
  
Abstract—Compression of genomic data has gained 

enormous momentum in recent years because of advances 
in technology, exponentially growing health concerns, and 
government funding for research. Such advances have 
driven us to personalize public health and medical care. 
These pose a considerable challenge for ubiquitous 
computing in data storage. One of the main issues faced 
by genomic laboratories is the 'cost of storage' due to the 
large data file of the human genome (ranging from 30 GB 
to 200 GB). Data preservation is a set of actions meant to 
protect data from unauthorized access or changes. There 
are several methods used to protect data, and encryption 
is one of them. Protecting genomic data is a critical 
concern in genomics as it includes personal data. We 
suggest a secure encryption and decryption technique for 
diverse genomic data (FASTA / FASTQ format) in this 
article. Since we know the sequenced data is massive in 
bulk, the raw sequenced file is broken into sections and 
compressed. The Advanced Encryption Standard (AES) 
algorithm is used for encryption, and the Galois / Counter 
Mode (GCM) algorithm, is used to decode the encrypted 
data. This approach reduces the amount of storage space 
used for the data disc while preserving the data. This 
condition necessitates the use of a modern data 
compression strategy. That not only reduces storage but 
also improves process efficiency by using a k-th order 
Markov chain. In this regard, no efforts have been made 

 
 

to address this problem separately, from both the 
hardware and software realms. In this analysis, we 
support the need for a tailor-made hardware and software 
ecosystem that will take full advantage of the current 
stand-alone solutions. The paper discusses sequenced 
DNA, which may take the form of raw data obtained from 
sequencing. Inappropriate use of genomic data presents 
unique risks because it can be used to classify any 
individual; thus, the study focuses on the security 
provisioning and compression of diverse genomic data 
using the Advanced Encryption Standard (AES) 
Algorithm. 
 

Keywords—Advanced Encryption Standard, Galois / 
Counter Mode,  compression algorithms, dynamic 
Markov compression, fast and secure encryption, FASTA 
/ FASTQ format.  

I. INTRODUCTION 
hole-genome sequencing was traditionally used as a 
research tool but is now it is being used in clinics [1], 

[2]. Full genome sequence data can be a valuable tool for 
personalized medicine to guide clinical intervention in the 
future[3]. The SNP-level gene sequencing tool is used to 
classify functional variants from association studies and to 
boost the information available to evolutionary biologists, 
laying the groundwork for predicting disease susceptibility 
and drug response [4][5]. High-throughput sequencing 
techniques resulted in a drastic decrease in genome 
sequencing costs and an extremely fast collection of genomic 
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data [6]–[8]. “These technologies need ambitious efforts in 
genome sequencing, for example, the 1000 Genomes Project 
and the 1001 Genomes Project (Arabidopsis thaliana)”[9]. 
The storage and delivery of large quantities of genomic data 
have become a major concern and promote the creation of 
high-performance compression tools specifically designed for 
genomic data[10]. A recent increase in interest in developing 
new algorithms and techniques for the storage and handling of 
genomic data emphasizes the growing need for effective 
techniques for genomic data compression[11]. 

 
Many commercial instruments for extracting DNA from a 

variety of biological materials are available. The specificity of 
detection of the polymerase chain reaction ( PCR) was found 
to be similar for different DNA kits[12]. Therefore, it is 
necessary to choose the right technique for the data. 
Considering that the genome sequence produces massive data, 
experts have estimated that by 2025 genomic sequencing will 
yield data of 40 exabytes per annum[13]. Challenges in the 
processing of genomic data are large archives, confidential 
data, holding personal information, and preserving the data. 
And we should expect genomic data to be stored in a stable 
storage tier that is always available. Compression of data 
plays a vital role in the management of genome data since it 
reduces storage space without losing any information[14]. 
Smaller files improve device throughput and are useful for 
bandwidth management in file transfer[15]. While many big 
data companies have been behind in solving this issue of data 
crisis for the past few years, the problem remains 
unresolved[16].  

