



Abstract— Medical imaging has found an important

way for routine daily practice using cone-beam computed

tomography to reconstruct a 3D volume image using the

Feldkamp-Davis-Kress (FDK) algorithm. This way can

minimize the patient’s time exposure to X-rays. However,

its implementation is very costly in computation time,

which constitutes a handicap problem in practice. For this

reason, the use of acceleration methods on GPU becomes a

real solution. For the acceleration of the FDK algorithm,

we have used the GPU on heterogeneous platforms. To

take full advantage of the GPU, we have chosen useful

features of the GPUs and, we have launched the

acceleration of the reconstruction according to some

technical criteria, namely the work-groups and the work-

items. We have found that the number of parallel cores, as

well as the memory bandwidth, have no effect on runtimes

speedup without being rough in the choice of the number

of work-items, which represents a real challenge to master

in order to be able to divide them efficiently into work-

groups according to the device specifications considered as

principal difficulties if we do not study technically the

GPU as a hardware device. After an optimized

implementation using kernels launched optimally on GPU,

we have deduced that the high capacities of the devices

must be chosen with a rough optimization of the work-

items which are divided into several work-groups according

to the hardware limitations.
Keywords—FDK algorithm, GPU, 3D Image

Reconstruction, Cone-Beam Computed Tomography-

CBCT, Intensive Computing, Reconstruction Acceleration.

I. INTRODUCTION

N medical imaging, we are interested in solving a system of
equations to find the solution, and this solution is finally the

image, in another way we reconstruct data from a set of
acquisitions, whether in 2D or 3D. In our work we use
different architectures of platforms to accelerate the
reconstruction of fully 3D medical images, much more focused
on conical CT (Cone Beam Computed Tomography; CBCT)
which is expected to be useful in clinical life, it helps to reduce
the dose by reducing the X-ray exposure [1, 2], due to its
speed time scanning, useful in intensive concert care such as
image-guided radiotherapy techniques [3], and tooth implants
requiring real-time imaging [4,5], and classification methods
of mammography images by Kernel Extreme Learning
Machine (KELM) or Kernel Principal Component Analysis
(KPCA) techniques [6], and can be useful in Covid image
classification by Wavelet Feature Vectors and Neural Network
[7].

In the proposed work, we accelerate reconstruction by an
analytical method by using heterogeneous architectures
(CPU+GPU platforms) using OpenCL with C++. As we will
see within our paper, there are some specifications which are
very important to take into account with rigour when we want
to choose the platform, and mainly the GPU, that will be used
to accelerate the algorithm of reconstruction.

Since the most and widely used and implemented algorithm
on scanners is the FDK [8], we use GPU to accelerate this
method, we present a 3D reconstruction, we produce
acceptable images when the acquisition angles are small (< 2
degrees) and using sufficient number of projections and
equidistributed around the object (because few numbers of
projections or not equidistributed around the object remain to

Importance of Some Specifications of
Heterogeneous Architectures (CPU+GPU) for

3D Cone-Beam-CT Image Reconstruction
Using OpenCL
T. Nouioua1,2, A. H. Belbachir2,

1Department of Mathematics and Computer Sciences,
Faculty of Exact sciences and sciences of Nature and life,

University of Tebessa,
Tebessa, Algeria

2Laboratory of Analysis and Application of Radiation (LAAR),
Engineering Physics Department, Faculty of Physics,

University of Sciences and Technology of Oran Mohamed Boudiaf,
 Oran, Algeria

Received: January 22, 2021. Revised: June 21, 2021. Accepted: July 15, 2021. Published: July 20, 2021.

I

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING
DOI: 10.46300/91011.2021.15.33 Volume 15, 2021

Ε-ISSN: 1998-4510 275

the limits of the CT and thereafter the CBCT) by using robust
3D algorithm, but very expensive in calculation time and
therefore slower to be executed, for this reason we have
chosen to accelerate this algorithm on GPU which provides an
excellent price/performance ratio for well-suited calculations
(including linear algebra calculations) and easier in
programming compared to Field Programmable Gate Array
(FPGA) which is very complex because it is necessary to
describe the entire architecture performing the desired
calculation.

The main difficulty is how to divide the work-items into
several work-groups to take full advantage of the
parallelization capabilities of the algorithm. As the study of the
technical characteristics of the GPU is imperative, the
challenge is to have a compromise between the parallelization
method and the capabilities of the GPU, since trying to fully
occupy the hardware resources of the GPU will result in a loss
of computation time, up to a parallel computation time not far
from that one of a non-parallelized program.

The rest of this paper is organized as follows. In Section II,
a literature review is presented. In Section III, the CBCT
geometry and the FDK algorithm principles are overviewed. In
Section IV, our strategy for algorithm parallelization using the
GPU and the OpenCL environment is presented. In Section V,
our implementation of kernel algorithms and the
experimentation as well as the obtained results and discussions
are presented, in addition to the details of the used datasets.
Finally, our conclusion is presented in Section VI.

