
 

 

  
Abstract— Asthma and COPD are the most common breathing 
diseases nowadays. Analysis and processing of breathing records are 
important diagnosis tools. This paper compares efficiency results of 
SVM classification of two classes: first the breathing noise and 
second the pause of signal samples recorded on subjects in real-life 
clinical conditions. In these conditions there is an appearance of 
noise and short impulse signals (transients) which are in this paper 
reduced by using DWT and different thresholding techniques to see if 
the denoised signal samples give better validation results. 
Classification results show that the best results are obtained when 
energy, Renyi entropy and standard deviation are taken as features for 
SVM classification. Testing of data revealed that original signal 
samples give better results of accuracy than the denoised signal 
samples.  
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I. INTRODUCTION 
NALYSIS of breathing sounds is a challenging task to 
scientists but also helpful in determination of type of 

breathing disease of a patient. In this paper we will focus on 
processing of acoustic signals recorded on patients with 
asthma and COPD (Chronic Obstructive Pulmonary Disease). 

Bronchial asthma (asthma) is a reversible obstructive lung 
disease which results in recurrent attacks of losing breaths and 
wheezing. The symptoms can vary in severity and frequency 
from patient to patient and during the asthmatic attack, the 
lining of the bronchial tubes swells which results in narrowing 
of bronchi and reducing the flow of air into and out of lungs 
[1]. 

It is one of top five chronic diseases in the world and 
according to data of World Health Organization (WHO), 235 
million people currently suffer from it. There were almost 383 
000 deaths of asthma in 2015 [1]. Also, it is one of the most 
chronic diseases among children in almost all industrialized 
countries [2]. It can be provoked by different triggers 

 
Igor Mazic is with the Department of Electrical Engineering and 

Computing, University of Dubrovnik, Cira Carica 4, 20000 Dubrovnik, 
Croatia (e-mail: igor.mazic@unidu.hr).  

Anamaria Bjelopera is with the Department of Electrical Engineering and 
Computing, University of Dubrovnik, Cira Carica 4, 20000 Dubrovnik, 
Croatia (e-mail: anamaria.bjelopera@unidu.hr).  

Luka Strazicic is a student at  the Department of Electrical Engineering 
and Computing, University of Dubrovnik, Cira Carica 4, 20000 Dubrovnik, 
Croatia .(e-mail: luka.strazicic@unidu.hr). 

including: viral infections, indoor and outdoor allergens, 
exercise, tobacco smoke and poor air quality [3]. Early 
diagnosis and treatment are essential for treating asthma. 

Although there are diagnostic devices for determination of 
degree of obstruction in breathing during asthmatic attack, the 
patient must be cooperative and there still exists the problem 
of objective indicator of the respiratory system state.  

Respiratory sounds are divided into two groups:normal and 
abnormal sounds. Normal sounds are heard from the top of the 
different parts of the chest wall in healthy subjects and 
abnormal respiratory sounds are heard from different parts of 
the chest wall of subjects with different respiratory diseases 
secretion [4]. 

Lung auscultation is helpful information about patient's 
respiratory function and the presence of wheezing is used as an 
important parameter to determine the predisposition to asthma 
[5]. Wheezes are the most known auscultation symptoms 
which can be shown in the beginning of asthmatic attack. 
Typical symptom patterns are significant in establishing the 
diagnosis. Other abnormal respiratory sounds are crackles 
which are mostly produced as a result of airway opening and 
airway secretion [6]. 

Important information about asthma is also collected on 
trachea and larynx. In our paper signals recorded on trachea 
will be processed (trachea connects the larynx to the lungs). 
Our problem is the identification which part of recorded 
acoustic signal is a pause and which is respiratory noise 
(inspiration/expiration). We will focus first on reducing noise 
and transients in recorded sound on trachea of asthma ill 
patients and healthy subjects by using discrete wavelet 
transform (DWT) with different types of wavelets and then 
thresholding of wavelet coefficients. Second, in order to see if 
the reducing of transients and noise will pollute better results 
of classification of recorded acoustical signals, we will use 
SVM (Support Vector Machine) tool for classification of two 
classes in recorded signal:  

• respiratory noise (inspiration/expiration), 
• pause of the signal. 

In second section the problem will be identified and solution 
will be proposed. Third section describes the modeling and 
classification of breathing sounds and results of validation. 
Fourth section will bring the conclusion. 