II. LITERATURE REVIEW: 
The data on which security services should be provided is 

made as input to a cryptographic algorithm. The output is the 
“protected data”. “Most crypto algorithms often require an 
input parameter to be used as a key. The key affects the output 
of cryptographic algorithm because only the person with the 
same key can recover the original input or to generate the 
same output from the same input”[14][1].  

“One may differentiate between the following key types 
based on the type of key used: 1. The symmetric key 
cryptography–refers to the class of cryptographic algorithms 
in which the encryption key and decryption key can be easily 
determined from one another or are (in most cases) identical. 
2. Public (or asymmetric) key cryptography–a class of 
cryptographic algorithms in which encryption and decryption 
are performed with separate keys. In this method, private key, 
public key pair: whatever is encrypted with the private key 
can be decrypted with the public key, and vice versa. The 
private and public keys are interconnected in the sense that 
the public key can be easily extracted from the private key, 
while the private key is almost impossible to extract from the 
public one. Each participant must keep his private key private, 
while the public key must be made public. Cypher is 
concerned primarily with symmetric key encryption. A cypher 
is an algorithm which encrypts plaintext to ciphertext 
(encryption) and decrypt ciphertext to the original plaintext 

(decryption), assuming it has the same secret key with the 
ends of encryption and decryption”[50].  

“There are two cypher classes: blocking and streaming 
cypher. A block cypher transforms one block of plaintext (P) 
into one block of ciphertext (C) of the same size by applying 
the same transformation to any block of input data and using 
the same key.  Encryption and decryption can be specified as 
CI=E(Pi) and Pi=D(Ci), where E and D are the encoded and 
decrypted functions, respectively, and I is the block index. 
Two of the most widely used block cyphers are the Advanced 
Encryption Standard (AES 2001) and the Data Encryption 
Standard (DES 1999). The Advanced Encryption Standard 
receives the most attention in this article (AES). Stream 
cyphers generate the ciphertext stream by bit-XORing the 
plaintext stream with a keystream of the same length. 
Additive stream cyphers are an example of this type of 
cypher. Ci = Pi Ki, where Ci is the ith bit of the ciphertext, Pi 
is the ith bit of the plaintext, and Ki is the ith bit of the 
keystream”[51]. 

The Advanced Encryption Standard (AES), also known as 
Rijndael, is a specification for the encryption of electronic 
data established by the National Institute of Standards and 
Technology (NIST) in the United States in 2001. Rijndael is a 
cypher family of various key and block sizes. NIST chose 
three Rijndael family members for AES, each with a block 
size of 128 bits but three different key lengths: 128, 192, and 
256 bits. Table 1 gives the usage of Advanced Encryption 
Standard (AES) algorithm. It explains the advantages and 
capabilities of AES in different data and scinarios. 

 
Table1: How security is provided to data using AES 

01 General (Security provisioning with AES algorithm) 

1 AES-128 offers a sufficiently large number of possible 
keys, making an exhaustive search 

2 Using AES in second layer gives extra security to data. 

02 Security provisioning on distributed networks (IoT Cloud) 

3 It provides strong security from the attackers. 

4 Larger size of data increases the data delay time for 
encrypting data. 

03 Security provisioning (Genomic data) 

5 Allows 128 parties across 5 continents to perform an 
AES computation in under 3 minutes and is the first to 
examine garbled circuits at such a large scale 

6 AES gives more efficiency, secrecy, integrity and avoids 
reply attacks. 

 

 
“Recent work has seen DNA as an important medium for 

long-term and ultra-compact storage of information, as well as 
a stego-medium for secret messages[3]. Artificial components 
of DNA can be added to the genome of living organisms with 
encoded information, such as common bacteria”[4]. Use the 
“genetic code degeneration and, in particular, the silent 
mutations, produces coding that does not change the 
properties of the inserted gene or the characteristics of the 
host genome (very critical conditions when dealing with the 
living organisms). Memorizing the key information and 
generating the hidden message in the form of a physical 
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polypeptide provide additional security for data transfer while 
the coding protocol is being implemented”[5], [6]. 

