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Abstract— Medical imaging has found an important 

way for routine daily practice using cone-beam computed 

tomography to reconstruct a 3D volume image using the 

Feldkamp-Davis-Kress (FDK) algorithm. This way can 

minimize the patient’s time exposure to X-rays. However, 

its implementation is very costly in computation time, 

which constitutes a handicap problem in practice. For this 

reason, the use of acceleration methods on GPU becomes a 

real solution. For the acceleration of the FDK algorithm, 

we have used the GPU on heterogeneous platforms. To 

take full advantage of the GPU, we have chosen useful 

features of the GPUs and, we have launched the 

acceleration of the reconstruction according to some 

technical criteria, namely the work-groups and the work-

items. We have found that the number of parallel cores, as 

well as the memory bandwidth, have no effect on runtimes 

speedup without being rough in the choice of the number 

of work-items, which represents a real challenge to master 

in order to be able to divide them efficiently into work-

groups according to the device specifications considered as 

principal difficulties if we do not study technically the 

GPU as a hardware device. After an optimized 

implementation using kernels launched optimally on GPU, 

we have deduced that the high capacities of the devices 

must be chosen with a rough optimization of the work-

items which are divided into several work-groups according 

to the hardware limitations. 
Keywords—FDK algorithm, GPU, 3D Image 

Reconstruction, Cone-Beam Computed Tomography-

CBCT, Intensive Computing, Reconstruction Acceleration. 

 
 

I. INTRODUCTION 

N medical imaging, we are interested in solving a system of 
equations to find the solution, and this solution is finally the 

image, in another way we reconstruct data from a set of 
acquisitions, whether in 2D or 3D. In our work we use 
different architectures of platforms to accelerate the 
reconstruction of fully 3D medical images, much more focused 
on conical CT (Cone Beam Computed Tomography; CBCT) 
which is expected to be useful in clinical life, it helps to reduce 
the dose by reducing the X-ray exposure [1, 2], due to its 
speed time scanning, useful in intensive concert care such as 
image-guided radiotherapy techniques [3], and tooth implants 
requiring real-time imaging [4,5], and classification methods 
of mammography images by Kernel Extreme Learning 
Machine (KELM) or Kernel Principal Component Analysis 
(KPCA) techniques [6], and can be useful in Covid image 
classification by Wavelet Feature Vectors and Neural Network 
[7]. 

In the proposed work, we accelerate reconstruction by an 
analytical method by using heterogeneous architectures 
(CPU+GPU platforms) using OpenCL with C++. As we will 
see within our paper, there are some specifications which are 
very important to take into account with rigour when we want 
to choose the platform, and mainly the GPU, that will be used 
to accelerate the algorithm of reconstruction.  

Since the most and widely used and implemented algorithm 
on scanners is the FDK [8], we use GPU to accelerate this 
method, we present a 3D reconstruction, we produce 
acceptable images when the acquisition angles are small ( < 2 
degrees) and using sufficient number of projections and 
equidistributed around the object (because few numbers of 
projections or not equidistributed around the object remain to 
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the limits of the CT and thereafter the CBCT) by using robust 
3D algorithm, but very expensive in calculation time and 
therefore slower to be executed, for this reason we have 
chosen to accelerate this algorithm on GPU which provides an 
excellent price/performance ratio for well-suited calculations 
(including linear algebra calculations) and easier in 
programming compared to Field Programmable Gate Array 
(FPGA) which is very complex because it is necessary to 
describe the entire architecture performing the desired 
calculation.  

The main difficulty is how to divide the work-items into 
several work-groups to take full advantage of the 
parallelization capabilities of the algorithm. As the study of the 
technical characteristics of the GPU is imperative, the 
challenge is to have a compromise between the parallelization 
method and the capabilities of the GPU, since trying to fully 
occupy the hardware resources of the GPU will result in a loss 
of computation time, up to a parallel computation time not far 
from that one of a non-parallelized program. 

The rest of this paper is organized as follows. In Section II, 
a literature review is presented. In Section III, the CBCT 
geometry and the FDK algorithm principles are overviewed. In 
Section IV, our strategy for algorithm parallelization using the 
GPU and the OpenCL environment is presented. In Section V, 
our implementation of kernel algorithms and the 
experimentation as well as the obtained results and discussions 
are presented, in addition to the details of the used datasets. 
Finally, our conclusion is presented in Section VI.  

