
 

 

  
Abstract—Perceiving sound in the ear(s) or head without 

any external source is referred to as tinnitus. Over the years 
we have learned that tinnitus is a central nervous system 
activity that may or may not be associated with hearing loss. 
Many approaches have been proposed for tinnitus treatment 
and management. Sound therapy is considered as one of the 
most effective and noninvasive methods for tinnitus 
management. Computational models have been proposed to 
investigate mechanisms of tinnitus generation and 
assessment of the effectiveness of sound therapy. These 
computational models employ a dynamic neuronal oscillator 
network with plasticity. The current paper proposes a new 
neuronal network model with a novel neuronal connection. 
In this model plasticity is spike-time-dependent and it is 
independently modeled for excitatory and inhibitory 
couplings. The simulation data of these models show that 
oscillation, which represents tinnitus in the central auditory 
system, is inhibited following the presentation of external 
input, which represents sound therapy stimulation in the 
clinical situation.   
 
Keywords—neuronal network model, tinnitus, sound therapy, 

spike-time-dependent plasticity, oscillation, inhibition 

I. INTRODUCTION 
s early as first days of civilization, many people have 

complained about tinnitus. This annoying auditory 
phenomenon has been attributed to many factors such as 
noise or chemical exposure and aging. Tinnitus is not a real 
sound [1]. It can be perceived in one ear, both ears or in the 
head. For many years, tinnitus has been considered as a 
difficult-to-manage clinical condition. Throughout the 
history many scientists and clinicians have attempted to find 
ways to help those who suffer from this condition.  Tinnitus 

 
Manuscript received September 30, 2012. This work was supported in 

part by Grant-in-Aid for Scientific Research #21560429 and #24560498 
from Japan Society of Promotion of Science.  

H. Nagashino is with Department of Biomedical Information Science, 
Institute of Health Biosciences, The University of Tokushima, Tokushima 
770-8509 Japan (phone: 088-633-9025; fax: 088-633-9025; e-mail: 
nagasino@medsci.tokushima-u.ac.jp). 

Y. Kinouchi is with Institute of Technology and Science, The University 
of Tokushima, Tokushima 770-8506 Japan (e-mail: 
kinouchi@ee.tokushima-u. ac.jp). 

A. A. Danesh is with Department of Communications and Disorders, 
College of Education, Florida Atlantic University, Boca Raton, FL 33431 
USA (e-mail: danesh@fau.edu). 

A. S. Pandya is with Department of Computer Science and Electrical 
and Computer Engineering, College of Engineering and Computer Science, 
Florida Atlantic University, Boca Raton, FL 33431 USA (e-mail: 
pandya@fau.edu). 

generation is still a mystery. There are many proposed 
theories that have attempted to explain its generation. Some 
of these theories relate the percept of tinnitus to 
hyperactivity of the auditory cortex and some attribute the 
changes in inhibitory and excitatory neurotransmitters of the 
auditory system. The most favored tinnitus generation 
theory describes tinnitus as a product of brain reorganization 
as a consequence of hearing loss [2]. Based on the tonotopic 
organization maps of the auditory cortex, it has been shown 
that those cortical areas that represent the corresponding 
frequency region of hearing loss are “invaded” by adjacent 
frequencies. This reorganization and neuroplasticity has 
been credited in generating tinnitus. 

Additionally, the mechanisms of tinnitus generation have 
been proposed based on neurophysiological models [3, 4]. 
The contribution of neural plasticity to explain the neural 
correlates of tinnitus has also been reported [5]-[12]. The 
thalamic plasticity via top down modulation has been 
addressed with the utilization of auditory 
electrophysiological recordings [5]. It has been suggested 
that cochlear damage decreases auditory nerve activity and 
this change leads to plastic adjustments, a shift in the 
balance of excitation and inhibition, and increase of 
spontaneous firings in the central auditory system [9], [10]. 
Structural brain changes in tinnitus also have been 
discovered using MRI [13]. 

Computational modeling has been applied for better 
understanding of tinnitus [14]-[17]. There are many areas in 
the brain that contribute to tinnitus generation; however, it 
has been shown that the thalamo-cortical network is 
important for generation of tinnitus [13], [18]. A neural 
network modeling of thalamocortical correlates with 
plasticity toward understanding of the tinnitus has been 
reported [14]. A tinnitus model based on the 
neurophysiological model of Jastreboff [3], combined with 
the adaptive resonance theory of cognitive sensory 
processing [19] has been proposed for identification of 
neural correlates of tinnitus [20].  Using models of 
corticothalamic feedback dynamics, the effect of auditory 
selective attention on the tinnitus decompensation has also 
been investigated [20, 21]. The current paper proposes a 
computational and dynamical model for tinnitus generation 
by spike-time-dependent plasticity of the thalamo-cortical 
network. 

