulation of the problem of impact re-
sponse of an elastic plate, the equations of motion of which
take the rotary inertia and transverse shear deformation into
account, as well as the method of its solution. The Maxwell
viscoelastic model has been utilized for describing the pro-
cess of the contact interaction of an impactor with the plate.
Elastoplastic models are discussed in the second part.
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8.1 A viscoelastic model of the shock interac-
tion of a rigid body with a plate

We contend that the first part of Loktev’s paper [48] is the
pure plagiarism, since this problem in more general formu-
lation was solved in the paper by Rossikhin and Shitikova
[18], which was submitted to the Journal of Engineering
Mathematics on September 27, 2005, published online on
April 27, 2007, and its hard version appeared at the begin-
ning of 2008.

First of all it should be emphasized that the formula-
tion of the problem of the contact interaction of the im-
pactor with an elastic plate of the Mindlin-Uflyand type,
hyperbolic equations of motion of which could be written
either in Cartesian or in polar coordinates, was proposed
by Rossikhin and Shitikova [49] in 1994 in order to study
wave phenomena under transverse impact. The wave ap-
proach for solving the problem has been suggested using
the ray series expansions, either one-term or multiple-term,
proposed by Achenbach and Reddy [24] in 1967 (one again
the author of [48] has credited himself the authorship of the
ray series, as he had done it before in [21]). The ray method
has been extended by Rossikhin since 1968 and further by
Rossikhin and Shitikova with respect to dynamic contact
and impact problems, resulting in the state-of-the-art arti-
cle [28] and the D.Sci. thesis by Professor Shitikova [50].

Thus, the problem formulation and one-term ray ex-
pansions, i.e., Eqs. (1)-(9) in [48] as well as his Figure
1c, were actually published in 1994 (at that time Mr Lok-
tev was an ordinary schoolboy) by Rossikhin and Shi-
tikova [49] (see Eqs. (2.1)-(2.9) and (6.1)-(6.6) together
with Fig. 2), wherein the contact force was determined ac-
cording to the Hertzian law.

As for the viscoelastic model of the shock interaction
of a rigid body with a plate, then for this purpose the gener-
alized fractional-derivative Maxwell model has been sug-
gested in [18], in so doing the ray method is used outside
the contact domain, while the Laplace-transform technique
is utilized within the contact region. The particular case,
when the fractional parameter (the order of the fractional
derivative) is equal to the unit, has been considered also,
and the solution for the traditional Maxwell model, which
is ‘studied’ in [48], has been obtained and analysed.

Moreover, in Sect. 3.5 “Modeling the Contact Interac-
tion of Thin Bodies via a Linear Elastic Spring in Series
with a Damper” of the state-of-the-art article [1], which
was published in July of 2007, i.e., earlier than the paper
[18], the formulation of this problem and its analytical solu-
tion by the Laplace-transform method could be found both
for the conventional and fractional-derivative Maxwell
models (see Eqs. (156)-(166) together with Figs. 28-31).

Therefore, the problem formulation, the method of so-
lution and governing equations were suggested, analyzed in
detail and analytically solved by Rossikhin and Shitikova
[1, 18]. The author of [48] has copied completely all these

main aspects including notations (e.g. compare the coef-
ficients of the characteristic Eq. (18) from [18] with that
in [48] Eq. (15)), and a scheme of the shock interaction
(comparison of Figs. 1a,b in [18] and Fig. 1a,b in [48]
shows that Mr. Loktev has copied these figures as well with
the only difference that the spring-dashpot element is con-
nected with a falling mass, but this fact does not influence
the governing equations at all).

Thus, all ideas and derivation of Eqs. (1)-(15) and
Fig. 1 from [48] were previously published in [1, 18]. How-
ever, the final solution for the contact force in the time do-
main obtained by Rossikhin and Shitikova [1, 18] is dis-
tinguished drastically from that in [48]. This could be ex-
plained by the fact the author of [48] is not able to follow
out the mathematical treatment thoroughly. Really, the ex-
pressions for the displacements of the upper α and lower w
ends of the spring-dashpot element in the Laplace domain
have been written by Loktev [48] in the form of Eqs. (13)
and (14), respectively, as

ᾱ =
V0[(ζ + p)(p+B) +A]

pf(p)
, (L1)

w̄ = ᾱ
p(ζ + p) + C0

−p(ζ + p) + C0
− V0(ζ + p)