II. LITERATURE REVIEW 
In parallel with the hardware technology evolution, during 

the last decade, there have been numerous published research 
works on the use of GPU in accelerating the reconstruction 
algorithms whether using OpenCL or CUDA methods. 

In the work of Bo Wang et al. [9], OpenCL has been used 
for accelerating the CBCT reconstruction. They reported that 
the use of OpenCL which is a generic program, reduces the 
programming effort and considered it as the first truly open 
and royalty-free programming standard for general-purpose 
computations on the heterogeneous system which targets 
multi-core CPUs and latest GPUs. 

Holger Scherl et al. [10] have compared the reconstruction 
in different architectures to the exception of the filtering stage 
which was done on CPU, and have reported that when using 
GPU, the known Bandwidth has no effect on time diminution 
within the acceleration method. 

Leeser et al. [11] have used different architectures for 
accelerating the FDK algorithm using CUDA and OpenCL. 
They used Apple's FFTW [12] for 128 and 1024 points, and 
reported that their work is compatible with that one of Fessler 
on Matlab [13], and that to minimize the consumption of time 
in calculation it is preferable to transfer all calculation data to 
the GPU.  

G. Yan et al. [14] have used two techniques in their 
algorithms to accelerate the Feldkamp-Davis-Kress (FDK) 

algorithm, the cyclic render-to-texture (CRTT) to save the 
copy time, and the combination of z-axis symmetry and 
multiple render targets (MRTs) for reducing the computational 
cost on the geometry mapping. 

Dominguez et al. [15] have implemented a parallel version 
of the FDK algorithm on two different capacities level of GPU 
using CUDA-C and shown in their study that to have a higher 
speed up using GPU card one has to choose the highest 
capacities. 

In their recent work, Shunli Z. et al. [16] have proposed a 
fast method for parallel implementation of the FDK algorithm 
using CUDA in multi GPU, by optimizing the backprojection 
operation, and they have considered as the most consuming 
time part in the algorithm. They have used simulated 
phantoms, and have mentioned that if the projection size gets 
larger it would be difficult to the device memory to store the 
whole projection data and the image would be reconstructed 
chunk by chunk. 

Navid Z. et al. [17], have proposed an analytic modelling 
MLEM approach for the H-matrix MLEM algorithm by using 
GPU acceleration to make a high-performance computing 
software, they have reported that by using 100 iterations the 
images reconstructed by H-matrix method are less noisy. 

Inam et al. [18], have proposed a new parameterizable 
architecture of optimized CUDA kernels reconstruction on 
GPU, and have declared having obtained high-speed 
reconstructions without compromising the image quality. 

Valencia et al. [19] have proposed a parallel implementation 
of an iterative method concerning the MLEM reconstruction 
algorithm on GPU, and have presented their results and have 
declared that the MLEM implementations in CUDA using 
GPUs’ capabilities were reliable and fast.  

Table I, summarizes some works in the literature of 
accelerated methods and algorithms on GPU. 

III. THEORY 

A. The Cone-Beam CT geometry  

For cone-beam acquisition geometry, we have a circular 
orbit of the source-detector, a planar detector where data are 
collected as shown on Fig. 1.  For volumetric CT the efficient 
acquisition setup is to use a two-dimensional detector [20], 
where rays form a cone with its base on the detector and its 
apex on an X-ray source, which naturally produces a cone of 
rays. This configuration increases the scanning speed and 
makes better use of the emitted rays, which can be also 
removed by collimation. 

Three-dimensional reconstruction algorithms, in 
reconstruction method for fully three-dimensional 
reconstruction approach, are usually based on the three-
dimensional Radon transform. In the object space, each plane 
can be represented by a unique point which is a plane integral 
in the object domain representing a three-dimensional Radon 
value. This point is the intersection of the plane and its normal  
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Table I:  Summery of some works of accelerated algorithms on GPU 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: Cone-Beam Acquisition Geometry 

 
passing the origin. All Radon values placed at the 
corresponding points represent the three-dimensional Radon 
space. The Radon values of all planes intersecting the object 
have to be known to perform an exact reconstruction.  