Comparison of the SVM classification results 
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Igor Mazic, Anamaria Bjelopera and Luka Strazicic  

A 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 12, 2018 

ISSN: 1998-4510 143



 

 

II.  PROBLEM IDENTIFICATION AND PROPOSED SOLUTION 
 In medicine in order to identify the state of respiratory 
system, acoustic breathing records (phonopneumograms) 
based on anatomical and physiological parameters i.e. age, 
sex, type and stage of disease are used [7]. Measuring 
equipment is consisted of transducers that are put on chest or 
trachea and which collect acoustic signals during breathing [2]. 
Analysis of recorded acoustic signals is not an easy work and 
there are many factors that affect the results of auscultation 
signal analysis [8]: air volume changes in the lungs, 
corpulence of the patient and age, location of sound capturing, 
breathing flow, position of the patient and also the 
measurement equipment features.  
 A normal respiratory sound is the sound produced by the 
lungs of healthy people during inspiration and expiration. 
More than 75% of acoustic power during the inspiration is 
between 100 and 250 Hz, while 99% is less than 600 Hz [9]. 
Abnormal respiratory sounds that do not occur during 
breathing of healthy person and that are found in asthma are 
wheezes and crackels. Wheezes are mostly found in the 
expiration, but they can also be found during inspiration. 
Crackles are usually found during inspiration and rarely during 
expiration [10]. In normal breathing inspiration/expiration 
time ratio is from 1:1.5 to 1:2. During the asthmatic attack 
there is appearance of obstructions in breathing so the time of 
expiration is prolonged and it includes wheezing. 
 For analysis of breathing records it is important to 
distinguish pause and breathing noise of recorded signal so the 
main goal of our paper is classification of two classes in 
breathing records: respiratory noise (during 
inspiration/expiration) or the pause in recorded acoustic 
signals of different patients. First preprocessing of recorded 
breathing signals should be made, second feature extraction 
and modelling and third validation of classification. 
 In acquisition of respiratory sounds mostly two types of 
measuring sensors are used: accelerometer and microphone. 
Accelerometer is put on skin and microphone is built in the 
closed box. Also, accelerometer measures vibrations on skin, 
while the microphone measures the change of sound pressures 
made by vibration of skin during breathing. Measuring sensors 
are usually allocated on chest wall or on trachea. Spectrum of 
signal measured on trachea is different from that measured on 
chest wall because of the low-pass filter behaviour of skin and 
chest wall. The tissue of trachea is thinner and so the 
attenuation of higher spectral frequencies will be smaller than 
those higher frequencies measured on chest wall. Normal 
sound of breathing measured on trachea is in frequency band 
between 100 and 1500 Hz. Acoustical power measured on 
trachea is higher during expiration while on chest wall during 
the inspiration. We will analyse the recorded breathing on 
trachea. 
 Our measuring system consists of Thinklabs One Digital 
Stethoscope [11] connected to the notebook. In measuring of 
breathing sounds on trachea, except the noise present in the 
acoustic signal as a result of a noisy hospital, there is also an 
emergence of non-physiological artefacts in signal which are 
the result of restless subjects. Moving of the stethoscope 
during breathing caused appearance of very short repeating 

impulses of high intensity (transients) compared to normal 
breathing noise. This can reduce the results of validation of 
classification of acoustic signals so first preprocessing of 
signal is going to be made by using DWT and thresholding 
technique [12], [13], [14] on wavelet coefficients in order to 
reduce the transients and the noise in recorded breathing 
signal, so actually we will be denoising the signal. We use 
Wavelet Toolbox in MATLAB software for three steps: 

• DWT- decomposition of acoustic signal, 
• hard or soft thresholding of wavelet coefficients, 
• IDWT - reconstruction of signal. 

 Wavelets are powerful tool for audio signal processing and 
it is possible to find the best wavelet family for each problem 
solution mostly by testing each one and finding the most 
suitable. Here in our testing we use five wavelet families: 
Haar, Daubechies (db6), Coiflet (coif5), Biorthogonal 
(bior3.9) and Symlet (sym5) family and for each one 6 levels 
of decomposition and then compare the results. We also use 
different thresholding techniques: hard thresholding which sets 
all coefficients values to zero if they are bellow given 
threshold and keeps the values if they are above threshold or 
soft thresholding which reduces the wavelet coefficients above 
threshold by the value of threshold and changes the signal 
energy. Also for soft and hard thresholding we found that 
‘sqtwolog’ (universal threshold) and ‘heursure’ (mix of 
universal threshold and threshold defined by Stein’s Unbiased 
Estimate of Risk) methods of finding threshold are most 
suitable for reducing transients and noise in signals. 
  
