
 

 

  
Abstract— Early identification of a dangerous strain of a virus or 

bacteria that may cause a pandemic requires practical methods for 
sequencing of their genomes. This paper describes the concept of 
compatible restriction enzymes, and a fast and cost-efficient genome 
map assembly and sequencing method. Computer experiments on 
plasmid and virus genomes show that the genome map assembly and 
sequencing can be done in an approximately linear time in the sizes 
of the genomes. 
 

Keywords— Bacteria, genome map assembly, plasmid, 
restriction enzyme, sequencing, virus.  

I. INTRODUCTION 
IRUSES  undergo relatively fast genetic changes by point 
mutations and genetic recombination or reassortment. 
The genomes of pathological bacteria can also change 

rapidly and abruptly often by horizontal gene transfer [17].  
These genetic changes can result in new viral or bacterial 
strains that lead to pandemics [14] that require vigilant 
monitoring and control. The early identification of new 
infectious virus and bacterial genomes hosted by the affected 
patients, together with quarantines, is an important preventive 
measure for pandemics. This implies a need for a fast and 
cost-efficient genome sequencing. 

Unfortunately the currently available genome sequencing 
machines can only handle DNA (or RNA) fragments of a 
couple of thousand base pairs. Due to that limitation, the 
genome has to be broken into smaller fragments that need to 
be sequenced separately and then reassembled. Genome 
sequences are cut into smaller fragments using restriction 
enzymes. 

After cutting the genome, the small fragments just float 
randomly in the solution, and all information about the 
original order of the fragments is lost. After the separated 
fragments are sequenced, they have to be somehow arranged 
and assembled to obtain the original genome sequence.  

 
Peter Z. Revesz is a professor in the Department of Computer Science and 
Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 USA 
(phone: 402-472-3488; fax: 402-472-7767; email: revesz@cse.unl.edu). Dipty 
Singh is a former graduate student at the University of Nebraska-Lincoln and 
currently works at USDA-NRCS in Fort Collins, Colorado. A preliminary 
version of this research was presented at the conference [13]. 

That process is called the genome map assembly problem 
(GMAP), for which many solutions were proposed [1, 2, 4, 5, 
6, 16, 19, 20]. In particular, Revesz [7, 9] proposed an 
approach based on constraint automata [10] that derive from 
constraint databases [3]. That method could not handle 
measurement errors. In this paper we describe a new 
measurement error-prone method for the genome map 
assembly problem. The new method is especially fast and 
effective for virus genomes as shown by computer 
experiments for viruses with genomes of size up to 35,937 
nucleotides.  

This paper is organized as follows. Section II describes the 
basic concepts of constraint automata. Section III describes 
compatible restriction enzymes. Section IV describes the new 
genome map assembly method using a constraint automaton. 
Section V describes the data sources. Section VI describes the 
experiments and analyzes the results. Finally, Section VII 
presents some conclusions and future work.  

II. REVIEW OF CONSTRAINT AUTOMATA 
Constraint automata are used to control the operation of a 

system, using state variables and conditions on them. It has to 
find the set of reachable configurations, which is the set of 
states and state values that the constraint automaton can enter. 
This is one of the important problems in constraint automata. 
Each constraint automaton consists of set of states, a set of 
state variables, transitions between states, an initial state, and 
the domain and initial values of the state variable. Each 
transition consists of guard constraints (set of constraints) 
followed by assignment statements. In constraint automata, the 
assignment statements are shown using the symbol ‘=’ and 
guards are followed by questions marks, e.g. a >= 100?   

If there is a transition whose guard constraints are satisfied 
by the current values of the state variables, a constraint 
automaton can move from one state to another. In addition to 
the state variables, the transitions of a constraint automaton 
may contain variables. Some of the values for these variables 
must be found such that the guard constrains are satisfied and 
the transition can be applied. For this reason, these variables 
are said to be existentially quantified variables. By sensing the 
current value of a variable, a constraint automaton can interact 
with its environment. This is expressed by a read(x) command 

Fast Virus and Bacteria Genome Sequencing by 
Compatible Restriction Enzyme Fingerprinting 

Peter Z. Revesz and Dipty Singh 

V 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018

ISSN: 1998-4510 18



 

 

on a transition between states, where x is any variable. This 
command can appear either before or after the guard 
constraints, which updates the value of x.  