B. FDK algorithm Principles 

The FDK is an approximate reconstruction algorithm for 
circular cone-beam tomography and has been used as a 
standard reconstruction approach for CBCT. Our configuration 
follows the original form of FDK, and data assumed coming 
from a planar detector [21]. 

The image space f(x,y,z) in Eq. (1) is obtained by 
backprojecting the filtered weighted projection according to 
Eq. (5). 
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20
( , , ) ( , , )ˆ

D
f x y z p u v d

D



                           (1) 

Where  
ˆ cos sinD D x y                                        (2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

( sin cos )ˆ
D

u x y
D

                                      (3) 

ˆ
D

v z
D

                                                                      (4) 

2 2 2
( , , ) ( ( , , )) ( )D

p u v p u v h u
D u v

  
 

 (5) 

 
 is the projection angle, D (known as gantry rotation or 

SAD: Source to center Axes Distance) is defined as distance 
between source and the origin O, (x,y,z) are voxel coordinates, 
(u,v) are the detector coordinates, p(β,u,v) are the detector 
acquainted data, h(u) is the ramp filter.  

The integral in Eq. (1) is replaced by a sum over the 
projection angles in the discrete case. For each term of the 
backprojection sum, a two-dimensional interpolation of the 
filtered projection data is applied.  

The FDK algorithm is a highly parallel nature, it can be 
performed in three processing stages; weighting the input 
projections, filtering the weighted input projections and back-
projecting the filtered projections data into reconstructed 
volume, where all of them should be performed within the 
GPU. 

By its massively parallel nature, the FDK algorithm finds a 
way out of the problem of time consumption in its resolution 
by using GPU as a platform where it can be implemented using 
the advanced technological development offered in new 
generations of GPUs. Since modern GPUs have several 
hundreds of parallel cores and can make calculation in 
floating-point precision, they become a good alternative 
candidate to support and best respond to the parallel nature of 
the FDK algorithm by the fact that in the reconstructed volume 
all projections are independent and can be calculated  

 

Related work Accelerated algorithm Method used 
Bo Wang et al. [9] FDK OpenCL 

Scherl et al. [10] FDK - 
Leeser et al. [11] FDK OpenCL and CUDA 

G.  Yan  et  al. [14] FDK CRTT, MRT techniques 

Dominguez et al. [15] FDK CUDA-C 

Shunli Z. et al. [16] FDK CUDA on multi GPUs 

Navid  Z. et al. [17] MLEM ((MPH) 
SPECT) 

- 

Inam et al. [18] GRAPPA (MRI) CUDA 
Valencia  et  al. [19] MLEM CUDA 
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Fig. 2: Illustration how to call Kernels to perform parallel 

operations. 
 

Table II: Some useful parameter descriptions 
Global-work-size Dimension of global-work-items 

Local-work-size Dimension of the work-groups 
Work-items number Total number of work-items 

specified for the kernel launch 
Work-groups number Total number of work-groups 

Work-group-size Number of  work-items per 
work-group 

 
independently, also each pixel in many cases can be calculated 
independently. 

To reduce programming difficulties, we adopted a 
heterogeneous platform solution (CPU+GPU) where the 
OpenCL programming model is used on modern AMD and 
NVIDIA GPUs platform which both provide a parallel 
computing architecture. Parallel operations should be 
programmed as kernel functions that execute on GPU. 
Sequential operations should be programmed as host functions 
that execute on the CPU as illustrated on Fig.2. Both host and 
kernel functions are wrapped and called via a main host 
function. Communication between the CPU and the GPU can 
be done via the device’s global memory, constant memory or 
texture memory on the GPU. 

IV. OPENCL AND GPU PARALLELIZATION STRATEGY 
OpenCL is known as a model where the notion of a host 

device is the basis of running data as well as tasks in parallel 
works. Kernel functions executed on the GPU can be executed 
as a function of multi-dimensional domains of indices named 
the global work-size. This later can be divided into sub-
domains called work-groups, useful descriptions are given in 
Table II. 