Table I Standard deviation of used signals before and after 
wavelet denoising (Haar wavelet, 6 levels of decomposition, 
hard thresholding) 

Signal Original signal Denoised signal 
9T 0.0861754 0.0113438 

12T 0.0222024 0.0039243 
13T 0.1534788 0.0181377 
14T 0.1613673 0.0183153 
15T 0.1084039 0.0132604 
16T 0.0412584 0.0084188 
17T 0.0424603 0.0060601 
18T 0.0097667 0.0019480 
19T 0.0281140 0.0042319 
22T 0.0092997 0.0025144 
23T 0.0251523 0.0096047 
27T 0.0059676 0.0031546 
37T 0.0193358 0.0021933 
38T 0.0171253 0.0030508 
39T 0.0131973 0.0011727 
44T 0.0103946 0.0051564 

  
 Calculated standard deviation of 16 different breathing 
signals recorded on trachea (T) used for training and validation 
before and after wavelet denoising can be seen in Table I in 
order to show how the noise and transients are reduced. 
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Results were calculated using MATLAB Wavelet Toolbox and 
best results were shown using Haar wavelet and hard denoising 
with ‘sqtwolog’ method. Also, 6 levels of decomposition were 
used. On Fig.1 original (red) and denoised 23T signal with 
Haar wavelet and hard ‘sqtwolog’ thresholding (purple) are 
shown. 
 After preprocessing with wavelet denoising we focus on 
feature extraction and classification of signals and then 
compare the results.The purpose of features extraction is to 
convert the signal waveform into a reduced number of 
parameters that will be used for further analysis and processing 
[15]. Various types of extracted features can be used: time-
frequency spectrum, entropy, Mel Frequency Cepstral 
Coefficients (MFCC), power spectral density (PSD), standard 
deviation (SD), Peak Frequency (FP), skewness, kurtosis, etc. 
Which features are the best to be extracted, is a consequence 
of different signal processing and classification techniques 
applied on recorded acoustic signals [2]. 

 

   
Fig. 1 Original and denoised 23T signal 

 
 Use of MFCC features has been very useful in acoustical 
signal analysis and classification [16]. There are many papers 
that describe helpful use of MFCC features in analysis and 
better accuracy of recognition of different sounds of acoustic 
signals [7], [15], [17], [18], [19], [20] and therefore they are 
used here for classification of respiratory sounds. Also, energy 
(ENE), Renyi entropy (E) (α=2) and standard deviation (SD) 
are taken into account. 
 For classification we take SVM [7], [21] which is nowadays 
considered to be a powerful tool for classification in 
processing of acoustic signals. It is a kernel-based learning 
algorithm designed for binary classification which is suitable 
for our case of classification of our two classes (respiratory 
sound and pause). Support vectors define a decision boundary 
in higher dimensional feature space that separates two classes 
and its parameter C is set to one. To improve classification 
results Radial basis kernel function (RBF) is used and its 
parameter γ varies.  
 In order to see if it is necessary to clean the signal of noise 
and transients to get better results of classification we do the 
validation of results in next chapter. 
 

III. MODELING AND CLASSIFICATION OF RESPIRATORY 
SOUNDS 

A. Evaluation Measures 
 The efficiency of recognition of two classes: breathing noise 
and pause, was evaluated with following validation measures: 
overall accuracy, TPR (True Positive Value or Sensitivity), 
TNR  (True Negative Value or Specificity) and overall 
reliability ( R=TPR TNR⋅ ). Overall accuracy is calculated as 
in following equation: 

           
N

1

TP +TN1ACC=
N TP +TN +FP +FN

i i

i i i i i=
∑ .      (1) 

 
TPR  was calculated as: 

        
N

1

TP1TPR=
N TP +FN

i

i i i=
∑ ,              (2) 

 
TNR  as:  

        
N

=1

TN1TNR=
N TN +FP

i

i i i
∑ ,              (3) 

 
and overall reliability as:  
         R=TPR TNR⋅ .                   (4) 
N is a number of experiments performed using the random 
subsampling validation method, and i is the index of iteration. 
The input data is divided into two subsets: breathing noise and 
pause.TP, FP, TN and FN are the numbers of the signal 
segments (samples) classified as true positive, false positive, 
true negative and false negative [7]. 