III. COMPATIBLE RESTRICTION ENZYMES 
Restriction enzymes are nucleases that are made by bacteria 

to protect themselves from a virus by cutting their genomes at 
sites that have a specific pattern [3].  

When some restriction enzyme is applied to a DNA 
sequence and the lengths of the resulting fragments are 
measured, these lengths thus serve as the “fingerprint” of the 
DNA sequence.  

We say that two or more restriction enzymes are compatible 
if their cutting sites do not affect each other. That is, they can 
be applied in any sequence and the set of resulting small 
fragments is the same. In this paper, when we use several 
restriction enzymes in sequence, then they are always 
compatible restriction enzymes.   

For example, Table 1 shows three restriction enzymes 
obtained from the New England Biolab website 
(https://www.neb.com/tools-and-resources/selection-
charts/alphabetized-list-of-recognition-specificities). Clearly, 
the first and the second restriction enzymes are compatible 
because they can be applied in any order to result in the same 
set of cuts.  

 
Table 1 Three sample restriction enzymes. 

Restriction Enzyme Cutting Site 
BstBI TT/CGAA 
ClaI BspDI AT/CGAT 
TaqαI  T/CGA 

   
If a restriction enzyme c cuts all the sites that another 

restriction enzyme a cuts, then c is strictly stronger that a. In 
Table 1 the third restriction enzyme is strictly stronger than 
either the first or the second restriction enzyme. Note that 
when c is strictly stronger than a, then a and c are compatible 
with each other because using them in any order will result in 
the same set of fragments. 

IV. GENOME MAP ASSEMBLY BY CONSTRAINT AUTOMATA 
The genome map assembly problem can be abstracted as an 

instance of the big-bag matching problem [10]. A bag is a 
multiset, a generalization of a set in which each element can 
occur multiple times. A big-bag is a multiset whose elements 
are bags that can occur multiple times [10]. 

Each permutation of the bags and permutation of the 
elements of each bag within a big-bag is called a presentation 
[9,10]. There can be several different presentations of a single 
big-bag. The big-bag matching decision problem (BBMD) is 
the problem of deciding whether two big-bags match. The big-
bag matching problem (BBM) is the problem of finding 

matching presentations for two given big-bags if they match 
[10]. We use the concept of BBM to solve the GMAP.   

We modified Revesz’s compatible restriction enzyme 
fingerprinting method [10] to collect fingerprint input data. In 
our modification instead of using three restriction enzymes 
only two enzymes, which we refer to as enzyme a and enzyme 
b, are used. The data collection method is the following:   

1. The original DNA sequence is copied.  
2. Restriction enzyme a is applied to one copy of the 

sequence, which creates several fragments of varying 
lengths.  

3. The individual fragments are separated.  
4. Restriction enzyme b is applied to the separated 

fragments from step 3, producing sub-fragments.  
5. The length of the individual sub-fragments is 

measured using gel electrophoresis [16]. 
6. Steps 1-5 are repeated, but restriction enzyme b is 

applied first and restriction enzyme a is applied 
second.  

 
The collected fingerprint data are used input to our 

constraint automata solution, which is shown in Fig. 1. The 
automaton is modification of the one proposed by Ramanathan 
and Revesz [7]. The modification ensures that we can take 
care of measurement errors.  

All the elements from first copy of the DNA are stored in 
big-bag-A and all the elements from the second copy of the 
DNA are stored in big-bag-B. The automaton has the 
following states: 

• INIT – this is where the automaton begins 
• A-ahead  – if A bag is ahead.  
• B-ahead  – if B bag is ahead.  
• HALT – if the solution is found. 

 
The automaton has the following state variables: 

• UA: The set of A bags, which have not been used yet. 
• UB: The set of B bags, which have not been used yet. 
• S: The set of elements by which either A or B bag is 

currently ahead. 
 