The essential element is called a work-item, and individual 
work-items within a group can communicate through global or 
locally shared memory. For synchronization, in OpenCL there 
are two domains: work-items in a single work-group and 
command-queue(s) in a single context. For more a 
comprehensive description, we refer the readers to [22, 23]. 

After compilation by the OpenCL environment, a program 
runs as a kernel in the GPU. A kernel takes input parameters, 
conducts computations, and outputs the result to device 
memory where the CPU can read it. The computation is done 
by thousands of work-items, each work-item performs the same 
operation in the kernel, but the input data can be different. 
With thousands of work-items doing similar tasks 
simultaneously, the computation speed can be considerably 
improved.  

The host code running on the CPU prepares input data and 
accepts output values from the GPU. The intensive 
computation task is handled by GPU kernels. The output data 
is written to global device memory in order to be retrieved by 
a CPU program.  

The strategy of the accelerated program can be explained as 
follows: The program begins by reading in 3D CBCT 
parameters and then initializes the output image by the 
specified data volume size. OpenCL is called and the device 
and its memory are initialized, then kernels specified for the 
GPU are built by taking into account that number of work-

items = local-work-size x the number of work-group. data are 
transferred to the GPU and the execution starts running the 
weight kernel then the filter kernel and ends by the back-
projection kernel, after finishing the resulting image is 
transferred back to the CPU to be displayed. For the transfer of 
the data from the CPU to the GPU or the opposite, we use a 
function called oclMoveData which intelligently copies data of 
the source location with the specified dimension to the 
destination location with the specified dimension, the 
dimension of the data must be the same for both source and 
destination. 

V. IMPLEMENTATION 

A. Kernels algorithms 

To perform a parallel version of the FDK algorithm we have 
chosen the heterogeneous platform, we have selected some 
characteristics and hardware parameters that we consider 
relevant for analyzing against other works as shown on Table 
III. 

As stated above, the FDK parallel version is performed in 
three stages. The weighting stage is not very consuming time, 
on the contrary, filtering and backprojection stages have both 
high runtimes. The filtering stage is performed within the FFT 
kernel presented in an OpenCL kernel to be executed on GPU 
without any performance (see for example [24]) which will be 
treated in our future work. The two first stages are presented 
by kernels shown by algorithms Algorithm 1 and Algorithm 2. 

The backprojection stage is performed after the processing 
of the weighting and filtering stages, but in a different way 
where the slices of all projections are considered to be 
processed, if we consider nu and nv are number of pixels in a 
slice (u,v) and np is the number of projections, we scan all 
projection angles np and all pixels nu x nv in the buffer to be 
padded by zeros, and then after we scan slices over  Z axis of  
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Table III: Summary of different GPUs characteristics and parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

begin Kernel  
kernel void weight(Params)  
for each pixel in a single projection  do  

generate a weight value for that pixel;  
for each projection do 

apply the current weight to the appropriate pixel;  
end  

end  
return;  
end Kernel 

 
Algorithm 1: Weight Kernel 

 
 

begin Kernel  
kernel void filter( Params )  
for each 2D projections do  

for each row in the projection do  
convert to the frequency domain;  
//Frequency Domain;  
fft1024(parameters);  
Apply the filter to the weighted projection data;  
//Time domain;  
Convert back to time domain and scale;  
fft1024(parameters);  

end  
end  
return;  
end Kernel 

 

Algorithm 2: Filter Kernel 
 

total number nz to process each pixel in the output slice nx x 
ny and we apply the output projection data to all projection 
angles, we scan all slices, and we perform each pixel for all 
projections to obtain final image nx x ny x nz which simply 
indicates that kernels process a 3D image and it is the final 
render volume to transfer to the host where it is displayed, see 
(Algorithm 3). 
 
   

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

begin Kernel  
kernel void backProj( Params ) 

// Projections in buffer padded with zeros  
for each output image slice  do  

for each pixel in the slice  do  
apply projection data to output image over each projection 

angle;  
apply a bi-linear interpolation;  

end  
end  
return;  
end Kernel 

 
Algorithm 3: Backprojection Kernel 

 

B. Experimentation and Results 

In this sub-section, we present a global view on how we 
evaluate our results according to the hardware used and 
specify some technical specifications on the choice of the 
platform to use for the acceleration of the reconstruction 
method.  