A variety of therapeutic approaches for tinnitus has been 
used for the management of tinnitus [22]-[24]. These 
include use of medications, supplemental vitamins and 
micronutrients, psychotherapy and biofeedback, electrical 
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stimulation, transcranial magnetic stimulation, and more 
importantly and least invasively sound therapy or acoustic 
therapy. Tinnitus has many types and subcategories 
depending what caused it. Attempts have been made to 
categorize tinnitus based on its characteristics which in turn 
can facilitate the selection of management methods [25]. 

The process of sound therapy is one of the most effective 
methods. The tinnitus patients who have gone under sound 
therapy protocol report diminished annoyance from it [26]. 
Potentially, patients may perceive a reduction in tinnitus 
loudness following acoustical stimulation through sound 
therapy. This cessation of tinnitus following the use of 
sound therapy has been termed as “residual inhibition”. 
Sound therapy employs a variety of stimuli such as music, 
white noise, narrow band noise and environmental sounds to 
facilitate the habituation process to tinnitus. The 
mechanisms of tinnitus management by sound therapy, 
however, have not been thoroughly clarified. Some attribute 
the success with sound therapy to brain plasticity [27] while 
others consider it a habituation process [28]. 

Our previous computational and dynamical models have 
employed a neural oscillator [19], [30], [31] or a neuronal 
network [32]-[34] to replicate tinnitus generation and its 
management by sound therapy. We have demonstrated that 
those models conceptually imitate tinnitus perception and 
exhibit tinnitus inhibition with sound. This inhibition is 
provided by implementing theoretical models of stimuli 
such as constant, sinusoidal or noise that is hypothesized as 
an acoustic stimulation for treatment of tinnitus. By 
employing this model we could inhibit the oscillations (i.e., 
tinnitus). This was accomplished by incorporating neural 
plasticity through parameters in a way that their values can 
be modified. By hypothesizing that the oscillation and the 
equilibrium in the model correspond to generation and 
inhibition of tinnitus, respectively, we reported that these 
phenomena could explain the fact that the habituated human 
auditory system temporarily halts perception of tinnitus 
following sound therapy. 

In the present paper, we propose a different model 
composed of the same model neurons described by 
simplified Hodgkin-Huxley equations [20] as we reported in 
the previous studies [32]-[34]. The major difference is a new 
variation in connection of neurons. This model structure is 
adopted based on the recent physiological observations 
related to tinnitus [13], [18]. 

In our previous models, synaptic plasticity was modeled 
with Hebbian hypothesis [35] or spike-time-dependent 
plasticity (STDP) [36]. STDP can be viewed as a 
biologically plausible hypothesis which can provide a more 
specific mechanism for the Hebbian hypothesis. STDP 
focuses on the causality between input and output spike 
trains as an underlying mechanism for memory. This 
hypothesis has been adopted in a number of computational 
models of neuronal networks including recurrent networks 
[37]. The plastic coupling between the components in our 
previous models was excitatory similar to most of the 
physiological studies on synaptic plasticity which have 
focused on excitatory synapses. However, scientific 
investigations of plasticity in inhibitory synapses in the 
auditory brainstem are increasing. STDP along with 
long-term depression and potentiation is known to influence 
the synaptic strength in auditory brainstem and midbrain. 
Differential forms of synaptic plasticity involving inhibitory 

and excitatory neurons within a circuit could form the basis 
for the underlying mechanism for persistent neuronal 
activity in patients with tinnitus [38]. Moreover, recent 
physiological observations on tinnitus generation suggest 
the importance of change in inhibitory activities [18]. In the 
current paper, a theoretical framework of plasticity of 
excitatory or inhibitory coupling between neurons is 
proposed. In this framework STDP was formulated as a 
synaptic plasticity. 

Here we demonstrate inhibition of oscillation as a result 
of computer simulations. This is accomplished by providing 
the model with appropriate input and parameters for the 
plasticity of both excitatory and inhibitory couplings. 
Similar to the previous models the effects of sound therapy 
are replicated. 