[−p(ζ + p) + C0]p
, (L2)

where f(p) = p3 + (ζ + B)p2 + (C + Bζ)p + BC0, p
is the transform parameter, an overbar denotes the Laplace
transform of the given function, ζ = τ−1

ε , τε is the relax-
ation time,A = E1M

−1,B = 2r−1
0 G2, C = E1(2M−1 +

m−1), C0 = E1m
−1, M = ρπr20h and m are the masses

of the contact domain and the impactor, respectively, E1 is
the elastic coefficient of the spring, V0 is the velocity of the
impactor at the moment of impact, G2 =

√
Kµ/ρ is the

velocity of the transient quasi-transverse wave propagating
in the target during the process of the contact interaction, ρ
and h are the density and the thickness of the plate, respec-
tively, µ is the shear modulus, K = π2/12 is the shear co-
efficient, and r0 is the radius of the contact region. Loktev’s
expressions cited from [48] are labeled as L-equations.

If we continue the treatment of the above formula for w̄
(L2), then we arrive at the compact formula (see Eq. (14b)
in [18] at γ = 1, where γ is the fractional parameter)

w̄ = V0
A

pf(p)
, (1R− S)

where from hereafter Rossikhin-Shitikova equations are la-
beled as R-S.

In order to write the relationship for the contact force
F (p), first it is necessary to find the difference ᾱ− w̄

ᾱ− w̄ = V0
(ζ + p)(p+B)

pf(p)
, (2R− S)

then its substitution into the formula for the contact force
in the Laplace domain results in Eq. (17) by Rossikhin and
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Shitikova [18]

F̄ (p) = E1(ᾱ− w̄)
p

p+ ζ
= E1V0

p+B

f(p)
. (3R− S)

Inverting from the Laplace domain to the time domain,
we could obtain the final solution for the contact force
within the region of vibrations (Eq. (33a) in [18])

F (t) = ge−βt +Qω−1e−ξt sin(ωt− ϕ), (4R− S)

where p3 = −β is the real negative root of equation f(p) =
0, and p1,2 = −ξ± iω are its two complex conjugate roots,
and in the region of aperiodicity (Eq. (33b) in [18])

F (t)=E1V0

(
a1e−α1t+ b1e−β1t + d1e−γ1t

)
, (5R− S)

where p1 = −α1, p2 = −β1, and p3 = −γ1 are three real
negative roots of equation f(p) = 0, and the coefficients
involving in these two formulas are the following:

g = E1V0
B − β

β2 − 2βξ + ξ2 + ω2
,

d1 =
B − γ1

(α1 − γ1)(β1 − γ1)
,

Q = E1V0

√
a2ω2 + (ξa− b)2, tanϕ =

aω

ξa− b
,

a = −g, b = 1− aβ − 2ξg, (6R− S)

a1 =
B − α1

(β1 − α1)(γ1 − α1)
, b1 =

B − β1

(α1 − β1)(γ1 − β1)
.

For the comparison purpose, we shall now reproduce
formulas for the contact force presented by Loktev [48]:
his Eq. (25) for the vibratory regime

F (t) = E1

{
e−at/2

{
ξ−1/2 sin

(
1
2
ξ1/2t

)
[2(B3 −B5)

+a(A5−A3)]−(A5−A3) cos
(

1
2
ξ1/2t

)}
+(C3−C5)ea3t

+(D3 −D5 −G5)− (E5 +H5)ea9t − (F5 +K5)ea10t
}

−E1

τ1

∫ t

0

{
e−at/2

{
ξ−1/2 sin

(
1
2
ξ1/2t

)
[2(B3 −B5)

+a(A5 −A3)]− (A5 −A3) sin
(

1
2
ξ1/2t

)}
+(C3 − C5)ea3t + (D3 −D5 −G5)− (E5 +H5)ea9t

−(F5 +K5)ea10t
}

e−(t−t′)/τdt′, (L3)

and his Eq. (24) for the aperiodic regime

F (t) = E1

[
(A2 −A4)ea1t + (B2 −B4)ea2t

+(C2 − C4)ea3t + (D2 −D4 −G4)

−(E4 +H4)ea7t − (F4 +K4)ea8t
]

−E1

τ1

∫ t

0

{
(A2 −A4)ea1t + (B2 −B4)ea2t

+(C2 − C4)ea3t + (D2 −D4 −G4)