II. LITERATURE REVIEW
In parallel with the hardware technology evolution, during

the last decade, there have been numerous published research
works on the use of GPU in accelerating the reconstruction
algorithms whether using OpenCL or CUDA methods.

In the work of Bo Wang et al. [9], OpenCL has been used
for accelerating the CBCT reconstruction. They reported that
the use of OpenCL which is a generic program, reduces the
programming effort and considered it as the first truly open
and royalty-free programming standard for general-purpose
computations on the heterogeneous system which targets
multi-core CPUs and latest GPUs.

Holger Scherl et al. [10] have compared the reconstruction
in different architectures to the exception of the filtering stage
which was done on CPU, and have reported that when using
GPU, the known Bandwidth has no effect on time diminution
within the acceleration method.

Leeser et al. [11] have used different architectures for
accelerating the FDK algorithm using CUDA and OpenCL.
They used Apple's FFTW [12] for 128 and 1024 points, and
reported that their work is compatible with that one of Fessler
on Matlab [13], and that to minimize the consumption of time
in calculation it is preferable to transfer all calculation data to
the GPU.

G. Yan et al. [14] have used two techniques in their
algorithms to accelerate the Feldkamp-Davis-Kress (FDK)

algorithm, the cyclic render-to-texture (CRTT) to save the
copy time, and the combination of z-axis symmetry and
multiple render targets (MRTs) for reducing the computational
cost on the geometry mapping.

Dominguez et al. [15] have implemented a parallel version
of the FDK algorithm on two different capacities level of GPU
using CUDA-C and shown in their study that to have a higher
speed up using GPU card one has to choose the highest
capacities.

In their recent work, Shunli Z. et al. [16] have proposed a
fast method for parallel implementation of the FDK algorithm
using CUDA in multi GPU, by optimizing the backprojection
operation, and they have considered as the most consuming
time part in the algorithm. They have used simulated
phantoms, and have mentioned that if the projection size gets
larger it would be difficult to the device memory to store the
whole projection data and the image would be reconstructed
chunk by chunk.

Navid Z. et al. [17], have proposed an analytic modelling
MLEM approach for the H-matrix MLEM algorithm by using
GPU acceleration to make a high-performance computing
software, they have reported that by using 100 iterations the
images reconstructed by H-matrix method are less noisy.

Inam et al. [18], have proposed a new parameterizable
architecture of optimized CUDA kernels reconstruction on
GPU, and have declared having obtained high-speed
reconstructions without compromising the image quality.

Valencia et al. [19] have proposed a parallel implementation
of an iterative method concerning the MLEM reconstruction
algorithm on GPU, and have presented their results and have
declared that the MLEM implementations in CUDA using
GPUs’ capabilities were reliable and fast.

Table I, summarizes some works in the literature of
accelerated methods and algorithms on GPU.

III. THEORY

A. The Cone-Beam CT geometry

For cone-beam acquisition geometry, we have a circular
orbit of the source-detector, a planar detector where data are
collected as shown on Fig. 1. For volumetric CT the efficient
acquisition setup is to use a two-dimensional detector [20],
where rays form a cone with its base on the detector and its
apex on an X-ray source, which naturally produces a cone of
rays. This configuration increases the scanning speed and
makes better use of the emitted rays, which can be also
removed by collimation.

Three-dimensional reconstruction algorithms, in
reconstruction method for fully three-dimensional
reconstruction approach, are usually based on the three-
dimensional Radon transform. In the object space, each plane
can be represented by a unique point which is a plane integral
in the object domain representing a three-dimensional Radon
value. This point is the intersection of the plane and its normal

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING
DOI: 10.46300/91011.2021.15.33 Volume 15, 2021

Ε-ISSN: 1998-4510 276

Table I: Summery of some works of accelerated algorithms on GPU

Fig. 1: Cone-Beam Acquisition Geometry

passing the origin. All Radon values placed at the
corresponding points represent the three-dimensional Radon
space. The Radon values of all planes intersecting the object
have to be known to perform an exact reconstruction.

B. FDK algorithm Principles

The FDK is an approximate reconstruction algorithm for
circular cone-beam tomography and has been used as a
standard reconstruction approach for CBCT. Our configuration
follows the original form of FDK, and data assumed coming
from a planar detector [21].

The image space f(x,y,z) in Eq. (1) is obtained by
backprojecting the filtered weighted projection according to
Eq. (5).

22

20
(, ,) (, ,)ˆ

D
f x y z p u v d

D



   (1)

Where
ˆ cos sinD D x y    (2)

(sin cos)ˆ
D

u x y
D

    (3)

ˆ
D

v z
D

 (4)

2 2 2
(, ,) ((, ,)) ()D

p u v p u v h u
D u v

  
 

 (5)

 is the projection angle, D (known as gantry rotation or

SAD: Source to center Axes Distance) is defined as distance
between source and the origin O, (x,y,z) are voxel coordinates,
(u,v) are the detector coordinates, p(β,u,v) are the detector
acquainted data, h(u) is the ramp filter.

The integral in Eq. (1) is replaced by a sum over the
projection angles in the discrete case. For each term of the
backprojection sum, a two-dimensional interpolation of the
filtered projection data is applied.

