
 

 

  
Abstract—Evolutionary studies usually assume that the genetic 

mutations are independent of each other. However, that does not 
imply that the observed mutations are independent of each other 
because it is possible that when a nucleotide is mutated, then it may 
be biologically beneficial if an adjacent nucleotide mutates too. With 
a number of decoded genes currently available in various genome 
libraries and online databases, it is now possible to have a large-scale 
computer-based study to test whether the independence assumption 
holds for pairs of adjacent amino acids. Hence the independence 
question also arises for pairs of adjacent amino acids within proteins. 
The independence question can be tested by considering the 
evolution of proteins within a closely related sets of proteins, which 
are called protein families. In this thesis, we test the independence 
hypothesis for three protein families from the PFAM library, which is 
a publicly available online database that records a growing number of 
protein families. For each protein family, we construct a hypothetical 
common ancestor, or consensus sequence. We compare the 
hypothetical common ancestor of a protein family with each of the 
descendant protein sequences in the family to test where the 
mutations occurred during evolution. The comparison yields actual 
probabilities for each pair of amino acids changing into another pair 
of amino acids. By comparing the actual probabilities with the 
theoretical probabilities under the independence assumption, we 
identify anomalies that indicate that the independence assumption 
does not hold for many pairs of amino acids. 
 

Keywords—amino acid, independent probabilities, nucleotide, 
genetic mutation, protein.  

I. INTRODUCTION 
IOLOGICAL evolution depends on random mutations 
accompanied by natural selection for the more fit genes. 

That simple statement does not imply that the observed 
mutations are independent from each other.  It is possible that 
if a nucleotide changes, then it is biologically beneficial to 
have some of the adjacent or nearby nucleotides change as 
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well. For example, if in some protein-coding region within 
some triplet that encodes a hydrophilic amino acid a 
nucleotide changes such that the triplet would encode a 
hydrophobic amino acid, then a mutation of another nucleotide 
in the same triplet may be advantageous if with that mutation 
the triplet would again encode a hydrophilic amino acid (or 
preserve another key property of amino acids). In other words, 
some mutations within a triplet slightly increase the 
probability that some accompanying mutation with a 
readjusting effect would survive in the offspring.  

With the greatly increasing number of decoded genes 
currently available in a number of genome libraries and online 
databases, it is now possible to have a large-scale computer-
based study to test whether the independence assumption 
holds. One difficulty, however, is to find the coding regions 
and coding triplets. Hence it seems more convenient to 
investigate proteins derived from the coding regions.  

The mutations in the coding regions of the DNA are usually 
reflected in the mutations of amino acids.  Therefore, instead 
of the evolution of genes, one may talk about the evolution of 
proteins within a closely related set of proteins, which is called 
a protein family.   

The PFAM library [4] records a growing number of protein 
families. Each protein in a protein family can be assumed to 
be genetically related to the other proteins in that family and to 
have evolved from a single ancestor protein.  

For any set of DNA strings and any set of proteins, there are 
several algorithms that can be used to find a hypothetical 
evolutionary tree (see the textbooks by Baum and Smith [1], 
Hall [2], and Lerney et al. [3] for an overview of these 
algorithms.) Revesz [5] has recently proposed a new 
phylogenetic tree-building algorithm called the Common 
Mutation Similarity Matrixes (CMSM) algorithm. This 
algorithm finds a hypothetical evolutionary tree. The first step 
of the CMSM algorithm is to find a hypothetical common 
ancestor, which is denoted by µ. 

In this paper, we will use the idea of a hypothetical common 
ancestor.  We can compare the hypothetical common ancestor 
of a family of proteins with each of the proteins in the family 
to test where the mutations occur. We can also test for each 
adjacent pair of amino acids how many times that pair 
changed into another pair of amino acids. The resulting 
experimental statistics can be compared with the theoretical 
probability under the independence assumption. If the 
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deviation from the theoretical probability is significant, then 
the independence assumption fails to provide a satisfying 
explanation for the experimental results.  