−(E4 +H4)ea7t − (F4 +K4)ea8t
}

e−(t−t′)/τdt′, (L4)

where all cumbersome coefficients could be found in [48].
For the first glance, these two cumbersome relation-

ships (L3) and (L4), which are inconvenient for engineer-
ing applications, differ significantly from two compact ex-
pressions (4R-S) and (5R-S) obtained in [1, 18]. But it is
not the case. If one integrates the second parts in (L3) and
(L4), what could be easily carried out, and further gathers
the similar terms, then Rossikhin-Shitikova formulas (4R-
S) and (5R-S) could be obtained, the physical meaning of
which is understandable for any engineer. This brings up
two questions: (1) Why Loktev did not do this integration
(since all terms are table integrals) and leave off at Eqs.
(L3) and (L4)? and (2) How could he manage to calculate
the contact force directly using (L3) and (L4) (no mention
has been made of the procedure used for this purpose)?

It seems likely that the author of [48] wrote his cum-
bersome expressions (L3) and (L4) in order to cover the
tracks indicating the presence of plagiarism and carried out
all calculations presented graphically in his Fig. 3 on the
basis of Rossikhin-Shitikova formulas (4R-S) and (5R-S).

8.2 Impact response of isotropic plates of the
Uflyand-Mindlin type

As for the second part, then its content is constructed on the
hanky-panky tricks. In order to show this, let us analyze the
deduction of its governing equation, i.e., Eq. (26) in [48],

α

(
−F (t)

m
− α̈

)
= − 2G2

R
1/2
im

α1/2

[
− 1
m

∫ t

0

F (t)dt− α̇
]

+
F (t)

ρπRimh
. (L5)

To derive the functional equation, one should start
from the equations of motion of the impactor (Eq. (1) in
[18])

m(α̈+ ẅ) = −F (t), (7R− S)

and of the contact region (Eq. (2) in [18])

ρπr21hẅ = 2πr1Qr(t)|r=r1 + F (t), (8R− S)

subjected to the initial conditions

α|t=0 = w|t=0 = ẇ|t=0 = 0, α̇|t=0 = V0, (9R− S)

where r1(t) is the radius of the contact region, and the
transverse force acting at the boundary of the contact do-
main is defined by the dynamic condition of compatibil-
ity [49]

Qr = −ρG2hẇ. (10R− S)
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It should be emphasized here that Eq. (2) in [18] has
a typing error, since a minus sign was misprinted after the
sign of equality ahead of the term involving the transverse
forceQr, while all further mathematical treatment was car-
ried out correctly with a positive sign before this term, and
in our Fig. 1 the direction of the transverse forces coincides
with that of the contact force. Even this our misprint was
carefully copied by Loktev [48] in his Eq. (2)!

Integrating Eq. (8R-S) twice with due account for the
initial conditions (9R-S) yields

w = V0t− α−
1
m

∫ t

0

dt1

∫ t1

0

F (t1)dt2, (11R− S)

Substituting Qr (10R-S) and the above found expres-
sion (11R-S) for w in Eq. (7R-S), we could obtain

r21

(
−F (t)

m
− α̈

)
= −2G2r1

[
V0 −

1
m

∫ t

0

F (t)dt− α̇
]

+
F (t)
ρπh

. (12R− S)

If we utilize the formula for the radius of the contact
domain r1, which was used in [48], i.e.,

r21 = Rimα, (13R− S)

then the contact force F (t) should be substituted by

F (t) = kα3/2, (14R− S)

because these two relationships are interconnected since
they are obtained from the Hertz problem about elastic
compression of two bodies [51]. Thus, Eq. (12R-S) takes
the form

α

(
kα3/2

m
+ α̈

)
+

2G2

R
1/2
im

α1/2

[
k

m

∫ t

0

α3/2dt+ α̇− V0

]

+
kα3/2

ρπhRim
= 0, (15R− S)

where k is the contact stiffness coefficient depending on the
properties of the interacting bodies, which is evaluated as

k =
4
3

√
RE∗, (16R− S)

and E∗ is the effective modulus for normal contact of the
elastic impactor and elastic isotropic plate

1
E∗

=
1− σ2

im

Eim
+

1− σ2

E
, (17R− S)

andE and σ are plate’s elastic modulus and Poisson’s ratio,
respectively.