It is recommended to start the experiment with a good 
hardware of high capacities. For the implementation of the 
acceleration method, one has to be rough in the way with 
which a heterogeneous platform will be handled and to ensure 
a fast data communication between host and device. It is also 
necessary to guarantee a rapid implementation of the kernels 
which are responsible for executing the reconstruction quickly 
and optimally, by a good choice of the groups of work-items 
which are the elements to be well structured to benefit from a 
considerable gain in runtime. 
1) Used Datasets 

In the beginning, we use data of mathematical phantoms of 
size 128×128×128 and size 256×256×256 which have been 
tested on different architectures and we record different 
runtimes of each configuration, see (Table IV). 

In the second step of our experiments we use different data 
of real Phantoms and their modified configurations that we 
processed to have different sizes: 

Parameters NVIDIA NVIDIA Radeon Tesla Radeon Quadro NVIDIA NVIDIA 
 GTX 425M HD C2075 HD 7970 2000 Geforce GTX280 
 1060  8670M    9400  

Parallel 1280 96 320 448 1600 192 16 240 
cores         
Bus Width 192 128 64 384 256 128 64 512 
(bits)         
Band 192.2 25.6 4.8 144 128 80.19 9.6 141.7 
Width         
(GB/S)         
Memory 3 1 2 6 3 1 0.125 4 
(GB)         
System 8 8 8 32 32 - - - 
Memory         
(GB)         
Memory 2002 800 800 750 1375 640 600 1107 
Clock         
(Mhz)         
Related This pa- This pa- This pa- [11] [11] [15] [15] [9] 
Work per per per      

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING 
DOI: 10.46300/91011.2021.15.33 Volume 15, 2021

Ε-ISSN: 1998-4510 279



 

 

 
1. Sample-data1 (sample data in [25]), tested in [9], we 

have 320 projections of size 192×256 and source-
to-detector-distance SDD = 155 cm and source-to-
axis-distance SAD = 100 cm. 

2. Sample-data2 (sample data in [26]), we have 211 
projections of size 256×200 and source-to-
detector-distance SDD = 153.6 cm and source-to-
axis-distance SAD = 110 cm. 

3. Sample-data3 (for the sample-data1), we have 320 
projections of 400×400 to get after reconstruction 
a volume of size 256×256×256. 

4. Sample-data4 (for the sample-data2 ), we have 211 
projections of 400×400 to get after reconstruction 
a volume of size 128×128×128. 
 

2) Results and Discussions 

For the first step where we used simulated datasets, by 
seeing (Table IV) we notice that a higher number of parallel 
cores has no effect on the speedup of the reconstruction time 
without considering the Bandwidth, the Bus Width and other 
capacities. This can be seen by comparing, for example, 
NVIDIA 425M and Radeon HD 8670M where the first has 96 
parallel cores with a memory frequency of 800 MHz, while the 
second one has 320 parallel cores with the same memory 
frequency but a significantly lower computation time with 
respect to the first one.  

Moreover, one has to confirm that memory system has to be 
considerably large if we want to process huge sizes as 
512x512x512 for example; this means that the parallelization 
method has no effect on the runtime speed without acceptable 
GPU capacities and high system capacities. 

For best results, we have chosen the size of the local-work-

size and the number of work-groups properly so as not to have 
all the private and local memory of the device used 
continuously which limits the number of work-items to be 
executed in parallel. Such an idea is related to the fact that 
local-work-size cannot be bigger than the specified dimension 
through CL_DEVICE_MAX_WORK_ITEM_SIZES, and the 
cumulative work-group-size which is the product of all 
dimensions x, y, z must be less or equal to the resulting 
number.  

The global-work-size can be chosen as big as we want, but 
it has the constraint to be a multiple of the local-work-size. 
Furthermore, a work-group has to execute on one compute unit 
and this compute unit might not be fully used, because a 
compute unit might execute as many work-groups as possible 
for performance, and we have to specify local-work-size 
because if we do not, and if configured to be determined by the 
OpenCL implementation, that we do not advise to do, we 
cannot know how our work is divided into work-groups and 
we do not have guarantee that the work-group-size will be 
optimal. 