Evolutionary studies usually assume that the genetic 
mutations are independent of each other. This paper tests the 
independence hypothesis for genetic mutations with regard to 
protein coding regions. As discussed in Section III, according 
to our experimental results the independence assumption 
generally holds, but there seem to be certain exceptions. We 
give examples in Section III of some particular adjacent amino 
acid pairs that seem to change in ways that deviate 
significantly from the expected theoretical probability under 
the independence assumption. 

This paper is organized as follows. Section II describes our 
method with an extended example. Section III describes the 
protein families that were used in the experiments. Section IV 
presents our experimental results. Finally, Section V gives 
some conclusions and directions for further research.  

II. THE INDEPENDENCE TESTING METHOD 
In this section, we describe the step-by-step procedure that 

we used to test whether among the surviving descendants of 
the hypothetical common ancestor µ the adjacent pairs of 
amino acids are mutated independently of each other. 

As an artificial and simplified example, suppose that there 
exists an ancestor protein µ that is made up of only the amino 
acids A, D, N and R as shown in Fig. 1. Further assume during 
evolution each of these four amino acids either remains 
unchanged or is mutated into only one of the other three amino 
acids within this group of four amino acids.  Suppose that the 
seven descendants S1… S7 are as shown in Fig. 1. 

 
 

 
S1 

 
RNARDANDRADNRDANRARA 

 
S2 

 
NRARDANRADADNANARNAD 

 
S3 

 
RADNRANDANDRANDRDRAN 

 
S4 

 
DNARDNARDRNARDANRANR 

 
S5 

 
RNDRANRDRDANDNANDRAN 

 
S6 

 
RNARDANDRADNRDANRARA 

 
S7 

 
RNARDADDRADNRDANDADA 

 
Fig. 1 A set of seven artificial sequences 

 
 
 
Our testing method consists of five steps that are explained 

in Sections (A-E).  
 

A. Find Consensus Sequence 
Construct the hypothetical common ancestor for the 

proteins in the given set of protein family using the method 
that is also used by the Common Mutation Similarity Matrix. 
In the case of amino acid sequences, the hypothetical common 
ancestor, µ, is constructed by taking an alignment of the amino 
acid sequences, and in each column of the alignment finding 
the amino acid (out of the twenty possible amino acids that are 
used in almost every protein in all organisms) that is overall 
closest to the all the amino acids in that column. The overall 
closest amino acid is by definition the one for which the sum 
of the PAM250 matrix distance values between it and the 
amino acids in the column considered is minimal. If there are 
two or more values that are minimal, then we make a random 
selection. 

For the example in Fig. 1, consisting of seven artificial 
sequences from S1, S2, ... S7, each with a length of twenty 
nucleotides, the consensus sequence is as shown in Fig. 2. 

 

  

B. Calculate Mutation Probability Matrix 
Next, we calculate a mutation probability matrix. The 

mutation probability matrix contains the probabilities of any 
amino acid changing into another amino acid. For the running 
example with the data shown in Fig. 1, the mutation 
probability matrix is shown in Table 1.   

The mutation Probability Matrix in Table 1 shows the 
frequencies of the each of the four amino acid changes into 
one of the other three amino acids or remains the same.   

The column ‘Total’ shows the total number of the 
possibility of one amino acid can mutate into another amino 
acid, or remain the same throughout the entire sequence (S1 to 
S7). 

 
Table 1 The mutation probability matrix for the data in Fig.1 

 
 A R N D Total 
A 24 4 8 6 42 
R 3 23 3 6 35 
N 6 6 21 2 35 
D 4 3 3 18 28 

 

C. Find Theoretical Probabilities 
Based on the mutation probability matrix values, we 

estimate the probability of the changes of any adjacent pair of 
amino acids into another pair of amino acids assuming that the 
mutations are independent of each other. For example, the 
probability of AN changing into DR can be computed as 
follows: 

 

µ RNARDANDRADNRDANRNAA 
 

Fig. 2 The consensus sequence for the artificial protein 
family in Fig. 1 
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     Prob (AN, DR) = Prob (A, D) * Prob (N, R) = 
 

                          !
!"
∗ !
!"
= !

!"#
 ≈ 0.0245               

      
Hence the theoretical probability corresponding to the 

amino acid pair AN changing to DR is approximately 0.0245. 
The theoretical probabilities for all possible combinations of 
amino acid pairs of the artificial sequence in Fig. 1 mutating 
into another possible pair of the same set are shown in Table 
2. Note that the table values are in decimal format for the 
purpose of calculation.  