The automaton starts in the INIT state and tries to reach the 

HALT state. The automaton moves from left to right by adding 
either an A bag or a B bag. If A bag is greater than B bag, it 
goes to A-ahead state. Else, it goes to B-ahead state. If they 
are equal, it goes to INIT state and starts the automaton with 
remaining UA and UB.  When UA, UB, and S are empty and 
all the bags are used, automaton goes into the HALT state and 
stops. 

This algorithm does not use backtracking. If it does not find 
the elements in S in both A-bag and B-bag it goes back to 
INIT state and starts the automaton all over again. This makes 
it very inefficient.  We further improve the efficiency by 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018

ISSN: 1998-4510 19



 

 

making a deterministic, backtracking automaton and also 
extended it to be able to handle errors. Our new constraint 
automaton (see Fig. 2) adds new state and state variables to 
the existing constraint automaton. Following are the states:  

• Error-Check – check to see if input data has any errors. 
• Replace-Error – if there is an error, replace it with the 

mean of two mismatched data elements from both A 
and B bags. 

• INIT – this is where the automaton begins. 
• A-ahead  – if A bag is ahead. 
• B-ahead  – if B bag is ahead.  
• Backtrack – if solution is not yet found but S is empty.  
• HALT – if the solution is found or if the error is greater 

than error tolerance value. 
 
The automaton has the following state variables: 
• Error: The difference between the mismatched values 

from the A and the B bags. 
• ErrorTolerance: The specified error tolerance value.  
• Length-A: All elements of S that belong to Big-Bag-A.  
• Length-B: All elements of S that belong to Big-Bag-B.  
• UA: The set of A bags, which have not been used yet. 
• UB: The set of B bags, which have not been used yet. 
• CurrBag: Current bag, which is the previous SelBag.  
• S: The set of elements by which either the A or the B 

bag is currently ahead. 
• Options: Set of bags from which next bag is chosen. 
• SelBag: The bag selected from Options as the next bag. 
• Choices: Set of remaining bags, which were not picked 

from Options besides the SelBag. 
• Cflag: 0 if Choices is empty; 1 otherwise.  
 
The automaton goes through the following steps to solve 

the GMAP. The input to the constraint automaton is the 
fingerprints of DNA fragments. Bags of big-bag A and big-
bag B are fed to the constraint automaton. The automaton 
starts with Error-Check state where input data are checked for 
any errors. An error may occur when the length of sub-
fragments of DNA is measured, which results in two different 
sets of elements in big-bags A and B. To check for any errors, 
each element of bags within big-bag-A is compared with the 
elements of bags within big-bag-B. If the elements do not 
match, then the input data has some error. Otherwise the input 
data is error free.  

If there is no error in the data it goes to INIT state. If the 
error is more than specified error tolerance value, then it goes 
to HALT state.  

If the error is less than or equal to the specified error 
tolerance value, it goes to Replace-Error state.  

If the data has some error, it goes to the Replace-Error 
state. The idea is to replace the wrong data with the mean of 

two mismatched data, so that it will have the same set of data 
in both big-bag A and big-bag B. 

Let’s consider the sequence of plasmid puc57. If we use the 
procedure discussed earlier to collect fingerprints of the 
sequence, we will get the fingerprint data shown in Table 2. 
 

Table 2 Big-Bags assuming perfect measurements.  
Big-Bag A Big-Bag B 
355 355, 19 
19, 196 68 
288 416 
121 373 
13 320 
541, 416, 373, 320, 68 196, 288, 121, 13, 541 

 
While measuring the length of each sub-fragment, if we get 

“17” instead of “13” in Big-Bag-A and “418” instead of “416” 
in Big-Bag-B. Then we will have the input data shown in 
Table 3. 

Table 3 Big-Bags with some measurement errors. 
Big-Bag A Big-Bag B 

355 355, 19 
19, 196 68 
288 418 
121 373 
17 320 
541, 416, 373, 320, 68 196, 288, 121, 13, 541 

 
The automaton compares each element of both bags and 

finds that 17 and 13, and 416 and 418 do not match. It takes 
the mean of each pair of mismatched elements and replaces 
them with their mean in both Big-Bag-A and Big-Bag-B as 
shown in Table 4. 

 
Table 4 Tests of the approximations on some sample publications. 