 
FASTQ is a text-based format created to store both a 

biological sequence and the subsequent feature rankings. For 
brevity both the series letter and the ranking value are 
encoded with one ASCII character. It was originally created at 
the “Welcome Trust Sanger Institute” to package a FASTA-
formatted sequence and its quality data but has recently 
become the de facto standard for storing the performance of 
high-throughput sequencing instruments such as the “Illumina 
Genome Analyzer”[7]. The SAM Format is a text format used 
in a series of ASCII columns delimited by tab to store the 
sequence data. “Currently most SAM format data is output 
from aligners that read FASTQ files and assign sequences to a 
position relative to a known reference genome. In addition, 
SAM can also be used to store unaligned sequence data 
directly generated from sequencing machines. VCF is a text 
file format (most likely to be stored in a compressed 
way)”[22],[23]. It contains 'meta-info lines, the header line, 
and then the data lines each containing information about the 
location of the genome. The format also has the capability of 
storing sample genotype information for each position”[8]. 
Table 2 gives description of common file formats 
corresponding to different data types. Currently all these are 
managed either natively or by Pysam (BAM files), Bio-
python (FASTA), or two bit reader (2bit). Additionally , it is 
possible to index BED, GTF2, GFF3 and PSL files with a 
tabix. Supports reading of tabix-compressed files also (via 
pysam). In this paper we have implemented using Pysam. 

 

Table 2. Data types with corresponding formats 

Data type Unindexed formats Indexed 
formats 

Sequence FASTA 2bit 

Annotations BED, GTF2, GFF3, PSL BigBed 

Quantitative data bedGraph, wiggle BigWig 

Read alignments bowtie, SAM, PSL BAM 

 
It is most often generated as a human-readable variant of its 

sister BAM file, containing the same data in a compact, 
indexed, binary form[9]. “The first biological polynucleotide 
sequence was described twelve years after the Watson and 
Crick double helix DNA structure was published in 
1953”[10]. Even though the anticodon, the three nucleotides 
that combine to the “mRNA sequence, was not yet discovered 
in the sequence, it was the 77-nt yeast alanine tRNA with a 
recommended junction structure”[11]. Around that time , 
scientists could sequence just a few base pairs a year, not 
nearly enough to sequence an entire gene. “Previous works 
showed that, in ancient sequence evidence postmortem 
damage was artificially caused, spurious demographic 
patterns were reconstituted. This has underscored the 
necessity for unique data quality in nucleotide sequence 
analysis of skyline-plot”[12]. The coverage of multiple 
sequencing attained employing high-throughput sequencing 

techniques will slash the probability of errors and their 
existence[13]. 

 
Firstly, a reference genome suits the reads in the FASTQ 

file[14]. In short, for each read, the alignment phase infers the 
corresponding position in the series of references from which 
the reading was created (or that there is no such region). 
Besides the mapping position, the alignment often produces, 
if any, the missing information along with some additional 
fields. This alignment information is stored in the Sequence 
Alignment Map (SAM) /Binary Alignment Map (BAM) 
format along with the original reads and accuracy scores 
(“BAM is the binarized, compressed version of the SAM 
file”). These files are incredibly large, usually hundreds of 
gigabytes, and are extensively used for most downstream 
applications. “Cryfa, an industry-oriented platform for safe 
encryption of genomic data in Fasta / Fastq / VCF / SAM / 
BAM formats, as well as lightweight Fasta / Fastq 
formats”[15]. The security of these data is greatly improved 
by a simple, shuffling process. We further preserve genomic 
data security by failing to explore complexity in those files. 
“Cryfa therefore cannot be used for identification of animals. 
The tool is around one order of magnitude faster than the best 
state-of-the-art compression plus encryption tools, including 
those for general and limited use. Cryfa is not only high-speed 
and has a high security standard, but also has very limited 
memory consumption (just a few megabytes)”. “In addition to 
their variant calls (compact and summarized form of the raw 
data), geneticists prefer to store aligned, raw genomic data of 
patients, mainly due to the immaturity of bioinformatic 
algorithms and sequencing platform. Thus, we propose a 
system to protect the privacy of aligned, raw genomic data. A 
program for the storage , retrieval and transmission of 
compatible, raw genomic data ( i.e., SAM files) to preserve 
privacy. We are confident that the proposed scheme will 
accelerate genomic research, because participants in clinical 
trials will be more willing to consent to the sequencing of 
their genomes if their genomic privacy is 
maintained”[16][17]. 