 

D. Find Actual Probabilities 
Now, we calculate the actual probabilities of changes for 

each pair of amino acids in the consensus sequence. Starting 
from the first pair to the end of the consensus string, we first 
calculate the number of times and the index, each pair in the 
consensus string occurs. We then calculate the frequencies of 
that specific pair in the consensus string mutating into another 
pair among the rest of the descendent sequences in that 
column.  

If the current adjacent amino acid pair of the consensus 
string happens to appear in another index of the same 
consensus string, then we repeat the step to check for 
frequencies of that pair mutating into other possible pairs in 
that column, for the rest of the descendant sequences. 

We then slide the window of the current pair in the 
consensus string to the adjacent consecutive pair of the same 
consensus string, to calculate their respective frequencies of 
mutations among the descendent pairs of that column.  

The steps mentioned in the above paragraph are repeated 
until we encounter the last possible pair of the consensus 
sequence. The results for the example in Fig. 1 with the seven 
artificial sequences are shown in Table 3.  

Note that in Table 3, the column ‘Total’ refers to the total 
number of ways in which a pair of the consensus sequence can 
mutate into another possible pair in its descendant sequence, 
whose value is the product of the number of times a single pair 
appears in the consensus string and the total number of 
sequences in the protein family.  

For example, in consensus string µ for the artificial 
sequence in Fig. 1, NR appears in two indices as underlined in 
Fig. 3 below.  

 

 
 
 
 

In this case, the total number of possibilities of NR 
changing into another pair is 2 * 7 = 14, where seven is the 
total number of sequences of the protein family.   

 
 
Algorithm ACTUAL-PROBABILITY (S, n, m) 
 

INPUT: The set S of aligned sequences of a protein family 
represented as a matrix. The sequences are S[1][1…m], 
S[2][1…m], …, S[n][1…m] where n denotes the total number 
of sequences and m denotes their lengths.  
 
//TOT is the overall total number of possible ways a 
//particular pair can mutate to another pair. 
 
//The auxiliary function Find_Consensus_Sequence(S) finds 
//the consensus sequence of S.  
 
1 C := Find_Consensus_Sequence(S)  

 
2 for i → 1 to m-1 do  
3        Calculate the count and index of all the  

                 adjacent pairs in the consensus sequence   
4        TOT := count * n 
5 end for 

 
6 for i → 1 to m-1 do 
7     for j → 2 to n do  
8         Calculate the occurrences of possible pairs 

        in the descendent sequences corresponding 
        to the column S[i][i+1] which is the 
        consensus sequence. 

14         end for 
15     end for 

 
 
The algorithm ACTUAL-PROBABILITY is a dynamic 

programming computer algorithm. We iterate through the 
consensus sequence m number of times for each adjacent pair 
in the consensus sequence. During each of those iterations we 
count the frequencies of the pair in that window which may or 
may not mutate into another pair in their descendant sequences 
of the corresponding window, which takes about n number of 
comparisons. This operation can be seen under the nested 
loops that start on lines 6 and 7 in the algorithm. Line 8 
calculates the occurrences of the pair in the consensus 
mutating into one of the possible 400 pairs in the descendent 
sequences. That takes about n number of comparisons in the 
worst case. Hence we can prove the following theorem. 

 
Theorem: The running time of the algorithm ACTUAL-

PROBABILITY is O(n2m) where m ≤ n, and m is the size of 
the consensus sequence and n is the number of the sequences 
of the protein family. 
 
 

 
µ RNARDANDRADNRDANRNAA 

 
Fig. 2 The consensus sequence for the artificial protein 

family in Fig. 1 
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Table 2 The theoretical probabilities of changes for each pair of amino acids for the artificial example protein family in Fig. 3. 