The FDK algorithm is a highly parallel nature, it can be
performed in three processing stages; weighting the input
projections, filtering the weighted input projections and back-
projecting the filtered projections data into reconstructed
volume, where all of them should be performed within the
GPU.

By its massively parallel nature, the FDK algorithm finds a
way out of the problem of time consumption in its resolution
by using GPU as a platform where it can be implemented using
the advanced technological development offered in new
generations of GPUs. Since modern GPUs have several
hundreds of parallel cores and can make calculation in
floating-point precision, they become a good alternative
candidate to support and best respond to the parallel nature of
the FDK algorithm by the fact that in the reconstructed volume
all projections are independent and can be calculated

Related work Accelerated algorithm Method used
Bo Wang et al. [9] FDK OpenCL

Scherl et al. [10] FDK -
Leeser et al. [11] FDK OpenCL and CUDA

G. Yan et al. [14] FDK CRTT, MRT techniques

Dominguez et al. [15] FDK CUDA-C

Shunli Z. et al. [16] FDK CUDA on multi GPUs

Navid Z. et al. [17] MLEM ((MPH)
SPECT)

-

Inam et al. [18] GRAPPA (MRI) CUDA
Valencia et al. [19] MLEM CUDA

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING
DOI: 10.46300/91011.2021.15.33 Volume 15, 2021

Ε-ISSN: 1998-4510 277

Fig. 2: Illustration how to call Kernels to perform parallel

operations.

Table II: Some useful parameter descriptions
Global-work-size Dimension of global-work-items

Local-work-size Dimension of the work-groups
Work-items number Total number of work-items

specified for the kernel launch
Work-groups number Total number of work-groups

Work-group-size Number of work-items per
work-group

independently, also each pixel in many cases can be calculated
independently.

To reduce programming difficulties, we adopted a
heterogeneous platform solution (CPU+GPU) where the
OpenCL programming model is used on modern AMD and
NVIDIA GPUs platform which both provide a parallel
computing architecture. Parallel operations should be
programmed as kernel functions that execute on GPU.
Sequential operations should be programmed as host functions
that execute on the CPU as illustrated on Fig.2. Both host and
kernel functions are wrapped and called via a main host
function. Communication between the CPU and the GPU can
be done via the device’s global memory, constant memory or
texture memory on the GPU.

IV. OPENCL AND GPU PARALLELIZATION STRATEGY
OpenCL is known as a model where the notion of a host

device is the basis of running data as well as tasks in parallel
works. Kernel functions executed on the GPU can be executed
as a function of multi-dimensional domains of indices named
the global work-size. This later can be divided into sub-
domains called work-groups, useful descriptions are given in
Table II.

The essential element is called a work-item, and individual
work-items within a group can communicate through global or
locally shared memory. For synchronization, in OpenCL there
are two domains: work-items in a single work-group and
command-queue(s) in a single context. For more a
comprehensive description, we refer the readers to [22, 23].

After compilation by the OpenCL environment, a program
runs as a kernel in the GPU. A kernel takes input parameters,
conducts computations, and outputs the result to device
memory where the CPU can read it. The computation is done
by thousands of work-items, each work-item performs the same
operation in the kernel, but the input data can be different.
With thousands of work-items doing similar tasks
simultaneously, the computation speed can be considerably
improved.

The host code running on the CPU prepares input data and
accepts output values from the GPU. The intensive
computation task is handled by GPU kernels. The output data
is written to global device memory in order to be retrieved by
a CPU program.

The strategy of the accelerated program can be explained as
follows: The program begins by reading in 3D CBCT
parameters and then initializes the output image by the
specified data volume size. OpenCL is called and the device
and its memory are initialized, then kernels specified for the
GPU are built by taking into account that number of work-

items = local-work-size x the number of work-group. data are
transferred to the GPU and the execution starts running the
weight kernel then the filter kernel and ends by the back-
projection kernel, after finishing the resulting image is
transferred back to the CPU to be displayed. For the transfer of
the data from the CPU to the GPU or the opposite, we use a
function called oclMoveData which intelligently copies data of
the source location with the specified dimension to the
destination location with the specified dimension, the
dimension of the data must be the same for both source and
destination.

V. IMPLEMENTATION

A. Kernels algorithms

To perform a parallel version of the FDK algorithm we have
chosen the heterogeneous platform, we have selected some
characteristics and hardware parameters that we consider
relevant for analyzing against other works as shown on Table
III.

As stated above, the FDK parallel version is performed in
three stages. The weighting stage is not very consuming time,
on the contrary, filtering and backprojection stages have both
high runtimes. The filtering stage is performed within the FFT
kernel presented in an OpenCL kernel to be executed on GPU
without any performance (see for example [24]) which will be
treated in our future work. The two first stages are presented
by kernels shown by algorithms Algorithm 1 and Algorithm 2.