The solution of Eq. (15R-S) for the isotropic plate
could be easily obtained from that for the transversely
isotropic plate, i.e., in the form of the series (53) with
the coefficients (54), wherein RH and d/G3 should

be replaced, respectively, by k defined in (16R-S) and
2G2R

−1/2
im .

And now attention, please! What has Mr. Loktev per-
formed? Yenning to generalize this approach with the pur-
pose of considering elastoplastic deformations within the
contact area and trying to suppress the fact that Eq. (15R-
S) has been derived only for the case of elastic interactions,
the author of [48] has performed a neat conjuring trick sub-
stituting kα3/2 by F (t). As this takes place, the initial con-
ditions (9R-S) have been forgotten. As a result of such ma-
nipulations, the functional equation takes a rather strange
form of Eq. (5L), which withal lacks the initial velocity V0

(compare it with the functional Eq. (15R-S)).
Therefore, Eq. (5L), which is utilized in [48], is valid

only for the elastic contact interaction (of course if the
boundary conditions (9R-S) are taken correctly into ac-
count), and it is unsuitable for considering plastic defor-
mations, as this has been done in [48] via the substitution
of α by the elastoplastic models, which Loktev [48] had
borrowed once again from Biryukov and Kadomtsev [32].

All absurdities discussed above are enhanced by an il-
literate paper review presented in Introduction of [48]. It
seems likely that the author of [48] did not even see the
majority of the cited papers. Thus, he wrote in the second
sentence of Introduction that an elastoplastic model of con-
tact interaction was considered in [26], but neither contact
nor impact problems were discussed by Uflyand [26].

Further in the fourth sentence, to our great surprise we
find the statement that the impact response of “the classical
Kirchhoff plate was investigated by Filippov [52], Loktev
[25], Mittal [53], Rossikhin and Shitikova [49]”, while “dy-
namic characteristics of the nonclassical Uflyand-Mindlin
plate were determined in [44]”. As for these authors, we
are dealing only with the wave equations of thin bodies,
since we develop the wave approach for solving impact
problems proposed in our papers many years ago (see our
review article [1], and the Kirchhoff plate equations do not
belong to this class. Filippov [52] considered the trans-
verse elastic impact upon a circular elastic isotropic plate
with due account for the rotary inertia and transverse shear
deformations, i.e., he studied the nonclassical plate. Mit-
tal [53] investigated the impact response of a transversely
isotropic plate considering the transverse shear deforma-
tions but ignoring the rotary inertia, i.e., he also studied
the nonclassical plate. As for Zheng and Binienda [44],
then their analysis was based on Kirchhoff’s plate theory
for specially orthotropic composite plates, and the authors
clear formulated this during the derivation of the governing
equations.

Thus, the majority of references are incorrect, and its
full enumeration will be boring for a reader.

But the main mystification concerns Loktev’s paper
[25], wherein he considered the elastic impact of a falling
mass against an elastic specially orthotropic plate, equa-
tions of motion of which take the rotary inertia and trans-
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verse shear deformations into account, i.e., a nonclassical
plate model was utilized. Moreover, he cited his paper [25]
several times attributing it non-existing facts. In Introduc-
tion of [48], he mentioned that

“as the experimental and theoretical results
show (Loktev, 2005) (paper [25] in our list of ref-
erences) if the initial velocity of impact exceeds
a certain value, the elastoplastic and viscoelastic
properties of the interacting bodies substantially
influence the dynamic characteristics”,

but neither experimental research or discussion about the
influence of the impact velocity on the choice of the elasto-
plastic or viscoelastic models of contact interaction could
be found in [25]. Last but not least, in the caption to Fig. 4,
wherein time dependences of the contact force are pre-
sented for the viscoelastic isotropic model of contact inter-
action, one could read that “curve 5 is obtained from Lok-
tev (2005) (paper [25] in our list of references) taking into
account five terms of the ray series for τ = 0.001, where τ
is the relaxation time”. Isn’t it surprising that in 2011 the
author of [48] ‘has forgotten’ what he did in 2005?!

It should be added that the paper under consideration
[48] abounds both the principal errors [see e.g. Eqs. (10),
(26)] and misprints [e.g. in Eqs. (2), (3), (28), in the co-
efficients after Eq. (29)] in equations throughout the paper.
We wonder, for example, how Fig. 5 could be constructed,
since wire-drawn governing Eq. (5L) lacks the initial ve-
locity V0! It seems likely that Fig. 5 is simply the figment
of Loktev’s imagination [48].