 
“Genome-wide association studies (GWASs) aim to 

recognize a trait-related genetic variants and have been a 
powerful approach to understanding complex diseases. A 
critical challenge for GWASs has been the reliance on 
individual-level data which typically have strict privacy 
requirements, creating an urgent need for methods that 
preserve participants' individual-level privacy. They 
developed an initial Double-Chinese Remainder Theorem 
(CRT), or RNS, version. Our version is based on the same 
security assumptions as the original scheme, namely the 
problem of Ring Learning With Errors (RLWE), but relies on 
native 64-bit integer arithmetic as opposed to multi-precision 
integer arithmetic for better efficiency and 
parallelization”[18][19]. 

III. IMPLEMENTATION OF PROPOSED ALGORITHM: 
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Use either SI (MKS) or CGS as primary units. (SI units are 
strongly encouraged.) English units may be used as secondary 
units (in parentheses). This applies to papers in data 
storage. For example, write “15 Gb/cm2 (100 Gb/in2).” An 
exception is when English units are used as identifiers in 
trade, such as “3½ in disk drive.” Avoid combining SI and 
CGS units, such as current in amperes and magnetic field in 
oersteds. This often leads to confusion because equations do 
not balance dimensionally. If you must use mixed units, 
clearly state the units for each quantity in an equation. 

 
Figure 1 explains the steps involved in compressing the 

sequenced raw data, which is available in FASTA/FASTQ 
format and encrypting it with AES (Advanced Encryption 
Standard) key technique[23][34]. The raw data is made to 
split to have three segments namely, Headers, Bases and 
Quals. The headers stand for sequence names and comments 
that precede the sequences. Transformation packaging for an 
exemplifying collection of DNA bases for triplets[23][11]. 

 
Quals will have the remaining part of data. These three 

segments are compresses individually to have packs namely, 
PackH, PackB, and PackQ, for Headers, Bases and Quals 
respectively. After compressing these segments or packs are 
subjected to encryption [35]. In this stage the data is 
encrypted using key (normally termed as Cipher text) and fed 
to the next stage where we apply AES key encryption to 
safeguard the data in an efficient way. The algorithm for this 
will be explained in Implementation section. Finally, we will 
have the compressed and encrypted data as output of this 
stage. 

 
 
 

 
Fig. 1. Encrypting the sequenced raw data. 

 

Algorithm 1: Encryption Process 

Start Encryption 

Input FASTA/FASTQ File 

Input the password file 

Start Compressing and Shuffling 

 Compacting in < 1 second 

 Shuffling in < 1 second 

Obtain the encrypted file Output 

Stop Encryption 

The algorithm 1, gives the steps involved in encryption 
process. The input file is either FASTA or FASTQ file, which 
is encrypted using the key, which is done using inputting the 
Password.txt file. The file is compressed in the allotted time 
stamp of less than 1 sec and the file is compacted. The 
shuffling process is performed in the next allocated time 
stamp of less than 1 sec, and the final encrypted file is 
obtained as output result. The block diagrams are illustrated in 
figure 2 and figure 3, for encryption and decryption 
process[36], [37].  Here at first input fasta file . fa is 
multiplied with string 1 with Cartesian product vector 
resulting into the bytes input, and this process is repeated as 
chain of multiplications up to string 4 until a compressed data 
is obtained[38][39][40][41]. In mathematics, specifically set 
theory, the Cartesian product of two sets A and B, denoted A 
× B, is the set of all ordered pairs (a, b) where a is in A and b 
is in B. In terms of set-builder notation, that is.  

 
 

 
 

 
Fig. 2. Compression of input data using cartesian produc. 