II. A NEURONAL NETWORK MODEL 
We propose a neuronal network model shown in Fig. 1 in 

which firing sequences in the nervous system are simulated. 
The present model only replicates the inhibition of tinnitus 
by external sound stimulation. Modeling the habituation 
would much larger network configuration. The present 
model is a conceptually simplified system of a tinnitus 
generation network. However, we believe that the neural 
mechanism proposed here could form components of 
models involving large-scale neural correlates for providing 
a neurophysiological framework such as the Jastreboff’s 
tinnitus model [3]. 

It is composed of two excitatory neurons and one 
inhibitory neuron as shown in Fig. 1. This mechanism 
includes a positive feedback loop of the excitatory neurons 
E1 and E2 mutually coupled, and a negative feedback loop 
with the excitatory neuron E1 and the inhibitory neuron I 
that are also mutually coupled. The negative feedback loop 
controls the firing rate. The mechanism can be bistable with 
a sustained firing state and a non-firing state. 

The coupling strength between neurons is denoted by Cij 
(

€ 

i, j ∈ 1, 2, 3{ }). The neuron E1 receives external stimuli S 
that is afferent signal due to the acoustic stimuli that are 
employed in sound therapy. 

We express the dynamics of the model by a simplified 
version of Hodgkin-Huxley equations (HH) [39-41]. We 
employed it instead of HH to reduce the computational 
complexity and the related simulation time by reducing the 
number of state variables for each neuron from four to two. 

 

Fig. 1 A neuronal network model. 

A. Formulation of the model without plasticity 

We describe the basic dynamics of the model as 
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dv1
dt

=
G (v1, m1, n1, h1) +C12z2 −C13z3 +D + S

Cm

,                   

(1) 

€ 

dh1
dt

=αh (v1)(1− h1) + βh (v1)h1 ,                                          (2) 

€ 

dv2
dt

=
G (v2, m2, n2, h2) +C21z1

Cm

,                                      (3) 

€ 

dh2
dt

=αh (v2)(1− h2) + βh (v2)h2 ,                                        (4) 

€ 

dv3
dt

=
G (v3, m3, n3, h3) +C31z1 +C32z2

Cm

,                          (5) 

and 

€ 

dh3
dt

=αh (v3)(1− h3) + βh (v3)h3 .                                             (6) 

where v is the membrane potential, m, n and h are the 
variables associated with activation of sodium ion channel, 
inactivation of sodium ion channel and activation of 
potassium ion channel in the neuron E1, E2 or I. The 
functions 

€ 

G (v,m, n, h) , m and n are expressed as 

€ 

G(v,m,n,h) = g Nam 3h(VNa − v) +

g K n4 (VK − v) + g l (Vl − v)
                (7) 

{ })()()( vvvm mmm βαα +=                                               (8) 

and 

)1(8.0 hn −=                                                                       (9) 

respectively. In the original HH model [41] m and n are 
expressed by differential equations. In the simplified version 
that we employ in the present study, m is expressed by the 
function of the membrane potential v, as Eq. (8), and n is 
expressed by the function of the variable h, as Eq. (9), since 
the change of m and n rapidly converges compared with v 
and h. The functions 

€ 

αm (v)  and 

€ 

βm (v)  in Eq. (8) are 
expressed respectively as 

€ 

αm (v) = 0.1(25− v) e(25−v) 10−1{ }                                      (10) 

and 

€ 

βm (v) = 4 e−v 18                                                                   (11) 

Functions 

€ 

αh (v)  and 

€ 

βh (v)  in Eq. (2), (4), (6) are 
expressed respectively as 

€ 

αh (v) = 0.07 e−v 20                                                              (12) 

and 

€ 

βh (v) = 1 e(30−v) 10+1{ } .                                                    (13) 

The parameters of the neuron model were fixed as 
Cm=1[µF/cm2], 

€ 

g Na = 120[mS /cm2 ] ,

€ 

g K = 36[mS /cm2 ] , 

€ 

g l = 0.3[mS /cm2 ] , VNa=115[mV], 

€ 

VK = −12   [mV], 
Vl=10.6 [mV], based on the values in the original HH model 

[41].  
The output of the neuron j to its postsynaptic neurons is 

denoted by zj and expressed as function of the membrane 
potential vj as 

€ 

z j = {
1 (v j ≥ 6)
0 (v j < 6)

.                                                           (14) 

Moreover, a bias term D is introduced in the equation of 
the membrane potential v1 of the neuron E1, Eq. (1) in order 
to enable the neurons to elicit sustained firings keeping zj at 
0 when the neurons are not firing. 