	 AA AR AN AD RA RR RN RD NA NR NN ND DA DR DN DD 

AA 0.3265 0.0544 0.1088 0.0816 0.0544 0.0091 0.0181 0.0136 0.1088 0.0181 0.0363 0.0272 0.0816 0.0136 0.0272 0.0204 

AR 0.0490 0.3755 0.0490 0.0980 0.0082 0.0626 0.0082 0.0163 0.0163 0.1252 0.0163 0.0327 0.0122 0.0939 0.0122 0.0245 

AN 0.0980 0.0980 0.3429 0.0327 0.0163 0.0163 0.0571 0.0054 0.0327 0.0327 0.1143 0.0109 0.0245 0.0245 0.0857 0.0082 

AD 0.0816 0.0612 0.0612 0.3673 0.0136 0.0102 0.0102 0.0612 0.0272 0.0204 0.0204 0.1224 0.0204 0.0153 0.0153 0.0918 

RA 0.0490 0.0082 0.0163 0.0122 0.3755 0.0626 0.1252 0.0939 0.0490 0.0082 0.0163 0.0122 0.0980 0.0163 0.0327 0.0245 

RR 0.0073 0.0563 0.0073 0.0147 0.0563 0.4318 0.0563 0.1127 0.0073 0.0563 0.0073 0.0147 0.0147 0.1127 0.0147 0.0294 

RN 0.0147 0.0147 0.0514 0.0049 0.1127 0.1127 0.3943 0.0376 0.0147 0.0147 0.0514 0.0049 0.0294 0.0294 0.1029 0.0098 

RD 0.0122 0.0092 0.0092 0.0551 0.0939 0.0704 0.0704 0.4224 0.0122 0.0092 0.0092 0.0551 0.0245 0.0184 0.0184 0.1102 

NA 0.0980 0.0163 0.0327 0.0245 0.0980 0.0163 0.0327 0.0245 0.3429 0.0571 0.1143 0.0857 0.0327 0.0054 0.0109 0.0082 

NR 0.0147 0.1127 0.0147 0.0294 0.0147 0.1127 0.0147 0.0294 0.0514 0.3943 0.0514 0.1029 0.0049 0.0376 0.0049 0.0098 

NN 0.0294 0.0294 0.1029 0.0098 0.0294 0.0294 0.1029 0.0098 0.1029 0.1029 0.3600 0.0343 0.0098 0.0098 0.0343 0.0033 

ND 0.0245 0.0184 0.0184 0.1102 0.0245 0.0184 0.0184 0.1102 0.0857 0.0643 0.0643 0.3857 0.0082 0.0061 0.0061 0.0367 

DA 0.0816 0.0136 0.0272 0.0204 0.0612 0.0102 0.0204 0.0153 0.0612 0.0102 0.0204 0.0153 0.3673 0.0612 0.1224 0.0918 

DR 0.0122 0.0939 0.0122 0.0245 0.0092 0.0704 0.0092 0.0184 0.0092 0.0704 0.0092 0.0184 0.0551 0.4224 0.0551 0.1102 

DN 0.0245 0.0245 0.0857 0.0082 0.0184 0.0184 0.0643 0.0061 0.0184 0.0184 0.0643 0.0061 0.1102 0.1102 0.3857 0.0367 

DD 0.0204 0.0153 0.0153 0.0918 0.0153 0.0115 0.0115 0.0689 0.0153 0.0115 0.0115 0.0689 0.0918 0.0689 0.0689 0.4133 
 
 

Table 3 The actual probabilities of changes for each pair of amino acids for the artificial example protein family in Fig. 3. 
 

 AA AR AN AD RA RR RN RD NA NR NN ND DA DR DN DD TOTAL 

AA 0 0 3 0 2 0 0 0 0 1 0 0 1 0 0 0 7 

AR 0 5 0 0 0 0 0 0 0 0 0 0 0 1 1 0 7 

AN 0 0 9 1 0 0 0 0 2 1 0 0 0 1 0 0 14 

AD 0 0 0 3 0 0 1 0 0 0 0 1 2 0 0 0 7 

RA 0 0 1 1 3 0 0 1 0 0 0 0 0 1 0 0 7 

RR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

RN 0 0 0 0 3 0 6 0 0 1 0 0 0 2 2 0 14 

RD 0 0 1 0 1 0 0 9 1 1 0 0 0 0 1 0 14 

NA 0 1 1 1 3 0 0 0 5 1 0 2 0 0 0 0 14 

NR 0 2 0 0 1 0 0 1 0 6 0 3 0 0 1 0 14 

NN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ND 0 1 0 0 0 0 0 1 0 1 0 3 0 0 0 1 7 