To have a precise justification, one has to know how the 
runtime of the backprojection changes with the size of the 
local-work-size, for this reason, we use Sample-data3 and 

Sample-data4 to plot the runtime of the backprojection 
according to different sizes of the local-work-size see (Fig. 3 
and Fig. 4). 

 

 
Fig. 3: Runtimes of a set of local-work-item of Sample-data3 
 

 
Fig. 4: Runtimes of a set of local-work-item of Sample-data4 
 

We can see the symmetry on both graphs (on X axix like 
64x128 with 128x64, 128x1024 with 1024x128...), this can be 
explained by the fact that the number of work-items specified 
for the kernel launch is the product result of local-work-size 
and work-groups, but the runtimes will not necessarily be 
equal, and this is explained by how the work-items are 
executed in parallel, and to have an optimal method, we have 
to choose a work-group-size lower than the value defined by 
CL_DEVICE_MAX_WORK_GROUP_SIZE which defines 
the maximum size of a work-group, and due to the limited 
hardware resources we have to choose a scalar for local-work-

size less than the maximum value allowed by the device, 
because CL_DEVICE_LOCAL_MEM_SIZE increases with 
the local-work-size. 

The peak values represent high values which are qualified 
by a very high time consumption, and it contradicts with the 
aim of method acceleration which wants to benefit from a 
significant time gain, for this reason, it is necessary to avoid  
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Table IV: Different GPUs runtimes by using mathematical 
phantoms (seconds) 

 
 
 
 
 
 
 
 
 
 
 
 
 

choosing small values of work-groups compared to the size of 
local-work-size, or to choose the maximum values (1024). 

For more program optimization, we compare theoretical 
peak memory bandwidth and effective one (or observed) 
which can be calculated using Eq. (6), and as we can find in 
[27] that if the effective bandwidth is much lower than the 
peak memory bandwidth, optimization efforts should increase 
the effective bandwidth. 

 
9( ) /10B B

Effective

R W
BW

t


                           (6) 

Where: BR is the number of bytes read per kernel and BW is 
the number of bytes written per kernel, and t is the elapsed 
time given in seconds. 

We use the GPU NVIDIA GTX 1060 considered the most 
efficient in our work, and we optimize our method according 
to values of peak memory bandwidth presented in Table V, 
and we calculate effective bandwidth for memory copy from 
Host to Device using a set of work-items that we have chosen 
for both sample-data3 and sample-data4 that we report in 
Table VI, and to see how much the value of effective 
bandwidth is close to the value of the peak memory bandwidth, 
we calculate the percentage through the ratio between effective 
bandwidth and peak memory bandwidth, see Table VII. 
 
Table V: Peak memory bandwidth (GB/s) 

 
 
 
 
 

Here we do confirm that bandwidth has no effect on 
runtime speedup, but on the other hand, effective bandwidth 
should be close to peak memory bandwidth for optimization 
considerations, because bandwidth represents the data 
transferring rate, and can affect the program performance if it 
is affected when for example, the programmer has not chosen  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

properly where data should be stored and how can it be 
extracted or accessed.  
 
Table VI: Calculated bandwidth (GB/s) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table VII: Ratio in %: How much effective and theoretical peak 
bandwidth are close 

 
 
 
 
 
 
 
 
 
 
 

Table VIII shows some more indications that the higher 
number of parallel cores does not affect the speedup of the 
reconstruction without having a device with higher capacities. 
One can see that with the same dataset volume in the 
reconstruction procedure for NVIDIA 425M and Radeon 
HD8670M respectively, the later one has higher parallel cores 
number but a slower execution time, while the first one has 
faster execution time with lower parallel cores number and the 
same memory frequency but has a higher bus width and 
bandwidth. 