In the conclusion it should be emphasized once again
that (1) the first part of Loktev’s paper [48] is the cribbage
of the papers by Rossikhin and Shitikova [1, 18], and (2)
its second part is the trash based on the incorrect governing
equation.

One more intriguing fact, which characterizes the au-
thor of [48] in a full measure: the second part of Loktev’s
paper was published by him in 2007 [54] in Russian journal
Pis’ma v Zhurnal Technicheskoi Fiziki which is translated
into English as Technical Physics Letters, in so doing all
absurdities and errors made in Loktev [54] were irreflec-
tively copied in Loktev [48]. For an obvious reason Mr.
Loktev did not include his previous publication [54] in the
list of references in Loktev [48].

The surprising thing is that such a paper could receive
positive response from a reviewer, or reviewers. It has been
formed an impression that persons reviewed Loktev’s paper
are not the experts in the field of the impact theory and
they are not acquainted with the current literature in this
field. But nowadays an editor of any research journal could
find qualified experts in each, even narrow, field without
difficulties due to the presence of modern data bases such
as SCOPUS and others.

Papers of such a kind as Loktev’s [48] and [54] are
harmful for the mechanical research community and first

of all for young and untutored researchers.

9 Conclusion

The problem on normal low-velocity impact of an elastic
falling body upon a circular pre-stressed orthotropic plate
possessing curvilinear anisotropy has been studied using
the wave theory of impact with due account for the changes
in the geometrical dimensions of the contact domain. At
the moment of impact, shock waves (surfaces of strong dis-
continuity) are generated in the target, which then propa-
gate along its median surface as ’diverging circles’ during
the process of impact. The classification of transient waves
propagating in a thin pre-stressed plate possessing curvilin-
ear orthotropy has been presented.

Behind the wave fronts upto the boundary of the con-
tact domain, the analytical solution has been constructed
with the help of the theory of discontinuities and one-
term ray expansions. Nonlinear Hertz’s theory has been
employed within the contact region. For the analysis of
the processes of shock interaction of the elastic sphere
with the pre-stressed orthotropic plate, nonlinear integro-
differential equation has been obtained with respect to the
value characterizing the local indentation of the impactor
into the target, which has been solved analytically in terms
of time series with integer and fractional powers. The par-
ticular case of a pre-stressed transversely isotropic plate has
been analyzed in detail.

As the analysis carried out in the present paper shows,
the velocity of the transient wave of transverse shear begins
to decrease with the increase in the compression force, re-
sulting in reducing magnitudes of the stress discontinuities
on this wave and ‘locking’ of its energy within the contact
region. If reaching the critical magnitude of the compres-
sion force, the transverse shear wave could be ‘locked’ at
all in the contact domain.

The occurrence of such an effect may be attributable to
the fact that under intense compression of the plate mate-
rial in the critical state, atoms are brought closer together,
and atomic lattice is compressed. There is no way of shear-
ing the atoms in such a lattice, therefore the transient shear
wave attenuates quickly losing all its energy at the moment
of its generation. Similar effect is observed in a highly
compressed gas during the propagation of short compres-
sion waves through the gas, which is known as Landau at-
tenuation. Thus, since all shear energy of the impactor is
concentrated in the contact domain, then this may result
in plate damage within this region, and hence in the in-
crease of the peak deflection at this place [15]. But luckily
to engineers, this limiting case is hardly to be achieved in
engineering practice, because it is well known that ’the dif-
ficulty of compressive preloading is the risk of initial plate
buckling as a stability failure of the relatively thin spec-
imens under in-plane compression’ [14]. Since the aim
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of our study was to analyze the impact response of pre-
stressed plates, which show no initial deflections, then in
order to avoid initial buckling we have limited the amount
of pre-stress to a moderate level, what affects the evaluation
of the preload effect.

As for the impact response of the pretensioned plate,
then an opposite situation takes place, namely: a higher ini-
tial tensile force elevates the velocity of the transient wave
of transverse shear, resulting in an increase in magnitudes
of the stress discontinuities on this wave. Therefore, the
bulk energy of shock interaction is imparted to the tran-
sient wave of transverse shear, and the lesser part of energy
is passed on the contact zone. Because of this, damage
within the contact region and the magnitude of the maxi-
mal deflection in the case of the pretensioned plate are less
than those of the precompressed plate. This conclusion is
supported by experiments [5].
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