 
A table can be created by taking the Cartesian product of a 

set of rows and a set of columns[39], [42]. The life sciences 
are becoming "big data companies," and that is setting the 
standard for addressing that storage problem in the scientific 
community[43]. Scientists have over the past decade needed 
the storage space provided by genomic data, yet in the future 
brain data that is equivalent to world digital information 
would be difficult to manage[44], [45]. Therefore, there is a 
need for a modern, efficient approach that will resolve all the 
challenges of genomic data such as storage space, fast 
processing, and system throughput[15], [45]. 
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Fig. 3. Decompression of input data using cartesian product. 

 
Figure 4 depicts the decryption of the encrypted data which 

is reverse process of encryption. The compressed and 
encrypted data is fed to AES GCM (Galois/Counter Mode) 
and in the subsequent stage the key is removed from the 
shuffled data [15]. Later it is unpacked to get the original data 
back at the output stage. In algorithm 2. a compressed format 
is given as input in the decryption process previously obtained 
encrypted file. The file is un-compressed in the allotted time 
stamp of less than 1 sec, and the de-compacting process is 
completed. The un-shuffling procedure is performed in the 
next allocated time stamp of less than 1 sec and the final 
decrypted file is obtained as the resulting output. 

 
Genomic data produced by high-throughput sequencing 

(HTS) are generally stored as raw sequencing readings in the 
FASTQ format or as readings mapped to the SAM reference 
genome[46],[47]. Both formats have significant footprints on 
memory. The growth in HTS data worldwide has contributed 
to the development of advanced compression methods aimed 
at reducing the HTS data size substantially. Due to the 
enhancement of interest in genome sequencing, there are 
many developments in sequencing technologies, both in terms 
of performance and affordability. The algorithm 3 gives the 
steps which are followed in compressing the DNA data using 
dynamic Markov model[39], [48]. In the initial step the raw 
data, which is in FASTA form is fetched. A string is created 
for the sequenced data and compared with the original string. 

Algorithm 2: For Decryption 

Start Decryption  

Input Compressed File 

Input Encrypted Sequence 

Start De-Compressing and Un-Shuffling 

 Un-shuffling done in < 1 second 

Decryption done in < 1 second 

End Decryption 

This comparison is done in order to find the unique 
characters present in the string. Predictive arithmetic coding is 
used in Dynamic Markov Compression, which is similar to 
prediction by partial matching except that the input is 

predicted one bit at a time (rather than one byte at a time). 
DMC, like PPM, has a decent compression ratio and moderate 
speed, but it takes more memory and is not commonly used. 
The compression algorithm is based on a priori data 
assumptions. The new approach here is to use an algorithmic 
approach to find a Markov chain model that describes the 
data. If the first part of the data can be used to construct it, it 
can be used to predict the next set of characters. 

 
  

 
Fig. 4. Decrypting the data. 

 
Algorithm 3:  Algorithm for DNA compression 

using Dynamic Markov Compression 

 

Start: 

Input: FASTA file in a List; 

Create single string of sequence data; 

Get size of original string; 

Obtain unique characters in the string; 

While(Count occurrences of all the bases in 

the sequence) do 

{ 

compressing… bytes in %d, bytes out %d, ratio 

%f; 

comp() and de-comp() implement arithmetic 

coding; 

} 

end while  

If (Count > 1) 

string has 10735 characters; 

string takes up 10.53 MB in disk; 

Count Number of Characters in string; 

Obtain Histogram for base frequency; 

else 

Setup Transition matrix for k-th order markov 

chain; 

Creating labels of the heatmap using cartesian 

product; 

Calculate dynamic Markov compression; 

end if 

 

end 

Such advances have made it possible for us to see whole-
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genome sequencing as an invaluable tool for both precision 
medical care and public health. As a consequence, genomic 
data sets that are increasingly wide and widespread are being 
produced. This presents a major challenge to the preservation 
and dissemination of such information. It is now more 
difficult to retain genomic data for a decade than to collect the 
information in the first place.  