Big-Bag A Big-Bag B 
355 355, 19 
19, 196 68 
288 417 
121 373 
15 320 
541, 417, 373, 320, 68 196, 288, 121, 15, 541 

 
After replacing the wrong data, both bags contain the same 

set of elements and they move to INIT state.  
The automaton comes to INIT state, if either the data has no 

error or if all the errors have been replaced by the means of 
two mismatched data. All the A bags are stored in UA and all 
B bags are stored in UB. Since this is the first state where it 
actually starts processing data for solving GMAP, it can pick 
any bag from either the big bag A or B. So Options is set to all 
the bags from A and B. The leftmost bag is selected from 
Options and set to SelBag and remaining bag is set to Choices. 
The elements of SelBag are set to S.  Since Choices is not 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018

ISSN: 1998-4510 20



 

 

empty, Cflag is set to 1. The bag that is just selected is 
removed from either UA or UB from whereever it belongs. 
The elements of the bag in SelBag are set to either Length-A or 
Length-B. If Length-A is greater than Length-B, the automaton 
goes to the A-ahead state; otherwise it moves to the B-ahead 
state. 

Using Fig. 2, if A1 is picked as the SelBag, then, UA=A2, 
A3, A4, A5; S = 355 and Length-A = 355. The automaton 
goes to the A-ahead state.  

If the automaton is in A-ahead state, the next bag to be 
picked is selected from UB.  The automaton tries to match the 
elements of S and SelBag as far as possible.  

If S is a subset of SelBag, then the automaton moves to the 
B-ahead state and S is set to the difference between S and the 
elements of SelBag. 

If SelBag is a subset of S, then the automaton moves to the 
A-ahead state and S is set to the difference between S and the 
elements of SelBag. 

The elements of S are now compared with the elements of 
all the bags of UB. All the bags that are either a subset or a 
superset of S are set to Options. If the automaton does not find 
any bag that meets these criteria, then it goes to the Backtrack 
state. Using Fig. 2, if S = “541, 288, 121, 373, 68, 416, 320” 
and Options = “B3, B4, B6, B5” then the leftmost bag is 
picked and set to SelBag.  

If the automaton is in the B-ahead state, then the next bag is 
selected from UA. A similar procedure to that in step 4 is 
followed to select the next SelBag. Again, if SelBag is empty, 
then the automaton goes to the Backtrack state. 

If the automaton is in the Backtrack state, then it goes back 
to the last node for which the Cflag is set to 1. The idea is to 
select some other bags from Options beside the one picked 
initially, which might have led to the Backtrack state. Hence 
the automaton tries to go to a node where there are some other 
Choices. For this reason Cflag is used initially to help keep 
track of Choices, in case we need to come back and look for 
other options. 

Next the automaton retrieves the values of all the state 
variables from that particular node and resets the current 
values of state variables with the one from that node. It either 
goes to A-ahead or B-ahead state, depending on the current 
value of Length-A or Length-B. No matter which state it goes 
to, the automaton picks the next bag from Options, discarding 
the ones that it has already tried and has failed. 

If Length-A is greater than Length-B, then the automaton 
goes to the A-ahead state; if Length-B is greater, then it goes 
to the B-ahead state. Sometimes, Length-A and Length-B can 
be equal. In that case, the automaton selects one random bag 
from UA and continues.  

If all the bags in UA and UB are used and if S is empty, then 
the solution has been found. Hence the automaton goes to the 
HALT state. 

V. DATA SOURCES 
The constraint automaton was implemented using Perl, 

which is commonly used in bioinformatics [19]. In addition, 
the program was compiled in Eclipse SDK v3.5.2 (see the 
webpage http://www.eclipse.org/downloads/) using EPIC 
(Eclipse Perl Integration). Eclipse is a multi-language software 
development environment. EPIC is an open source Perl 
Integrated Development Environment is based on the Eclipse 
platform.  

To implement and test any algorithm we need to have data 
sets. The data for the implemented algorithm are the 
sequences of DNA of plasmids and phage. The sequence of 
DNA is often stored in a flat text file called FASTA file. It is a 
text-based format for representing nucleotide sequence or 
peptide sequence. “A sequence in FASTA format begins with 
a single-line description, followed by lines of sequence data. 
The description line is distinguished from the sequence data 
by a greater than (“>”) symbol in the first column.” The 
FASTA files for the plasmids and phage were downloaded 
from New England BioLabs. (http://www.neb.com). 