DA 0 0 2 0 1 0 0 0 1 0 0 1 8 0 1 0 14 

DR 0 0 0 0 1 0 0 1 0 0 0 0 1 4 0 0 7 

DN 0 0 1 1 0 0 0 0 1 0 0 0 0 1 3 0 7 

DD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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E. Find Discrepancies between the Actual and Theoretical 
Probabilities 

We compare the theoretical and the actual probabilities and 
note the most important discrepancies. The percentage 
probability difference in the theoretical and actual 
probabilities of the mutations of amino acid pairs is the 
absolute value of the difference between the two types of 
probabilities divided by the maximum of the two probabilities.   

Let T (p1, p2) and E (p1, p2) be the theoretical and the 
experimental probabilities, respectively, that the amino acid 
pair p1 changes into the amino acid pair p2.  Let PD (p1, p2) 
be the percent probability difference defined as follows:  

 
 

𝑃𝐷(𝑝1, 𝑝2) =  
|𝑇 𝑝1, 𝑝2 − 𝐸(𝑝1, 𝑝2)|

𝑀𝑎𝑥(𝑇 𝑝1, 𝑝2 ,𝐸 𝑝1, 𝑝2 )
 

 
 
The percentage Probability Difference (PD) for the top 

eight pairs of the consensus sequence mutating into other pairs 
in the descendant sequences of the artificial protein family is 
shown in Table 4 below.  
 

Table 4 Probability Differences for the protein sequences in Fig. 1 

 

III. THE PROTEIN FAMILIES USED IN THE EXPERIMENTS 
Our testing methods were also conducted on three other 

protein families for obtaining robust outcomes. We present the 
experimental values of the following protein families below.  
The PF series number indicates the serial number of the 
protein in the PFAM library (pfam.xfam.org) [4]. The PFAM 
library can be also browsed using the PROFESS protein 
database system [12] and references in the InterPro protein 
classification system [9].  

 
• DAGK_cat (PF00781) 
• IL17 (PF06083) 
• KA1 (PF02149) 

 

Note that the theoretical probabilities and actual 
probabilities are presented in Tables 4- 6. In that, the 
theoretical probabilities of certain amino acids that had a 
negligible probability value (<0.05) were rounded to zeros as 
they seemed to be meager for large sets of protein sequences. 
The actual mutation probability matrices for the respective 
protein families are presented in Tables 7 – 9 at the end of the 
article. are using Word, use either the Microsoft Equation 
Editor or the MathType add-on (http://www.mathtype.com) 
for equations in your paper (Insert | Object | Create New | 
Microsoft Equation or MathType Equation). “Float over text” 
should not be selected.  

In the next three sections we describe the protein families 
that were used in the experiments.   

 

A. The DAGK_cat Protein Family (PF00781) 
The protein family used here to test the method on large 

data set is the Diacylglycerol kinase catalytic domain 
(DAGK_cat) whose sequences can be referred from the 
PFAM Library. This domain consists of 31217 sequences, out 
of which 110 seed sequences were used for the experiment in 
this paper. The common mutation ancestor µ was calculated to 
be:  
 

KALVIVNPKSGTARGGKGKKLLERKVRPLLEEAGVS
DDELDLRLTENPGPGDVLRRGYGNLEKLKSNALELL
AGAAREAAEANEQSDGDTLLPWSENLAYGYCPDLIV
AAGGDGTVNEVLNGLAGNARRDDLELATRNHPRAV
LVPSSPPLGIIPLGRTGNDFARALNAHGGFEEGIPLGY
DPEEAARAALELIKKIKGQTRPVDVGKV 

 

B. The KA Protein Family (PF02149) 
This family consists of 1349 sequences in total, where 

around 105 sequences were used for the experiment discussed 
in this paper. The common mutation ancestor µ was calculated 
to be: 
 

LVVKFEIEVCKVPLLSGNSNSQEHLYGVQFKRINSGD
TWQYKNLASKILSELKL 
 

C. The IL17 Protein Family (PF06083) 
This family consists of 531 sequences in total, where 

around 102 sequences were used for the experiment discussed 
in this paper. The common mutation ancestor µ was calculated 
to be: 
 

RSLSPWDYREIDPHDPNRYPRVIAEARCLLCSGGSRCI
GDLNPATGQGEDDIAELQGLRRSLNSVPIYQEILVAF
LDGGGKLRRLCDKPCSRPKTHEPCAGCRYSYRLEPV
KETVTVGCTV 
 

IV. EXPERIMENTAL RESULTS 
Table 5 shows the experimental results for the DAGK_cat 

protein family (PF00781).  
 