B. Introduction of plasticity 
We assume that one of the couplings between neurons has 

plasticity. In the present model the plasticity based on STDP 
hypothesis [36] is introduced. The key idea of this 
hypothesis on excitatory synapses is that when the 
presynaptic neuron fires before the postsynaptic neuron, the 
synaptic strength becomes stronger (long term potentiation), 
and when the postsynaptic neuron fires before the 
presynaptic neuron fires, the synaptic strength becomes 
weaker (long term depression). The hypothesis of STDP has 
been adopted in a number of computational models of 
neuronal networks [14]. This mechanism is simply modeled 
in the present study as follows. 

C. Formulation of plasticity of excitatory coupling 
 First we postulate that one of the excitatory couplings, 

the coupling strength from the neuron E1 to the neuron E2, 
C12, has plasticity in such a way that it increases when E1 
fires after E2 fires, and decreases when E2 fires after E1 fires. 
The time difference between firings of neuron E2 and neuron 
E1, t12, is defined as 

€ 

t21 = t2 − t1                                                                         (15) 

where t1 and t2 are the latest firing times of E1 and  E2, 
respectively as shown in Fig. 2. The value of coupling 
strength with plasticity C12 at time t +Δt, C12(t +Δt), is given 
by addition of the value at time t, C12(t), and the change of 
C12, ΔC12, 

€ 

C12 (t + Δt) = C12 (t) + ΔC12  ,                                                             (16) 

where Δt is the time step of calculation, and ΔC12 is given as  

€ 

ΔC12 =
dC12MIN
T1

t21 − dC12MIN            (17) 

when 

€ 

0 < t21 <T1 , 

€ 

ΔC12 =
dC12MAX
T2

t21 + dC12MAX            (18) 

when 

€ 

−T2 < t21 ≤ 0 , and 

€ 

ΔC12 = 0 ,                  (19) 
when 

€ 

t21 ≤ −T2  or 

€ 

t21 ≥T1, where T1 and T2 are parameters 
that give the time span in which the plastic change of the 
synaptic coefficient occurs. 

D. Formulation of plasticity of inhibitory coupling 
Secondly we postulate that the inhibitory coupling, the 

coupling strength from the neuron I to the neuron E1, C13, 
has plasticity in such a way that it increases when E1 fires 
after E2 fires, and decreases when E2 fires after E1 fires. The 
time difference between firings of neuron E2 and neuron E1, 
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t12, is defined as 

€ 

t31 = t3 − t1                                                                       (20) 

where t1 and t2 are the latest firing times of E1 and  E2, 
respectively as shown in Fig. 2. The value of coupling 
strength with plasticity C13 at time t +Δt, C13(t +Δt), is given 
by addition of the value at time t, C13(t), and the change of 
C13, ΔC13, 

€ 

C13 (t + Δt) = C13 (t) + ΔC13  ,                                                              (21) 

where Δt is the time step of calculation, and ΔC12 is given as  

€ 

ΔC13 = −
dC13MAX
T1

t31 + dC13MAX           (22) 

when 

€ 

0 < t31 <T1 , 

€ 

ΔC13 = −
dC13MIN
T2

t31 − dC13MIN           (23) 

when 

€ 

−T2 < t31 ≤ 0 , and 

€ 

ΔC13 = 0 ,                   (24) 
when 

€ 

t31 ≤ −T2  or 

€ 

t31 ≥T1. 
 

 
Fig. 2  Definition of firing time in plasticity 1. 

 

 
Fig. 3 Modeling of STDP in excitatory coupling strength C12. 

 

 
Fig. 4 Definition of firing time in plasticity 2. 

 

 
Fig. 5 Modeling of STDP in inhibitory coupling strength C13. 

 

The sign of slopes in the Eqs. (22) and (23) is opposite to 
the one for the excitatory coupling strength. Because the 
effect of the inhibitory coupling on firing of the postsynaptic 
neuron is opposite to that of the excitatory coupling. 

III. RESULTS 
We demonstrate the results of computer simulation of the 

model. Throughout the simulation the parameter values 

€ 

D = 18

€ 

[µA/cm2 ] , 

€ 

C21 =10 , 

€ 

C31 = 10 , 

€ 

C32 = 20  were 
employed. 

A. Analysis of the model without input or plasticity 
Without stimulation or plasticity, the model has two 

stable solutions, an oscillatory state by sustained firings and 
a non-firing state. They are bistable for a parameter region.  