One way of making copies of a DNA is to insert a DNA 
piece into the genome of an organism, a host or vector and let 
the organism multiply itself. The inserted piece (the insert) 
gets multiplied along with the original DNA of the host upon 
host multiplication.  “A plasmid is a piece of circular DNA 
that exists in bacteria” [16]. It replicates itself when the cell 
divides and each copy of a daughter cell keeps one copy of the 
plasmid.  Plasmids make good vectors but can only handle 
inserts up to 15 kbp [16]. Bacteriophages or just phages are 
viruses that infect bacteria. They are often used as vectors. 
Inserts in phage DNA get replicated when the virus infects a 
host bacterium.  To observe the variation in computational 
complexity with respect to different length sequences, plasmid 
and phage ranging from 2710 to 35937 bp were chosen. The 
following plasmids and phage are used to test the proposed 
algorithm.  

 
• pUC57:  2710 base pairs 
• pTXB1:  6706 base pair  
• pKLAC-malE – 10153 base pairs 
• pB85766 – 14875 base pairs 
• Adenovirus-2 – 35937 base pairs 

 
To collect fingerprints of sequences, restriction enzymes 

MvaI and MaeII were used. MvaI is an isolate from 
Micrococcus varians RFL19 and has restriction site at 
CC^WGG. “W” can be either A or T.  MaeII is isolated from 
Methanococcus aeolicus and has restriction site at A^TCG. 

DNA sequences were cleaved into fragments and sub-
fragments by using Webcutter 2.0 [20].  Each DNA sequence 
is first cut by MvaI, then each individual fragment is again cut 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018

ISSN: 1998-4510 21



 

 

by MaeII to obtain sub-fragments. This resulting data for Big-
Bag-A is shown in the next table. 

 
Bag Fragment Sub-Fragments 
A1 355 355 
A2 215 19, 196 
A3 288 288 
A4 121 121 
A5   13 13 
A6   1709     541, 416, 373, 320, 68 

 
Next, each DNA sequence is cut by MaeII, and then by 

MvaI to obtain the data for Big-Bag-B as shown in the next 
table. 

 
Bag Fragment Sub-Fragments 
B1 374 355, 19 
B2 416 416 
B3 373 373 
B4 320 320 
B5   68 68 
B6   1159 196, 13, 288, 121, 541 

 

VI. EXPERIMENTAL RESULTS AND ANALYSIS 
Input data of all five DNA sequences were fed to the 

implemented application and the results were analyzed 
separately and also compared with one another. The results 
were compared by the time it takes to assemble each 
subsequence for both erroneous and error free data. To better 
analyze the results we considered input data both without 
measurement errors and with error. For space limitations, we 
describe only the latter case. 

We set the error tolerance to 5, that is, we allowed a percent 
of the original data values to deviate by at most 5 units from 
the precise measurements. Table 5 illustrates the process of 
adding random errors within the threshold to mimic 
measurement errors. Below is a summary of the same input 
data.  

 
A1 A2 A5 A3 A4 A6 
355 19, 196 13 288 121 541, 416, 373, 320, 68 

355, 19 196, 13, 288, 121, 541 416 373 320 68 

B1 B6 B2 B3 B4 B5 

 
 
The execution steps of the constraint automaton are shown 

in Table 6. The average execution time for the erroneous input 
data for each DNA sequences is as follows: 

Sequence Base Pairs Bags Time (s) 

pUC57 2710 10 0.32 

pTXB1 6706 44 0.88 

pKLAC-malE 10153 46 1.04 

pB85766 14875 84 19 

Adenovirus-2 35937 221 76 
 
The execution time data for error-free and erroneous data 

are visualized in Figs. 3 and 4.  
With erroneous input data, the R-square value for linear 

equation is 0.96 and P-value is 0.003. This concludes that the 
linear function better fits (R-square value approximately equal 
to 1 and P-value <0.01) the execution time and the length of 
DNA sequence than the cubic, quadratic and exponential 
functions. 