The backprojection stage is performed after the processing
of the weighting and filtering stages, but in a different way
where the slices of all projections are considered to be
processed, if we consider nu and nv are number of pixels in a
slice (u,v) and np is the number of projections, we scan all
projection angles np and all pixels nu x nv in the buffer to be
padded by zeros, and then after we scan slices over Z axis of

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING
DOI: 10.46300/91011.2021.15.33 Volume 15, 2021

Ε-ISSN: 1998-4510 278

Table III: Summary of different GPUs characteristics and parameters

begin Kernel
kernel void weight(Params)
for each pixel in a single projection do

generate a weight value for that pixel;
for each projection do

apply the current weight to the appropriate pixel;
end

end
return;
end Kernel

Algorithm 1: Weight Kernel

begin Kernel
kernel void filter(Params)
for each 2D projections do

for each row in the projection do
convert to the frequency domain;
//Frequency Domain;
fft1024(parameters);
Apply the filter to the weighted projection data;
//Time domain;
Convert back to time domain and scale;
fft1024(parameters);

end
end
return;
end Kernel

Algorithm 2: Filter Kernel

total number nz to process each pixel in the output slice nx x
ny and we apply the output projection data to all projection
angles, we scan all slices, and we perform each pixel for all
projections to obtain final image nx x ny x nz which simply
indicates that kernels process a 3D image and it is the final
render volume to transfer to the host where it is displayed, see
(Algorithm 3).

begin Kernel
kernel void backProj(Params)

// Projections in buffer padded with zeros
for each output image slice do

for each pixel in the slice do
apply projection data to output image over each projection

angle;
apply a bi-linear interpolation;

end
end
return;
end Kernel

Algorithm 3: Backprojection Kernel

B. Experimentation and Results

In this sub-section, we present a global view on how we
evaluate our results according to the hardware used and
specify some technical specifications on the choice of the
platform to use for the acceleration of the reconstruction
method.

It is recommended to start the experiment with a good
hardware of high capacities. For the implementation of the
acceleration method, one has to be rough in the way with
which a heterogeneous platform will be handled and to ensure
a fast data communication between host and device. It is also
necessary to guarantee a rapid implementation of the kernels
which are responsible for executing the reconstruction quickly
and optimally, by a good choice of the groups of work-items
which are the elements to be well structured to benefit from a
considerable gain in runtime.
1) Used Datasets

In the beginning, we use data of mathematical phantoms of
size 128×128×128 and size 256×256×256 which have been
tested on different architectures and we record different
runtimes of each configuration, see (Table IV).

In the second step of our experiments we use different data
of real Phantoms and their modified configurations that we
processed to have different sizes:

Parameters NVIDIA NVIDIA Radeon Tesla Radeon Quadro NVIDIA NVIDIA
 GTX 425M HD C2075 HD 7970 2000 Geforce GTX280
 1060 8670M 9400

Parallel 1280 96 320 448 1600 192 16 240
cores
Bus Width 192 128 64 384 256 128 64 512
(bits)
Band 192.2 25.6 4.8 144 128 80.19 9.6 141.7
Width
(GB/S)
Memory 3 1 2 6 3 1 0.125 4
(GB)
System 8 8 8 32 32 - - -
Memory
(GB)
Memory 2002 800 800 750 1375 640 600 1107
Clock
(Mhz)
Related This pa- This pa- This pa- [11] [11] [15] [15] [9]
Work per per per

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING
DOI: 10.46300/91011.2021.15.33 Volume 15, 2021

Ε-ISSN: 1998-4510 279

1. Sample-data1 (sample data in [25]), tested in [9], we

have 320 projections of size 192×256 and source-
to-detector-distance SDD = 155 cm and source-to-
axis-distance SAD = 100 cm.

2. Sample-data2 (sample data in [26]), we have 211
projections of size 256×200 and source-to-
detector-distance SDD = 153.6 cm and source-to-
axis-distance SAD = 110 cm.

3. Sample-data3 (for the sample-data1), we have 320
projections of 400×400 to get after reconstruction
a volume of size 256×256×256.

4. Sample-data4 (for the sample-data2), we have 211
projections of 400×400 to get after reconstruction
a volume of size 128×128×128.

2) Results and Discussions

For the first step where we used simulated datasets, by
seeing (Table IV) we notice that a higher number of parallel
cores has no effect on the speedup of the reconstruction time
without considering the Bandwidth, the Bus Width and other
capacities. This can be seen by comparing, for example,
NVIDIA 425M and Radeon HD 8670M where the first has 96
parallel cores with a memory frequency of 800 MHz, while the
second one has 320 parallel cores with the same memory
frequency but a significantly lower computation time with
respect to the first one.

Moreover, one has to confirm that memory system has to be
considerably large if we want to process huge sizes as
512x512x512 for example; this means that the parallelization
method has no effect on the runtime speed without acceptable
GPU capacities and high system capacities.

For best results, we have chosen the size of the local-work-

size and the number of work-groups properly so as not to have
all the private and local memory of the device used
continuously which limits the number of work-items to be
executed in parallel. Such an idea is related to the fact that
local-work-size cannot be bigger than the specified dimension
through CL_DEVICE_MAX_WORK_ITEM_SIZES, and the
cumulative work-group-size which is the product of all
dimensions x, y, z must be less or equal to the resulting
number.