First, we performed the simulation changing the value of 
the coupling coefficient C12 by one in the range 

€ 

0 <C12 ≤ 30  with the value C13=10. The non-firing state 
exists for any value of C12 in the range. On the other hand, 
the oscillatory state exists when 

€ 

C12 ≥ 23. That is, the two 
solutions coexist when 

€ 

C12 ≥ 23 . It corresponds to the 
clinical fact that a number of patients of tinnitus claim that 
they do not always hear sound when there is no external 
sound. The larger C12 brings the larger basin of the 
oscillatory solution in the state space of the model in the 
region.  

Secondly, we performed the simulation changing the 
value of the coupling coefficient C13 by one in the range 

€ 

0 < C13 ≤ 30  with the value C12=25. The non-firing state 
exists for any value of C12 in the range. On the other hand, 
the oscillatory state exists when 

€ 

0 ≤ C13 ≤ 22  and 

€ 

27 ≤ C13 ≤ 30 . Also in this case the two solutions coexist 
when 

€ 

0 ≤ C13 ≤ 22  and 

€ 

27 ≤ C13 ≤ 30 . 
 

B. Analysis of the model with input and plasticity of an 
excitatory coupling 

Temporarily constant input with amplitude I as stimulus S 
was supplied to neuron E1 in the model with plasticity of an 
excitatory coupling strength C12, and inhibition of oscillation 
was examined. The constant input I was applied for 100ms 
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(a) 

 
(b) 

Fig. 6 Simulation results in the model with plasticity of excitatory 
coupling,

€ 

C 0 = 24 , (a) an unsuccessful result, 

€ 

I = 4 [µA/cm2], 
(b) a successful result, 

€ 

I = 5 [µA/cm2]. 

 
(a) 

 (b) 

Fig. 7 Simulation results in the model with plasticity of excitatory 
coupling,

€ 

C 0 = 25 , (a) an unsuccessful result, 

€ 

I = 3 [µA/cm2], 
(b) a successful result, 

€ 

I = 4 [µA/cm2]. 
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(a) 

 
(b) 

Fig. 8 Simulation results in the model with plasticity of inhibitory 
coupling, 

€ 

C 0 = 5, (a) an unsuccessful result, 

€ 

I =1 [µA/cm2], 
(b) a successful result, 

€ 

I = 2 [µA/cm2]. 

 

 (a) 

 
(b) 

Fig. 9 Simulation results in the model with plasticity of inhibitory 
coupling,

€ 

C 0 = 10, (a) an unsuccessful result, 

€ 

I = 5 [µA/cm2], 
(b) a successful result, 

€ 

I = 3 [µA/cm2]. 
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from 200ms to 300ms to the network that is oscillating in 
the simulation. The parameter values 

€ 

C13 = 10 , 

€ 

dC12MAX = 0.048 , 

€ 

dC12MIN = 0.0005 , 

€ 

T1 = 15[ms] , 

€ 

T2 = 5 [ms]and 

€ 

Δt = 0.01[ms]were employed. The time 
scale of the change of the synaptic strength is much smaller 
than the clinical process. It was arranged so that the 
simulation is completed in a reasonable time. The initial 
value of the coupling strength C12 is denoted by 

€ 

C0 . 
Simulations were performed where the parameter 

€ 

C0=23, 
24 and 25. The amplitude I of the input was changed by 
1

€ 

µA/cm2  in the range of 

€ 

0 < I ≤ 10 [µA/cm2 ].Figs. 6 and 7 
show the examples of simulation results when 

€ 

C0 = 24  and 

€ 

C0 = 25 , respectively. In the figure, the rows illustrate the 
membrane potentials v1, v2, vI, the coupling strength C12, 
input S, output of the neurons z1 and z2, and time difference 
between firings of neuron E2 and neuron E1, t12, respectively 
from the top. As shown in Fig. 6, when 

€ 

C0 = 24 ,  

the input with I=5 

€ 

[µA/cm2]  for 100ms makes the 
network stop the oscillation after the input is removed, while 
the input with I=4 

€ 

[µA/cm2 ]  fails to stop the oscillation. Fig. 
7 shows that when 

€ 

C0 = 25, the input with I=4 

€ 

[µA/cm2] 
for 100ms makes the network stop the oscillation after the 
input is removed, while the input with I=3 

€ 

[µA/cm2 ]  fails to 
stop the oscillation. When 

€ 

C0 = 23 , the input with I=5, 

6,7

€ 

[µA/cm2] for 100ms was required to make the network 
stop the oscillation after the input is removed. For 