 
Pair of 

Amino Acids 

 
Theoretical 
Probability 

(T) 

 
Actual 

Probability 
(A) 

  
Probability 
Difference 
PD (T, A) 

From à  To Freq Out 
of 

 

AD à DA 0.0204 2 7 92.86% 

AR à DN 0.0122 1 7 91.43% 

RN à DR 0.0294 2 14 79.43% 

AA à AN 0.1088 3 7 74.60% 

AN à NR 0.0327 1 14 54.29% 

NA à RA 0.0980 2 14 31.43% 

NR à ND 0.1029 2 14 28.00% 

RN à RA 0.1127 2 14 21.14% 
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Table 5 Anomalous probability differences for the DAGK_cat protein 
family for pairs of amino acids with or without mutations 

 
Pair of 

Amino Acids 
Theoretical 
Probability 

(T) 

Actual 
Probability 

(A) 

Probability 
Difference 

(PD) 

From à  To Freq Out 
of 

FA à LA 0.0042 23 111 97.99% 

VI à VF 0.0136 24 111 93.71% 

SG à AG 0.0144 21 111 92.38% 

PK à PT 0.0120 16 111 91.65% 

EV à EV 0.0426 43 111 89.00% 

SG à SG 0.0646 61 111 88.24% 

FA à FA 0.0533 44 111 86.55% 

NP à NP 0.0486 80 222 86.51% 

VA à IA 0.0288 19 111 83.19% 

IP à LP 0.0368 46 222 82.25% 

AR à AR 0.0215 67 555 82.23% 

NG à NG 0.0644 39 111 81.67% 

VD à ID 0.0412 22 111 79.19% 

DG à DG 0.1170 114 222 77.22% 

IP à IP 0.0792 70 222 74.89% 

TV à TL 0.0442 19 111 74.17% 

LN à VN 0.0301 25 222 73.27% 

LE à LN 0.0097 24 666 73.07% 

IV à VI 0.0223 18 222 72.55% 

VG à LG 0.0479 18 111 70.45% 

GD à GD 0.1170 131 333 70.26% 

TV à TV 0.1000 37 111 69.99% 

IP à VP 0.0477 33 222 67.94% 

GT à GT 0.1352 92 222 67.36% 

LG à AG 0.0538 46 333 61.08% 

GN à GN 0.0644 50 333 57.12% 

GG à GG 0.1466 113 333 56.80% 

PL à PL 0.0881 71 444 44.88% 

VL à VV 0.0507 24 333 29.66% 
 

 
 
Next, Table 6 shows the experimental results for the KA 

protein family (PF02149). 
 
 
 

 

Table 6 Anomalous probability differences for the KA protein family 
for pairs of amino acids with or without mutations 

 
Pair of 

Amino Acids 
Theoretical 
Probability 

(T) 

Actual 
Probability 

(A) 

Probability 
Difference 

(PD) 