The global-work-size can be chosen as big as we want, but
it has the constraint to be a multiple of the local-work-size.
Furthermore, a work-group has to execute on one compute unit
and this compute unit might not be fully used, because a
compute unit might execute as many work-groups as possible
for performance, and we have to specify local-work-size
because if we do not, and if configured to be determined by the
OpenCL implementation, that we do not advise to do, we
cannot know how our work is divided into work-groups and
we do not have guarantee that the work-group-size will be
optimal.

To have a precise justification, one has to know how the
runtime of the backprojection changes with the size of the
local-work-size, for this reason, we use Sample-data3 and

Sample-data4 to plot the runtime of the backprojection
according to different sizes of the local-work-size see (Fig. 3
and Fig. 4).

Fig. 3: Runtimes of a set of local-work-item of Sample-data3

Fig. 4: Runtimes of a set of local-work-item of Sample-data4

We can see the symmetry on both graphs (on X axix like
64x128 with 128x64, 128x1024 with 1024x128...), this can be
explained by the fact that the number of work-items specified
for the kernel launch is the product result of local-work-size
and work-groups, but the runtimes will not necessarily be
equal, and this is explained by how the work-items are
executed in parallel, and to have an optimal method, we have
to choose a work-group-size lower than the value defined by
CL_DEVICE_MAX_WORK_GROUP_SIZE which defines
the maximum size of a work-group, and due to the limited
hardware resources we have to choose a scalar for local-work-

size less than the maximum value allowed by the device,
because CL_DEVICE_LOCAL_MEM_SIZE increases with
the local-work-size.

The peak values represent high values which are qualified
by a very high time consumption, and it contradicts with the
aim of method acceleration which wants to benefit from a
significant time gain, for this reason, it is necessary to avoid

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING
DOI: 10.46300/91011.2021.15.33 Volume 15, 2021

Ε-ISSN: 1998-4510 280

Table IV: Different GPUs runtimes by using mathematical
phantoms (seconds)

choosing small values of work-groups compared to the size of
local-work-size, or to choose the maximum values (1024).

For more program optimization, we compare theoretical
peak memory bandwidth and effective one (or observed)
which can be calculated using Eq. (6), and as we can find in
[27] that if the effective bandwidth is much lower than the
peak memory bandwidth, optimization efforts should increase
the effective bandwidth.

9() /10B B

Effective

R W
BW

t


 (6)

Where: BR is the number of bytes read per kernel and BW is
the number of bytes written per kernel, and t is the elapsed
time given in seconds.

We use the GPU NVIDIA GTX 1060 considered the most
efficient in our work, and we optimize our method according
to values of peak memory bandwidth presented in Table V,
and we calculate effective bandwidth for memory copy from
Host to Device using a set of work-items that we have chosen
for both sample-data3 and sample-data4 that we report in
Table VI, and to see how much the value of effective
bandwidth is close to the value of the peak memory bandwidth,
we calculate the percentage through the ratio between effective
bandwidth and peak memory bandwidth, see Table VII.

Table V: Peak memory bandwidth (GB/s)

Here we do confirm that bandwidth has no effect on
runtime speedup, but on the other hand, effective bandwidth
should be close to peak memory bandwidth for optimization
considerations, because bandwidth represents the data
transferring rate, and can affect the program performance if it
is affected when for example, the programmer has not chosen

properly where data should be stored and how can it be
extracted or accessed.

Table VI: Calculated bandwidth (GB/s)

Table VII: Ratio in %: How much effective and theoretical peak
bandwidth are close

Table VIII shows some more indications that the higher
number of parallel cores does not affect the speedup of the
reconstruction without having a device with higher capacities.
One can see that with the same dataset volume in the
reconstruction procedure for NVIDIA 425M and Radeon
HD8670M respectively, the later one has higher parallel cores
number but a slower execution time, while the first one has
faster execution time with lower parallel cores number and the
same memory frequency but has a higher bus width and
bandwidth.

GPU

Runtimes for size 128 × 128 × 128 Runtimes for size 256 × 256 × 256
Weighting Filtering Back

projec-
tion

Total Weighting Filtering Back
projec-
tion

Total

NVIDIA
GTX
1060

0.032 0.374 0.138 0.544 0.063 0.531 0.789 1.383

NVIDIA
425M

0.101 1.529 1.589 3.219 0.129 1.956 2.841 4.926

Radeon
HD
8670M

0.28 2.1 10.462 12.842 0.28 2.67 78.83 81.78

NVIDIA GTX 1060
Device to Host
Bandwidth

Host to Device
Bandwidth

Device to De-
vice Bandwidth

12.61 12.19 141.65

NVIDIA GTX 1060
Work-items-
size

Effective
Bandwith
(Sample-
data4)

Effective
Bandwidth
(Sample-
data3

1048576 8.32 8.42
524288 8.34 8.60
262144 8.53 8.64
131072 8.64 8.53
65536 8.60 8.34
32768 8.42 8.32