 
GPU 

Runtimes for size 128 × 128 × 128 Runtimes for size 256 × 256 × 256 
Weighting Filtering Back 

projec- 
tion 

Total Weighting Filtering Back 
projec- 
tion 

Total 

NVIDIA 
GTX 
1060 

0.032 0.374 0.138 0.544 0.063 0.531 0.789 1.383 

NVIDIA 
425M 

0.101 1.529 1.589 3.219 0.129 1.956 2.841 4.926 

Radeon 
HD 
8670M 

0.28 2.1 10.462 12.842 0.28 2.67 78.83 81.78 

NVIDIA GTX 1060 
Device to Host 
Bandwidth 

Host to Device 
Bandwidth 

Device  to De- 
vice Bandwidth 

12.61 12.19 141.65 

NVIDIA GTX 1060 
Work-items- 
size 

Effective 
Bandwith 
(Sample- 
data4) 

Effective 
Bandwidth 
(Sample- 
data3 

1048576 8.32 8.42 
524288 8.34 8.60 
262144 8.53 8.64 
131072 8.64 8.53 
65536 8.60 8.34 
32768 8.42 8.32 

NVIDIA GTX 1060 
Work-items- 
size 

Bandwith Ra- 
tio (Sample- 
data4) (%) 

Bandwith Ra- 
tio (Sample- 
data3) (%) 

1048576 68.25 69.07 
524288 68.41 70.54 
262144 69.97 70.88 
131072 70.88 69.97 
65536 70.54 68.41 
32768 69.07 68.25 
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Table VIII: Summary of comparison of differents GPUs runtimes 
(seconds) 

Result in [9] is the total reconstruction time Result in [15] is 
the reconstruction time after n/m (input/output) projections 
 

 
By comparison with other works (see Table VIII) we 

record different runtimes, even we do not compare with the 
same dimensions, but we can have a technical point of view on 
runtimes according to the given configuration. 

As a first observation, we can notice when comparing the 
total runtime of NVIDIA GTX 280 [9] and NVIDIA GTX 
1060, that the total runtime of NVIDIA GTX 280 is higher 
than that one of NVIDIA GTX 1060, and without taking into 
account the major difference in number of parallel cores in 
favour of the NVIDIA GTX 1060 we can see that the memory 
frequency which is nearly doubled and again in favour of 
NVIDIA GTX 1060 gives significant runtime gain. 

GPU hardware limitations conduct the user to perform the 
acceleration method according to a technical choice, for 
example, the maximum of work-groups to be handled is 
limited to 1024 but it is clear in our experiments that choosing 
less than this value is much more benefic for runtime speedup, 
our experiments show that for 64x128 or 128x64 of  

 
 

 
local-work-size is much more reasonable to have a good 
runtime speedup than to 1024x1024 or 512x512, which 
represents the number of work-items to perform the job, and 
programs run better with a local-work-size smaller than the 
maximum allowed by the device it means more complex the 
kernel and the more private variable it has, the more registers 
it will need and by consequence the more time it consumed. 

We can choose the size of the global-work-size as we want 
as far as that does not exceed one of the device’s global 
resource consumption limits and changing the global-work-

size does not increase program parallelism because this 
remains to the occupation of all device’s compute units, and 
somewhere one has to reduce parallelism to more closely much 
the device capabilities, and avoiding to have memory 
consuming conflicts. 

As we deduce by the experiments, the memory frequency is 
one of the important specifications, the higher the frequency 
the smaller the transfer time the more the gain in runtime 
speedup. 

For the number of parallel cores, it depends on the device 
capacities, the more the higher the capacities with a higher 