 
Functions P-Value R2-Value 
Linear 0.96 0.003 
Quadratic  0.987 0.013 
Cubic 0.997 0.071 
Exponential 0.845 0.027 

 
The execution times for different sets of input were 

analyzed to predict the pattern of output and use the results to 
help reduce the execution time to find the solution for GMAP. 

 

Sequence A 
Bags 

  B 
Bags Difference Time 

(s) 
pUC57 5 5 0 0.31 
pTXB1 20 24 4 0.84 
pKLAC-malE 21 25 4 1.01 
pB85766 51 33 18 18.1 
Adenovirus 137 84 53 74.6 

 
From the above table, the difference between number of 

bags in Big-Bag-A and Big-Bag-B for pB85766 is 18. The 
higher the difference between numbers of bags, there is a high 
chance that there will be more bags with just one element in 
which ever big bag has higher number of bags.  

If the numbers of bags with only a single element is high, 
there is less likelihood of finding the overlapping fragments in 
the opposite Big-Bag without backtracking multiple times. 
The output file in Appendix BA shows the stepwise fragment 
assembly for pB85766. The program backtracks several times 
and ultimately finds the solution at an average execution time 
of 18.1 seconds.  

To investigate whether or not difference in numbers of bags 
with two big bags effect the execution time, another pair of 
restriction enzymes; MaeI(C^TAG) and Hinfl(G^ANTC) were 
applied to the DNA sequence of pB85766. In this case, the 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018

ISSN: 1998-4510 22



 

 

number of A and B bags changed and the execution time 
improved as follows. 

 
Sequence A Bags B Bags Difference Time (s) 
pB85766 44    40   4   3.5 
 
Even though the total number of the bags is almost the 

same, the difference between the numbers of bags is 
significantly reduced.  This resulted in many overlapping 
fragments in the opposite big-bags and led to finding the 
solution within only 3.5 seconds by eliminating many 
backtrackings. 

VII. CONCLUSIONS AND FUTURE WORK 
This paper presented a solution to the genome map 

assembly and sequencing problem using a constraint 
automaton that allows error tolerance unlike an earlier 
proposal by Revesz [10]. Our genome map assembly is 
particularly suitable for viral genomes. In the future it may be 
possible to automate the process of viral genome map 
assembly and sequencing by building a machine that 
implements our algorithm. Such a machine needs to include 

automated gel electrophoresis and sequencing of small size 
genomes.  

Future research may also take advantage of more general 
methods of combining information that may be slightly 
contradictory, like in the case of measurement errors for the 
number of base pairs. For example, contradictory information 
can be combined using arbitration operators [8] and 
classification integration techniques [12].  

Our approach may be also tried for larger genomes such as 
those of bacteria. Bacterial genomes also suffer considerable 
evolutionary genetic drift [11, 17]. Horizontal gene transfer 
plays a significant role in bacterial evolution and is a 
mechanism by which bacteria can develop resistance to 
antibiotics. The growing antibiotic resistance by pathogenic 
bacteria is an important emerging medical problem in 
hospitals. While the experiments focused on plasmid and 
viruses, our fast genome sequencing method can likely also 
help monitor emerging bacterial strains that may be highly 
antibiotic resistant. The easier monitoring of emerging strains 
of viruses and bacteria could help control pandemics and save 
human lives.   

 

 
 

Fig. 1. A non-deterministic constraint automaton for the genome map assembly problem. 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018

ISSN: 1998-4510 23



 

 

  

 

            
 
 

Fig. 2 A deterministic constraint automaton for the genome map assembly problem. 
 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018

ISSN: 1998-4510 24



 

 

 

 

Table 5. This table shows the process of taking the original input data and randomly applying changes that mimic measurement errors. The 
individual bags are also randomly reordered. All the introduced errors are less than or equal to the threshold value. 

 
Original Input Data Randomized Input Data with Error Bags 

<BAG> <BAG> Big-Bag-A 

355 355 A1 

19 196 19 196 A2 

288 288 A3 

121 121 A4 

13 541 416 373 320 68 A5 

541 416 373 320 68 13 A6 

<BAG> <BAG> Big-Bag-B 
355 19 359 19 B1 

196 288 121 13 541 416 B2 

416 373 B3 

373 325 B4 

320 68 B5 

68 196 285 121 13 541 B6 

 
 
 
 

Table 6. Stepwise fragment assembly of pUC57 with error. 
 