NVIDIA GTX 1060
Work-items-
size

Bandwith Ra-
tio (Sample-
data4) (%)

Bandwith Ra-
tio (Sample-
data3) (%)

1048576 68.25 69.07
524288 68.41 70.54
262144 69.97 70.88
131072 70.88 69.97
65536 70.54 68.41
32768 69.07 68.25

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING
DOI: 10.46300/91011.2021.15.33 Volume 15, 2021

Ε-ISSN: 1998-4510 281

Table VIII: Summary of comparison of differents GPUs runtimes
(seconds)

Result in [9] is the total reconstruction time Result in [15] is
the reconstruction time after n/m (input/output) projections

By comparison with other works (see Table VIII) we

record different runtimes, even we do not compare with the
same dimensions, but we can have a technical point of view on
runtimes according to the given configuration.

As a first observation, we can notice when comparing the
total runtime of NVIDIA GTX 280 [9] and NVIDIA GTX
1060, that the total runtime of NVIDIA GTX 280 is higher
than that one of NVIDIA GTX 1060, and without taking into
account the major difference in number of parallel cores in
favour of the NVIDIA GTX 1060 we can see that the memory
frequency which is nearly doubled and again in favour of
NVIDIA GTX 1060 gives significant runtime gain.

GPU hardware limitations conduct the user to perform the
acceleration method according to a technical choice, for
example, the maximum of work-groups to be handled is
limited to 1024 but it is clear in our experiments that choosing
less than this value is much more benefic for runtime speedup,
our experiments show that for 64x128 or 128x64 of

local-work-size is much more reasonable to have a good
runtime speedup than to 1024x1024 or 512x512, which
represents the number of work-items to perform the job, and
programs run better with a local-work-size smaller than the
maximum allowed by the device it means more complex the
kernel and the more private variable it has, the more registers
it will need and by consequence the more time it consumed.

We can choose the size of the global-work-size as we want
as far as that does not exceed one of the device’s global
resource consumption limits and changing the global-work-

size does not increase program parallelism because this
remains to the occupation of all device’s compute units, and
somewhere one has to reduce parallelism to more closely much
the device capabilities, and avoiding to have memory
consuming conflicts.

As we deduce by the experiments, the memory frequency is
one of the important specifications, the higher the frequency
the smaller the transfer time the more the gain in runtime
speedup.

For the number of parallel cores, it depends on the device
capacities, the more the higher the capacities with a higher

Data size Runtime NVIDIA
GTX 1060

NVIDIA
425M

Radeon HD
8670M

Tesla
C2075

HD
7970

Quadro
2000

Geforce
9400

NVIDIA
GTX
280

60*50*72 Backprojection
time
total time

- - - 0.01

0.30

0.01

0.30

- - -

320*192*256 Filtering time
Backprojection
time
Total time

0.453
0.447

0.970

0.985
11.296

12.374

2.37
106.838

109.478

- - - - -

211*256*200 Filtering time
Backprojection
time
Total time

0.488
0.261

0.814

0.984
4

5.078

2.122
48.840

51.242

- - - - -

512*512*768 Backprojection
time
Total time

- - - 49.44

60.45

16.01

28.02

- - -

256*256*128 Total time - - - - - - - 14.227
10486*10000 Reconstruction

time
- - - - - 57.4 400.4 -

1232*10000 Reconstruction
time

- - - - - 506 3503 -

320*400*400 Filtering time
Backprojection
time
Total time

1.875
2.88

5.041

4.719
40.968

46.171

8.232
425.676

434.548

- - - - -

211*400*400 Filtering time
Backprojection
time
Total time

1.27
0.30

1.789

3.093
4.688

8.110

5.461
62.15

68.050

- - - - -

Related wo r k

This
p a p e r

This
p a p e r

This
p a p e r

[11] [11] [15] [15] [9]

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING
DOI: 10.46300/91011.2021.15.33 Volume 15, 2021

Ε-ISSN: 1998-4510 282

number of parallel cores, the higher the speedup we have. This
can be clarified by comparing the NVIDIA 425M, the Radeon
HD8670M, and the NVIDIA GTX 1060, where the first one
has a lower number of parallel cores than the second one but
with a faster runtime. While the third one, which is the
NVIDIA GTX 1060, has the most higher number of parallel
cores, the highest device capacities, and precisely the fastest
runtime of the three cards.

The parallelism method has no effect on runtime speedup
without kernel performance, it is necessary to provide the three
stages of the FDK parallel version in a manner that will not
consume more time than it is necessary and this depends on the
implementation strategy, and it is clear that when we have
large data size it will be important to perform even the
parallelism inside the FFT code because higher it is the
number of FFT points the higher is the data to compute and
higher it will consume time.

The known peak memory bandwidth has no effect on
runtime speedup, but for more program performance it is
necessary to have the value of the effective bandwidth close to
that one of the theoretical peak memory bandwidth, for our
experiments we have a performance of a value around 70\%
whatever the size of the work-items used, compared to [27]
where the performance value is between 76\% and 82\% using
different GPUs.