From à  To Freq Out 
of 

PL à PR 0.0155 16 105 89.83% 

LS à LS 0.0193 32 210 87.33% 

VC à IV 0.0833 32 105 72.67% 

LY à LH 0.0625 21 105 68.75% 

YG à HG 0.082 26 105 66.88% 

KL à RL 0.0725 21 105 63.75% 

YK à YK 0.1947 53 105 61.43% 

EI à EI 0.1956 50 105 58.92% 

GV à GI 0.1361 33 105 56.70% 

CK à VK 0.1581 38 105 56.31% 

FE à FE 0.2976 69 105 54.71% 

QF à QF 0.1337 30 105 53.21% 

KF à RF 0.103 23 105 52.98% 

KV à KV 0.1565 34 105 51.67% 

VC à VC 0.1547 32 105 49.24% 

EV à EV 0.1666 34 105 48.55% 

KR à QR 0.0863 17 105 46.70% 

VP à LP 0.1226 24 105 46.36% 

EL à EL 0.2093 39 105 43.65% 

KV à KL 0.084 15 105 41.20% 

KR à RR 0.1194 21 105 40.30% 

IL à IL 0.2205 36 105 35.69% 

GD à GN 0.1702 27 105 33.81% 

RI à RV 0.1549 24 105 32.23% 

GV à GV 0.2467 38 105 31.83% 

FK à FK 0.2795 38 105 22.77% 

RI à RL 0.16 21 105 20.00% 

KR à KR 0.3238 40 105 15.00% 

VP à VP 0.2283 28 105 14.39% 

KF à KF 0.2795 33 105 11.07% 
 
 

Next, Table 7 shows the experimental results for the IL17 
protein family (PF06083). 
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Table 7 Anomalous probability differences for the IL17 protein 
family for pairs of amino acids with or without mutations 

 
Pair of 

Amino Acids 
Theoretical 
Probability 

(T) 

Actual 
Probability 

 (A) 

Probability 
Difference 

(PD) 

From  à To Freq Out 
of 

LV à PV 0.0006 16 102 99.61% 
VT à VP 0.0010 22 102 99.54% 
TV à PV 0.0010 27 204 99.25% 
LN à MN 0.0012 15 102 99.21% 
VG à VA 0.0015 16 102 99.07% 
TV à AV 0.0020 23 204 98.25% 
YQ à QQ 0.0030 17 102 98.20% 
GC à AC 0.0023 21 204 97.77% 
VG à VG 0.0181 70 102 97.37% 
LR à LK 0.0031 16 204 95.99% 
SP à CP 0.0079 18 102 95.50% 
LS à IS 0.0089 19 102 95.20% 
AR à AK 0.0080 17 102 95.17% 
IY à IQ 0.0082 17 102 95.10% 
AR à AQ 0.0089 17 102 94.65% 
PR à PS 0.0116 21 102 94.38% 
EA à EA 0.0344 60 102 94.15% 
PR à PQ 0.0131 19 102 92.96% 
RC à KC 0.0069 19 204 92.61% 
YP à FP 0.0207 27 102 92.17% 
YP à IP 0.0201 26 102 92.13% 
GQ à GK 0.0127 16 102 91.93% 
RC à QC 0.0076 18 204 91.35% 
DP à DE 0.0084 19 204 91.01% 
SV à SV 0.0430 48 102 90.86% 
SL à SI 0.0089 19 204 90.40% 
LS à LS 0.0311 33 102 90.39% 
SY à SF 0.0208 19 102 88.84% 
SL à SL 0.0310 55 204 88.50% 
AE à PE 0.0102 18 204 88.47% 
VP à LP 0.0072 6 102 87.68% 
RY à RI 0.0157 26 204 87.64% 
ED à ED 0.0373 30 102 87.33% 
RY à RF 0.0163 23 204 85.57% 
CI à CL 0.0405 27 102 84.68% 
CI à CV 0.0247 16 102 84.28% 

SP à SP 0.1167 71 102 83.24% 
PI à PV 0.0424 23 102 81.21% 
YR à FR 0.0163 17 204 80.47% 
DY à TY 0.0275 14 102 79.97% 
NR à NR 0.0954 47 102 79.30% 
YP à YP 0.0736 33 102 77.25% 
RS à RS 0.0915 80 204 76.67% 
HD à ID 0.0025 1 102 74.88% 
NS à NS 0.1218 46 102 72.99% 
YR à YR 0.0577 43 204 72.61% 
LV à VV 0.0109 4 102 72.22% 
HD à ED 0.0480 15 102 67.34% 
PW à PW 0.3044 88 102 64.72% 
PR à PR 0.0913 22 102 57.65% 
DP à DP 0.0857 33 204 47.01% 
WD à WT 0.1137 17 102 31.78% 

 
Table 8 shows five pairwise mutations that are common in 

at least two of the three protein families that we studied. The 
first three mutations occur exactly the same in the 
corresponding protein families. In the fourth and the fifth 
mutations, the pairs are interchanged. For example, when we 
take the IP à VP mutation, which occurs in the DAGK 
protein, and interchange the pairs on both the left and the right 
hand sides, then we get the symmetric mutation PI à PV, 
which occurs in the IL17 protein.  These two mutations are 
very similar to each other because proteins are amino acid 
chains, and the two mutations simple “read” these amino acid 
chains from different directions.  