Node  CurrBag S UA UB Options SelBag Choices Cflag 

1 A1 357 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 B1 B1 {} 0 

2 B1 19 A2 A3 A4 A5 A6 B2 B3 B4 B5 B6 A2 A2 {} 0 

3 A2 196 A3 A4 A5 A6 B2 B3 B4 B5 B6 B6 B6 {} 0 

4 B6 286 13 541 121 A3 A4 A5 A6 B2 B3 B4 B5 A3 A6 A5 A4 A3 A6 A5 A4 1 

5 A3 13 541 121 A4 A5 A6 B2 B3 B4 B5 A6 A5 A4 A6 A5 A4 1 

6 A6 541 121 A4 A5 B2 B3 B4 B5 A5 A4 A5 A4 1 

7 A5 373 68 322 121 416 A4 B2 B3 B4 B5 B3 B5 B4 B2 B3 B5 B4 B2 1 

8 B3 68 322 121 416 A4 B2 B4 B5 B5 B4 B2 B5 B4 B2 1 

9 B5 322 121 416 A4 B2 B4 B4 B2 B4 B2 1 

10 B4 121 416 A4 B2 B4 B2 A4 B2 1 

11 A4 416   B2 B2 B2 {} 0 
 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018

ISSN: 1998-4510 25



 

 

 

 
 
 

 
Fig. 3. Regression model for error free data, using execution time as dependent variable and length of sequence as predictor. 

 
 
 
 

 
Fig. 4. Regression model for erroneous data, using execution time as dependent variable and length of sequence as predictor. 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018

ISSN: 1998-4510 26



 

 

REFERENCES   
[1] W. Gillett, L. Hanks, G. K. Wong, J. Yu, R. Lim, and M. V. Olson, 

“Assembly of high-resolution restriction maps based on multiple 
complete digests of a redundant set of overlapping clones,” Genomics, 
vol. 33, no. 3, pp. 389-408, 1996. 

[2] E. D. Green, and P. Green, “Sequence-tagged site (STS) content 
mapping of human chromosomes: Theoretical considerations and early 
experiences,” PCR Methods and Applications, vol. 1, no. 2, pp. 77-90, 
1991. 

[3] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz, “Constraint query 
languages,” Journal of Computer and System Sciences, vol. 51, no. 1, 
pp. 26-52, 1995. Available: http://dx.doi.org/10.1006/jcss.1995.1051 

[4] E. S. Lander, and M. L Waterman, “Genomic mapping by fingerprinting 
random clones: A mathematical analysis,” Genomics, vol. 2, no. 3, pp. 
231-239, 1988. 

[5] M. V. Olson, J. E. Dutchik, M. Y. Graham, G. M. Brodeur, C. Helms, 
M. Frank, M. MacCollin, R. Scheinman, T. Frank, “Random-clone 
strategy for genomic restriction mapping in yeast,” Proceedings of the 
National Academy of Sciences of the USA, vol. 83, no. 20, pp. 7826-
7830, 1986. 

[6] P. A. Pevzner, Computational Molecular Biology: An Algorithmic 
Approach, Bradford Book, 2000. 

[7] V. Ramanathan, and P. Z. Revesz, “Constraint database solutions to the 
genome map assembly problem,” in Proceedings of the 1st International 
Symposium on Constraint Databases, Springer LNCS 3074, 2004, pp. 
88-111. 

[8] P. Z. Revesz, “On the semantics of arbitration,” International Journal of 
Algebra and Computation, vol. 7, no. 2, pp. 133-160, 1997. Available: 
http://dx.doi.org/10.1142/S0218196797000095 

[9] P. Z. Revesz, “Refining Restriction Enzyme Genome Maps,” 
Constraints, vol. 2, no. 3-4, pp. 361-375, 1997. 

[10] P. Z. Revesz, P. Z, Introduction to Databases: From Biological to 
Spatio-Temporal, Springer, New York, NY, 2010. 