 
 

Fig. 5. Signal flow graphs of with probabilities nucleotide 
prediction/existence 

 
This condition calls for effective genomic knowledge 

representations. Signal flow graphs shown in figure 5 shows 
probabilities of nucleotide prediction/existence. This will 
indicate the existence of nucleotide in the prediction. For 
example, if we consider A as reference then the predicted 
nucleotide with its probability of existence is shown in signal 
flow graph as A→A is 0.6, A→C is 0.1, A→G is 0.05, A→T 
is 0.2. Similarly, it is also shown for two letter nucleotide in 
the figure 5.  

 

IV. RESULTS AND DISCUSSIONS: 
Algorithms 1 and 2 have the computational complexity of 

O(1) (horizontal computational complexity) as it deals with 
the constant terms such as compressing and shuffling. 
Algorithm 3 has the computational complexity of O(n) 
(Linear Computational Complexity) after several loopings and 
iterations. We tested the cost-effectiveness of operating on 
multi-core computing resources on two sample genomic 
datasets, each with a distinct number of threads. Running with 
eight distinct threads is 2.4 times faster than instantaneously 
than running with one thread, and it takes 1.4 times more 
CPU time as an average of user and device times. There is 
also an insignificant distinction between memory usages 
while running with one thread and eight threads that are 
10MB. Our research method uses at most 31MB of RAM. 

 
The figure 6 gives the frequency of bases, depending on 

this we can have the heat map for the nucleotides. To get the 
heat map of nucleotides we use the confusion matrix in the 
algorithm.  

 

 
Fig. 6. Frequency of Bases 

 
Different bases are being used and their frequency is 

plotted along X-axis. As we can see fron the frequency plot W 
is having lowest frequency and L is having highest. Similarly 
figure 7 depicts the frequency of nucleobases in the 
sequences. 

 

 
Fig. 7. Frequencies of  Nucleobases in the sequences 

 

 
Fig. 8. Heatmap of Nucleobases in the sequences 

 
Figure 8 gives the heat map of nucleotides with different 

color levels depending on their occurrences. Different 2 set 
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possible combinations of nucleobases are considered along X 
and Y axes. The figure 9 gives the confusion matrix used in 
evaluating the proposed model. In this confusion matrix the 
basic 4 nucleotides have been used. 
 
 

 
Fig. 9. Graphical Frequencies of Nucleobases in sequence Strings 

 
Figure 10 shows the nucleotide FASTA sequence, 

nucleotides C-G along X-axis and A-T along Y-axis. 
Nucleobases and DNA data are shown in graphs represented 
in figure 11.  

 

 
Fig. 10. Graph of example nucleotide FASTA sequence 

 
Here at first the FASTQ file is encrypted with the 

corresponding password containing in Password.txt file. In 
the allocated time stamp of less than 1 sec the file is 
compressed, and the file compacting is done. In the next 
allocated time stamp of less than 1 sec the shuffling process is 
carried out and the final encrypted file is obtained as an output 
result. Further in the decryption process previously obtained 
encrypted file is provided as input in a compressed format. In 
the allocated time stamp of less than 1 sec the file is un-

compressed, and the file de-compacting is done. In the next 
allocated time stamp of less than 1 sec the un-shuffling 
process is carried out and the final decrypted file is obtained 
as resulting output. 
 

 

  
Fig. 11. Graph of nucleobase and DNA data FASTA sequence 

 

V. CONCLUSION 
A secure encryption and decryption for various genomic 

data in the FASTA/FASTQ format is proposed in this paper. 
Big chunks of raw sequenced data are broken into 
components and compressed. To encrypt the data, the 
Advanced Encryption Standard (AES) key is used, and the 
encrypted data is decrypted using the Galois/Counter Mode 
(GCM). The paper refers to sequenced DNA that can be in the 
form of raw data derived from sequencing. Inappropriate use 
of genomic data poses specific risks as it can be used to 
identify any individuals, hence the research addresses the 
security provisioning and compression of diverse genomic 
data based on the Advanced Encryption Standard (AES) 
Algorithm. This study also paves the way for the physical 
space needed to store the data to be minimized and the data 
can be preserved. This work focuses on developing methods 
in the areas of structure prediction, deciphering mechanistic 
understanding of interactions between various biological 
molecules and working with multi-scale systems.  
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