Data size Runtime NVIDIA 
GTX 1060 

NVIDIA 
425M 

Radeon HD 
8670M 

Tesla 
C2075 

HD 
7970 

Quadro 
2000 

Geforce 
9400 

NVIDIA 
GTX 
280 

60*50*72 Backprojection 
time 
total time 

- - - 0.01 
 
0.30 

0.01 
 
0.30 

- - - 

320*192*256 Filtering time 
Backprojection 
time 
Total time 

0.453 
0.447 
 
0.970 

0.985 
11.296 
 
12.374 

2.37 
106.838 
 
109.478 

- - - - - 

211*256*200 Filtering time 
Backprojection 
time 
Total time 

0.488 
0.261 
 
0.814 

0.984 
4 
 
5.078 

2.122 
48.840 
 
51.242 

- - - - - 

512*512*768 Backprojection 
time 
Total time 

- - - 49.44 
 
60.45 

16.01 
 
28.02 

- - - 

256*256*128 Total time - - - - - - - 14.227 
10486*10000 Reconstruction 

time 
- - - - - 57.4 400.4 - 

1232*10000 Reconstruction 
time 

- - - - - 506 3503 - 

320*400*400 Filtering time 
Backprojection 
time 
Total time 

1.875 
2.88 
 
5.041 

4.719 
40.968 
 
46.171 

8.232 
425.676 
 
434.548 

- - - - - 

211*400*400 Filtering time 
Backprojection 
time 
Total time 

1.27 
0.30 
 
1.789 

3.093 
4.688 
 
8.110 

5.461 
62.15 
 
68.050 

- - - - - 

 
Related  wo r k  

This  
p a p e r  

This  
p a p e r  

This  
p a p e r  

[11] [11] [15] [15] [9] 
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number of parallel cores, the higher the speedup we have. This 
can be clarified by comparing the NVIDIA 425M, the Radeon 
HD8670M, and the NVIDIA GTX 1060, where the first one 
has a lower number of parallel cores than the second one but 
with a faster runtime. While the third one, which is the 
NVIDIA GTX 1060, has the most higher number of parallel 
cores, the highest device capacities, and precisely the fastest 
runtime of the three cards. 

The parallelism method has no effect on runtime speedup 
without kernel performance, it is necessary to provide the three 
stages of the FDK parallel version in a manner that will not 
consume more time than it is necessary and this depends on the 
implementation strategy, and it is clear that when we have 
large data size it will be important to perform even the 
parallelism inside the FFT code because higher it is the 
number of FFT points the higher is the data to compute and 
higher it will consume time. 

The known peak memory bandwidth has no effect on 
runtime speedup, but for more program performance it is 
necessary to have the value of the effective bandwidth close to 
that one of the theoretical peak memory bandwidth, for our 
experiments we have a performance of a value around 70\% 
whatever the size of the work-items used, compared to [27] 
where the performance value is between 76\% and 82\% using 
different GPUs. 

System memory has to be significantly large if size of data 
to be reconstructed is important with memory management, 
thing which has not been treated in this work, gives a higher 
time speedup. 

As our experiments give better results with the NVIDIA 
GTX 1060, we have chosen to use it as a device of comparison 
with other works. 

C. Applications of this study 

Since the introduction of CBCT in medical imaging, the 
major concern has been to try to get a better quality result for 
the image while minimising the image reconstruction time and 
the X-ray exposure time. 

For fully 3D reconstruction, CBCT is considered as an 
important solution providing a 3D image in a fast 
reconstruction time due to its geometry, and taking into 
account the results of both datasets 1 and 2, we can say that the 
acceleration of the FDK method can be useful in several 
specialities, such as Orthopedics radiology, Dento-
maxillofacial radiology and Image-guided Radiotherapy. 

VI. CONCLUSION  
In this work, we have presented an implementation for 

accelerating a parallel version of the FDK algorithm on several 
heterogeneous architectures with different capacities. We have 
presented what the effect of GPU capabilities will be and how 
to take advantage of the technical capabilities of the GPU to 
achieve better computational time-saving. In comparison to 
existing work, we have tried to draw attention to the technical 
characteristics of GPUs and to the fact that it is necessary to 
rigorously manipulate the items known as work-items, to 

benefit from a gain in computation time and to have a parallel 
program optimization.  

For the implementation, we have chosen to use OpenCL 
because it gives the programmer flexibility and ease of use of 
the GPU for better performance. Our experiments show that 
the FDK algorithm has a parallel nature, so the choice of its 
acceleration on GPU is justified. According to the results of 
our experiments, as the reconstruction size gets larger, the 
filtering stages consumes more time, which is more beneficial 
for the reconstruction speedup if we parallelize process within 
the filtering kernel. 

The number of the local-work-size has been chosen for 
higher performance of the parallelized code, and specifying the 
number of work-items to be used in the kernel launch is the 
best choice than it is configured to be specified by the OpenCL 
implementation. 

Limitations of the device capacities conduct the programmer 
to reduce, somewhere, parallelism to more closely much the 
device capacities. Having a device with a higher number of 
parallel cores does not guarantee to have a higher execution 
speed as stated above, it depends on the device capacities, 
hence the obligation to choose a device with higher capacities. 
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