[11] P. Z. Revesz, “An algorithm for constructing hypothetical evolutionary 
trees using common mutations similarity matrices,” in Proceedings of 
the 4th ACM International Conference on Bioinformatics and 
Computational Biology, ACM Press, pp. 731-734, 2013. 

[12] P. Z. Revesz and T. Triplet, “Classification integration and 
reclassification using constraint databases,” Artificial Intelligence in 
Medicine, vol. 49, no. 2, pp. 79-91, 2010. Available: 
http://dx.doi.org/10.1016/j.artmed.2010.02.003 

[13] P. Z. Revesz, D. Singh, “Efficient and robust constraint automaton-
based genome map assembly,” in Proc. 4th International C* Conference 
on Computer Science and Software Engineering, ACM Press, no. 9, pp. 
1-9, Montreal, Canada, August 2014. 

[14] P. Z. Revesz and S. Wu, “Spatiotemporal reasoning about 
epidemiological data,” Art. Int. in Medicine, vol. 38, no. 2, pp. 157-170, 
2006. Available: http://dx.doi.org/10.1016/j.artmed.2006.05.001 

[15] T. Triplet, M. Shortridge, M. Griep, J. Stark, R. Powers, and P. Z. 
Revesz, “PROFESS: A protein function, evolution, structure and 
sequence database,” Database - The Journal of Biological Databases 
and Curation, DOI=10.1093/baq011, 2010. Available: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911846/#lpo=2.6158 

[16] C. Setubal, and J. Meidanis, Introduction to Computational Molecular 
Biology. Brooks/Cole Publishing Company, Pacific Grove, CA, 1997. 

[17] M. Shortridge, T. Triplet, P. Z. Revesz, M. Griep, and R. Powers, 
“Bacterial protein structures reveal phylum dependent divergence,” 
Computational Biology and Chemistry, vol. 35, no. 1, pp. 24-33, 2011. 

[18] A. F. Siegel, J. C. Roach, C. Magness, E. Thayer, and G. van den Engh, 
“Optimization of restriction fragment DNA mapping,” Journal of 
Computational Biology, vol. 5, no. 1, pp.113-126, 1998. 

[19] J. Tisdall, Beginning Perl for Bioinformatics, O'Reilly Media, 
Sebastopol, CA, 2001. 

[20] G. K. Wong, J. Yu, E. C. Thayer, M. V. Olson, "Multiple-complete-
digest restriction fragment mapping: Generating sequence-ready maps 
for large-scale DNA sequencing," Proceedings of the National Academy 
of Sciences of the USA, vol. 94, no. 10, pp. 5225-5230, 1997. 

 
 
 
 
 
 
 

Peter Z. Revesz (Ph.D.’91) holds a Ph.D. 
degree in Computer Science from Brown 
University and was a postdoctoral fellow at the 
University of Toronto. 

He is an expert in databases, data mining, big 
data analytics and bioinformatics. He is the 
author of Introduction to Databases: From 
Biological to Spatio-Temporal (Springer, 2010) 
and Introduction to Constraint Databases 
(Springer, 2002). He is currently a professor in 
the Department of Computer Science and 
Engineering at the University of Nebraska-
Lincoln, Lincoln, NE 6815, USA.  

Dr. Revesz also held visiting appointments at the Aquincum Institute of 
Technology, the IBM T. J. Watson Research Center, INRIA, the Max Planck 
Institute for Computer Science, the University of Athens, the University of 
Hasselt, the U.S. Air Force Office of Scientific Research and the U.S. 
Department of State.  He is a recipient of an AAAS Science & Technology 
Policy Fellowship, a J. William Fulbright Scholarship, an Alexander von 
Humboldt Research Fellowship, a Jefferson Science Fellowship, a National 
Science Foundation CAREER award, and a “Faculty International Scholar of 
the Year” award by Phi Beta Delta, the Honor Society for International 
Scholars. 

 
Dipty Singh (M.S.’11) earned a M.S. degree in Computer Science at the 

University of Nebraska-Lincoln. She is currently working as a build & release 
engineer at the USDA-NRCS in Fort Collins, Colorado.    

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018

ISSN: 1998-4510 27