 
Table 8 Common or similar mutations in the three protein families 
 

Mutation DAGK_cat        IL17 KA1   

1 EV à EV  EV à EV 

2   LS àLS LS à LS 

3  VP à LP VP à LP 

4 IP à VP PI à PV  

5 VL à VV LV à VV  

 
There are a total of 400 x 400 = 160,000 possible pairwise 

mutations. The probability of finding a common pairwise 
mutation out of the top 31 of IL17 mutations and the top 18 
KA1 mutations, is:  

 
Prob(out of the 18 newly picked from 160,000 at least one 

will match one of the 31 picked before)  = 1 – Prob(none of 18 
newly picked matches the 31 picked before) 

 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017 

ISSN: 1998-4510 176



 

 

In terms of number of permutations, this problem could be 
solved as: 

1 −
𝑃! 
!

    !
 𝑃! 

   

= 1 −  

𝑛!
𝑛 − 𝑟 !
𝑚!

𝑚 − 𝑟 !

 

 
where m = 160000, n = 160000-31 and  r =18. After the 
substitution of the respective values, we get: 

 

1 −
 !"####!!"  𝑃 !" 

          !"#### 𝑃 !" 

 

 ≈ 0.0035 

Let us set the above-calculated value 0.0035 to be our P-
value. As can be seen from Table 8, the probability of finding 
five common mutations in at least two of the protein families 
was calculated to be about ≤ 0.0001 which is significantly 
lesser than the P-value. Figs. 4 and 5 show the calculations 
and the statistical results generated using SAS for our proof. 

  
Fig. 4 SAS results showing the probability of finding at least one 

common pairwise mutation out of the top 31 of IL17 mutations and 
the top 18 KA1 mutations 

 

 
 

Fig. 5 Finding 5 common pairwise mutations out of the top 31 IL17 
mutations, the top 18 KA1 mutations and the top 31 DAGK_cat 

mutation 
 

 
Since the above probability of overlap is so small, our 

finding cannot be explained as a random event. This shows 
that the anomalies we found are not accidental but are some 
consequence of the chemical nature of these particular amino 
acid pairs and evolutionary forces acting on those pairs. 
Moreover, the above low probability is just for finding at least 
one common pairwise mutation whereas we have found three 
of them plus two other pairs that are complements of each 
other. 
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A. Charts 
Fig. 6 shows the histograms of the probability of each 

amino acid in the sample protein families. The amino acids are 
along the x-axis and the total possible outcomes (in numbers) 
are along the y-axis.  

V. CONCLUSION AND FUTURE WORK 
Large The experimental results suggest that adjacent pairs 

of amino acids in the surviving descendants are sometimes 
mutated in a dependent instead of an independent way.  Since 
the probability of overlap seems to be small about ≤ 0.0001 
and evidently lesser than out P-value which about ≤ 0.0035 
implies that we have a concrete proof that our findings cannot 
be explained as a random event. This shows that the anomalies 
we found are not accidental but are some consequence of the 
chemical nature of these particular amino acid pairs and 
evolutionary forces acting on those pairs. Moreover, the above 

low probability is just for finding at least one common 
pairwise mutation whereas we have found three of them plus 
two other pairs that are complements of each other. From the 
overall set of experiments, we can infer that the pairwise 
mutations of a protein sequence in a protein family does not 
have to be independent all the time. However, the 
experimental data is based only on three protein families. In 
the future we plan to use our independence testing method for 
many other protein families.  We also plan to experiment with 
using other amino acid substitution matrixes beside the 
PAM250 matrix [6]. We also plan to look at longer sequences, 
that is, consider adjacent N-mers of amino acids for N > 2. 

Finally, it is an intriguing question what the changed view 
of the amino acid similarity table implies about evolution [17]. 
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