B.  Ethics Statement 
 For our measured breathing records informed consent was 
obtained and measurements were carried out in Clinical Center 
for Pulmonary Diseases Jordanovac. The procedure was 
approved by the ethics committee of the University Hospital 
Centre Zagreb.  

C. Results of Validation 
 From 10 phonopneumograms (of healthy and ill subjects) 
recorded on trachea taken for training and validation, 10 
sequences of breathing noise and 10 sequences of pause were 
extracted (one sequence of breathing noise and one of pause 
for each phonopneumogram). Time window without 
overlapping with duration of 100 ms was moving across every 
sequence and four features were calculated: MFCC, energy, 
Renyi entropy and standard deviation. As a result, total of 149 
samples (14.9 s) of respiratory noise and 119 samples (11.9 s) 
of pause were computed. 20% of samples were used for 
training and 80% for validation of model using the random 
subsampling method . The process was repeated N=20 times 
(each time with randomly selected samples) for 0.1<γ<3, 
step=0.1 (C=1) and best averaged results with suitable gamma 
value are shown in following tables. 

First Table II presents validation results for original signal 
samples (without denoising). 
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Fig. 2 ENE, E, SD and MFCC1 features of 15T original signal samples 

 
 
Table II Validation results expressed with evaluation measures 
achieved by using the appropriate features for original signal 
samples (without denoising) 
Feature TPR (%) TNR (%) R  ACC  (%) γ 
12 MFCC 
coeff. 51.3889 54.3689 0.2794 52.7293 0.6 

1stMFCC 
coeff. 96.2598 86.8383 0.8359 91.9991 1.4 

ENE, E, 
SD 98.1250 97.6699 0.9584 97.9221 0.9 

1stMFCC 
coeff., E, 
ENE, SD 

97.3228 97.1359 0.9454 97.2391 1.1 

 
Table III Validation results expressed with evaluation 
measures achieved by using ENE, E and SD features for 
denoised signal samples (‘sqtwolog’ hard thresholding)  
Wavelet TPR (%) TNR (%) R  ACC  (%) γ 

bior 3.9 86.1328 82.0952 0.7071 84.31 2.6 

haar 95.1575 91.9409 0.8749 93.7028 1.4 

db6 72.1311 82.2330 0.5932 76.6937 0.5 

sym5 78.8628 70.3944 0.5551 75.0339 0.2 

coif5 88.3333 73.9320 0.6531 81.9397 0.6 

 
Although in literature MFCC coefficients show the best 

results in classification of respiratory noises, the results of our 
model validation in Table II for original signal samples prove 
that for discrimination of respiratory noises and pause, energy, 
Renyi entropy and standard deviation (ENE, E and SD) give 
better results ( ACC =97.92%) than MFCC (52.73%) and 

MFCC1 (1stMFCC coefficient) (92%). Moreover, by adding 
the MFCC1 feature, accuracy of classification becomes 
reduced ( ACC =97.23%). 

Next we processed validation of samples of denoised 
original signal. Three types of wavelet denoising were taken 
for five types of wavelets: ‘heursure’ soft, ‘sqtwolog’ soft and 
‘sqtwolog’ hard thresholding methods. The results were 
compared using evaluation measures. All calculation was 
made in MATLAB software. Results are shown in Tables III, 
V and VI. 

In Table III haar wavelet shows the best result. Also, Table 
IV shows that taking MFCC1 feature into account the accuracy 
of results reduces so it is better to just take ENE, E and SD. 
 