€ 

C0 = 24 , 

the amplitude I=5, 6

€ 

[µA/cm2]  brought the inhibition of 
oscillation. For 

€ 

C0 = 25 , the amplitude I=4, 5 or 

6

€ 

[µA/cm2] was required for inhibition of oscillation.  
The reason why a larger value of I is necessary to inhibit 

the oscillation in cases where C0 value is larger is speculated 
as follows. A larger C0 results in a larger stationary value in 
C12. Moreover, it causes a larger basin of the oscillatory 
solution in  
the state space of the model equations. In order to reduce the 
value of C12 a stronger stimulation is required.  

The performance of the model 1 is not satisfactory since 
the output of the neurons E1 and E2, z1 and z2 occasionally 
becomes 1 and the output pulses are emitted in spite that the 
neuron does not fire. 

C. Analysis of the model with input and plasticity of 
inhibitory coupling 
In order to examine the effect of plasticity of inhibitory 

coupling on the oscillation in the model, temporarily 
constant input with amplitude I as stimulus S was supplied 
to neuron E1 in the model with plasticity of the inhibitory 
coupling strength C13. Similarly to the above, the constant 
input I was applied for 100ms from 200ms to 300ms to the 
network that is oscillating in the simulation. The parameter 
values 

€ 

C12 = 25 , 

€ 

dC12MAX = 0.0005 , 

€ 

dC12MIN = 0.0005 , 

€ 

T1 = 15[ms] , 

€ 

T2 = 5 [ms] and 

€ 

Δt = 0.01[ms] were 
employed.  Simulations were performed where the 
parameter 

€ 

C0=5 and 10. The amplitude I of the input was 
changed by 1

€ 

µA/cm2  in the range of 

€ 

0 < I ≤ 10 [µA/cm2 ]. 
Figs. 8 and 9 show the examples of simulation results. An 

unsuccessful result (a) and a successful result (b) are shown 
when 

€ 

C0 = 5 in Fig. 8 and when 

€ 

C0 = 10  in Fig. 9.  
As shown in Fig. 8, when 

€ 

C0 = 5, the constant input with 

I=2 

€ 

[µA/cm2]  for 100ms makes the network stop the 
oscillation after the input is removed, while the input with 
I=1 

€ 

[µA/cm2] fails to inhibit the oscillation of the network. 

For 

€ 

C0 = 5 , the amplitude I=2, 3 or 4

€ 

[µA/cm2]  was 
required for inhibition of oscillation. For 

€ 

C0 = 10 , the 

amplitude I=2 or 3

€ 

[µA/cm2] was required for inhibition of 
oscillation.  Longer application of the input did not seem to 
bring different results. 

D. Discussion 
In summary, it was observed that the model succeeds in 

demonstrating the effect of the introduction of the external 
stimulus S for the plasticity of both excitatory and inhibitory 
couplings. This leads to termination of firing of the neurons. 
However, the coupling coefficients do not change to the 
value in which the firing solution does not exist during the 
stimulation, which occurred in previous models. The 
oscillation stops in the present model due to the change of 
the state of the model as well as the change of the coupling 
coefficient by the input. Hence, further investigation of 
modeling is necessary in order to reproduce the inhibition of 
oscillation by synaptic plasticity only. 

IV. CONCLUSION 
A dynamic computational neuronal network model with 

plasticity for tinnitus generation and its management by 
sound therapy was proposed in this paper. The model 
structure is constructed based on recent physiological 
studies for tinnitus generation. Dynamics of the neurons are 
described with simplified Hodgkin and Huxley equations. 
STDP hypothesis is employed for plasticity of excitatory 
and inhibitory couplings independently.   

Through computer simulations of this model, it is shown 
that oscillation can be inhibited by application of external 
input. The present model replicates the inhibition of tinnitus 
by external sound stimulation as it is employed in clinical 
situations.   

In the present model, the inhibition of the oscillation was 
realized by both the change of the plastic coupling strength 
and the change of the state of the model by supplying the 
input. More investigation for improvement of the model is 
required in order to demonstrate that only the synaptic 
plasticity brings the inhibition of oscillation and the model is 
more robust in the input amplitude for inhibition of 
oscillation.  

Our future work will expand this model so that it can 
more effectively explain underlying physiology of tinnitus, 
and explore better stimulation for its inhibition through 
sound therapy techniques. 
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