System memory has to be significantly large if size of data
to be reconstructed is important with memory management,
thing which has not been treated in this work, gives a higher
time speedup.

As our experiments give better results with the NVIDIA
GTX 1060, we have chosen to use it as a device of comparison
with other works.

C. Applications of this study

Since the introduction of CBCT in medical imaging, the
major concern has been to try to get a better quality result for
the image while minimising the image reconstruction time and
the X-ray exposure time.

For fully 3D reconstruction, CBCT is considered as an
important solution providing a 3D image in a fast
reconstruction time due to its geometry, and taking into
account the results of both datasets 1 and 2, we can say that the
acceleration of the FDK method can be useful in several
specialities, such as Orthopedics radiology, Dento-
maxillofacial radiology and Image-guided Radiotherapy.

VI. CONCLUSION
In this work, we have presented an implementation for

accelerating a parallel version of the FDK algorithm on several
heterogeneous architectures with different capacities. We have
presented what the effect of GPU capabilities will be and how
to take advantage of the technical capabilities of the GPU to
achieve better computational time-saving. In comparison to
existing work, we have tried to draw attention to the technical
characteristics of GPUs and to the fact that it is necessary to
rigorously manipulate the items known as work-items, to

benefit from a gain in computation time and to have a parallel
program optimization.

For the implementation, we have chosen to use OpenCL
because it gives the programmer flexibility and ease of use of
the GPU for better performance. Our experiments show that
the FDK algorithm has a parallel nature, so the choice of its
acceleration on GPU is justified. According to the results of
our experiments, as the reconstruction size gets larger, the
filtering stages consumes more time, which is more beneficial
for the reconstruction speedup if we parallelize process within
the filtering kernel.

The number of the local-work-size has been chosen for
higher performance of the parallelized code, and specifying the
number of work-items to be used in the kernel launch is the
best choice than it is configured to be specified by the OpenCL
implementation.

Limitations of the device capacities conduct the programmer
to reduce, somewhere, parallelism to more closely much the
device capacities. Having a device with a higher number of
parallel cores does not guarantee to have a higher execution
speed as stated above, it depends on the device capacities,
hence the obligation to choose a device with higher capacities.

ACKNOWLEDGMENT
This work was supported by GDSRTD (General Direction

of Scientific Research and Technological Development,
Ministry of Higher Education and Scientific research, Algeria).

CONFLICT OF INTERESTS
Conflict of Interests: none

References
[1] Yu, Lifeng Liu, Xin Leng, Shuai Koer, James Ramirez-

Giraldo, Juan Qu, Mingliang Christner, Jodie Fletcher,
Joel McCollough, Cynthia. Radiation dose reduction in
computed tomography: techniques and future perspective.
Imaging in medicine. 2012. 1. 65-84. doi
:10.2217/iim.09.5.

[2] Cynthia H McCollough, Andrew N Primak, Natalie Braunc
and James Koer. Strategies for Reducing Radiation Dose
in CT. Radiol Clin North Am. 2009. 47. 27 . doi :
10.1016/j.rcl.2008.10.006.

[3] Ying Song, Weikang Zhang, Hong Zhang, Qiang Wang,
Qing Xiao, Zhibing Li, Xing Wei, Jialu Lai, XuetaoWang,
Wan Li, Quan Zhong, Pan Gong, Renming Zhong and Jun
Zhao. Low-dose cone-beam CT (LD-CBCT)
reconstruction for image-guided radiation therapy (IGRT)
by three-dimensional dual dictionary learning, 2020,
Radiation Oncology, https://doi.org/10.1186/s13014-020-
01630-3

[4] Marion Lahutte-Auboin, Amir Ait-Ameur, Virgine Decat
and Laurent Hauret . Dental Implant Imaging: How CT
Scan Became a Help to Surgery. Implant DentistryA
Rapidly Evolving Practice. Ilser Turkyilmaz. IntechOpen.
267-286. 2011. InTech Europe. 2. 2nd.

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING
DOI: 10.46300/91011.2021.15.33 Volume 15, 2021

Ε-ISSN: 1998-4510 283

[5] B. Rajkumar, Lalit C. Boruah,Vishesh Gupta. Use Of C-
Arm Ct Real Time Imaging System in Endodontics-
clinical Report . International Journal of Scientic
Research. 2015. 07. 4. 712-714.

[6] Bacha Sawssen, Taouali Okba, Liouane Noureeddine, A
Mammographic Images Classi_cation Technique via the
Gaussian Radial Basis Kernel ELM and KPCA, Int. J. of
Applied Mathematics, Computational Science and
Systems Engineering, 2020, Volume 2, pp. 92-98

[7] Stella Vetova, Covid Image Classifcation using Wavelet
Feature Vectors and NN, EngineeringWorld, 2021
Volume 3, pp. 38-42.

[8] L. A. Feldkamp, L. C. Davis, J. W. Kress. Practical cone-
beam algorithm. J. Opt. Soc. Am. A. 1984. 1. 612-619.