Table IV Comparison of validation results for hard denoised 
signal samples using haar wavelet 

Feature TPR (%) TNR (%) R  ACC  (%) γ 
ENE, E, 
SD 95.1575 91.9409 0.8749 93.7028 1.4 

1stMFC
C coeff., 
E, ENE, 
SD 

95.8730 90.5714 0.8683 93.4632 1.7 

 
The best result of validation from denoised signal samples, 

occurs for: haar wavelet and ‘sqtwolog’ hard denoising, and 
features: ENE, SD and E resulting in ACC =93.70%, which is 
worse than result for original signal samples (without 
denoising) ACC =97.92%. 
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Table V Validation results expressed with evaluation measures 
achieved by using ENE, E and SD features for denoised signal 
samples (‘sqtwolog’ soft thresholding)  
Wavelet TPR (%) TNR (%) R  ACC (%) γ 

bior 3.9 81.28039 77.7261 0.631761 83.72247 0.2 

haar 82.46032 86.06061 0.709658 84.04444 0.3 

db6 86.25 76.97115 0.663876 82.09052 1.3 

sym5 85.1153 83.59223 0.711498 84.44 1.5 

coif5 87.57813 74.18269 0.649678 81.57328 2 

 
Table VI Validation results expressed with evaluation 
measures achieved by using ENE, E and SD features for 
denoised signal samples (‘heursure’ soft thresholding)  

Wavelet TPR (%) TNR (%) R  ACC (%) γ 

bior 3.9 82.72 84.95098 0.702715 83.72247 0.3 
haar 85.44 72.40196 0.618602 79.5815 0.3 
db6 70.23077 77.3301 0.543095 73.3691 0.8 

sym5 69.4186 79.95146 0.555012 74.09483 1.8 

coif5 76.21111 84.19498 0.641659 79.7593 0.4 
 

D. Results of Testing 
 6 phonopneumograms were used for testing of model. None 
of the signal samples from testing set was used for 
training/validation. Set for training is consisted of signal 
samples from healthy subjects: 38T, 39T, 9T, 19T, 17T and 

from subjects with obstructions: 44T, 18T, 12T, 13T, 14T. Set 
for testing is consisted of signal samples for healthy subjects: 
15T, 16T, 22T and for subjects with obstructions: 27T, 37T, 
23T. 
 
Table VII Comparison of testing results for ENE, E and SD 
features, γ =0.9, C=1 

Signal Samples (time) FP FN 

15T 495 (49.5 s) 19 0 

16T 470 (47 s) 11 0 

22T 512 (51.2 s) 22 0 

23T 344 (34.4 s) 1 3 

27T 516 (51.6 s) 32 18 

37T 530 (53 s) 27 18 
 

Table VII shows result of testing with 2867 samples, with 
ENE, E and SD features, γ =0.9 and C=1, which gave total 
error number of 151 and ACC =94,73% (it was 97,92% in 
validation).  

For testing with denoised signal samples (haar, hard 
‘sqtwolog’ denoising) with ENE, E and SD features, γ =1.4 
and C=1, errors cannot be counted and also spectrogram is 
very different from the original one which is shown on Fig. 6 
for 27T denoised signal. Results of testing are shown of Fig. 3, 
4, 5 and 6 which show spectrograms of signals and SVM 
classification results where the value one is assigned to 
respiratory noise and the value of zero to pause. 

 
Fig. 3 Results of classification of respiratory sound and pause for 22T original signal samples:  

2D spectrogram (first graph) and SVM classification result (second graph) 
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Fig. 4 Results of classification of respiratory sound and pause for 22T denoised signal samples:  

2D spectrogram (first graph) and SVM classification result (second graph) 
 

 
Fig. 5 Results of classification of respiratory sound and pause for 27T original  signal samples:  

2D spectrogram (first graph) and SVM classification result (second graph) 
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Fig. 6 Results of classification of respiratory sound and pause for 27T denoised signal samples:  

2D spectrogram (first graph) and SVM classification result (second graph) 
 
 

IV. CONCLUSION 
Results for classification of respiratory noise and pause for 

recorded breathing signals were calculated and analysed. The 
signals were recorded using standard measuring equipment in 
realistic conditions so it caused appearance of noise and 
transients in signals. DWT analysis and different methods of 
thresholding were used to denoise the signal and reduce the 
transients. According to calculation haar wavelet and 
‘sqtwolog’ hard denoising gave the best denoising results. We 
used this denoised signals and made the validation with 
different features upon we concluded that the most suitable 
features for our analysis were: standard deviation, Renyi 
entropy and energy. Although in literature MFCC features give 
the best results of validation for acoustic signals, here in our 
paper this is not the case. Also, we got better accuracy results 
for original signal samples than for denoised signal samples. In 
our case the denoising of signal, does not give better results of 
classification because not only that the transients and the noise 
reduce, but also the whole signal energy changes obviously 
enough to not give better results of accuracy. 
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