[9] Bo Wang and Lei Zhu and Kebin Jia and Jie Zheng.
Accelerated cone beam CT reconstruction based on
OpenCL 2010 International Conference on Image
Analysis and Signal Processing. 2010. 291-295.

[10] Holger Scherl , Markus Kowarschik , Hannes G.
Hofmann and Benjamin Keck and Joachim Hornegger.
Evaluation of state-of-the-art hardware architectures for
fast cone-beam CT reconstruction. Parallel Computing.
2012. 38. 3. 111 - 124.

[11] Leeser Miriam , Mukherjee Saoni, Brock, James. Fast
reconstruction of 3D volumes from 2D CT projection data
with GPUs. BMC research notes. 2014. 7. 582.

[12] Sample code FFT OpenCl.
https://developer.apple.com/library/archive/samplecode/
OpenCLFFT/links.htm.

[13] Michigan Image Reconstruction Toolbox (MIRT).
http://web.eecs.umich.edu/fessler/ code/index.html.

[14] Yan, Guorui Tian, Jie Zhu, Shuping Dai, Yakang Qin,
Chenghu. Fast cone-beam CT image reconstruction using
GPU hardware. Journal of X-Ray Science and
Technology. 2008. 16. 225-234.

[15] J S Dominguez, L F de Oliveira, N A Junior and J T de
Assis. Using Graphics Processing Units to Parallelize the
FDK Algorithm for Tomographic Image Reconstruction.
2012.

[16] Zhang Shunli, Geng and Guohua Zhao, Jian. Fast parallel
image reconstruction for cone-beam FDK algorithm.
Concurrency and Computation: Practice and Experience.
31. 10. 4697. 10.1002/cpe.4697.
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4697.
2019.

[17] Navid Zeraatkar, Benjamin Auer, Kesava Kalluri , Lars
R. Furenlid , Philip H. Kuo , Michael A. King, GPU-
accelerated generic analytic simulation and image
reconstruction platform for multi-pinhole SPECT systems,
15th International Meeting on Fully Three-Dimensional
Image Reconstruction in Radiology and Nuclear
Medicine, International Society for Optics and Photonics,
SPIE, 196 - 199, 2019, 10.1117/12.2534523,
https://doi.org/10.1117/12.2534523.

[18] Inam, Omair and Qureshi, Mahmood and Akram, Hamza
and Omer, Hammad and Laraib, Zoia, 2019 IEEE 2nd
International Conference on Information and Computer
Technologies (ICICT), Accelerating Parallel Magnetic

Resonance Image Reconstruction on Graphics Processing
Units Using CUDA, 2019, 109-113,
10.1109/INFOCT.2019.8710946.

[19] Valencia Pérez, T. A., Hernández López, J. M., Moreno-
Barbosa, E., de Celis Alonso, B., Palomino Merino, M.
R., & Castaño Meneses, V. M. (2020). Efficient CT Image
Reconstruction in a GPU Parallel Environment.
Tomography (Ann Arbor, Mich.), 6(1), 44–53.
https://doi.org/10.18383/j.tom.2020.00011

[20] J. Daniel Bourland. Image-Guided Radiation Therapy.
CRC Press. isbn = 978-1-4398-0274-8,978-1-4398-0273-
1. 2012. Imaging in Medical Diagnosis and Therapy. 1.
http://gen.lib.rus.ec/book/index.php?md5=7537C24
F975D2FC603CF9930674402CC.

[21] Turbell, Henrik. Cone-beam reconstruction using filtered
backprojection . Linkoping Universitet. 2001.

[22] Munshi, Aaftab and Gaster, Benedict and Mattson, Tim
and Fung, James and Ginsburg, Dan. Opencl
Programming Guide. Addison-Wisley. 2011. 04. 01
Boylston Street, Suite 900Boston, MA 02116.
0321749642.

[23] Kaeli David, Mistry Perhaad Schaa, Dana Zhang D.P.
Heterogeneous Computing with OpenCL 2.0: Third
Edition. 2015. 01. 1-307.

[24] N. K. Govindaraju and B. Loyd and Y. Dotsenko and B.
Smith and J. Manferdelli. High performance discrete
Fourier transforms on graphics processors in SC '08:
Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing. 2008. 1-12. doi
:10.1109/SC.2008.5213922. 2167-4337. Nov.

[25] Rezvani, N. Aruliah, D. Jackson, K. Moseley, D.
Siewerdsen and J. OSCaR: An opensource cone-beam CT
reconstruction tool for imaging research. 2007. 06. 34.
Medical Physics – MED PHYS. doi : 10.1118/1.2760393.

[26] 3D Cone beam CT (CBCT) projection backprojection
FDK, iterative reconstruction Matlab examples.
http://www.mathworks.com/matlabcentral/_leexchange/35
548 - 3d - cone - beam - ct - cbct - matlab - examples.

[27] Fatica Massimiliano and Ruetsch Gregory. Performance
Measurement and Metrics. 2014. 12. 31-42.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING
DOI: 10.46300/91011.2021.15.33 Volume 15, 2021

Ε-ISSN: 1998-4510 284

