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Abstract— Light has a real important impact on our life, determining 
the circadian rhythm, the rhythm of our daily activity. Light is 
benefic for healthy people, but it can be also very helpful for treating 
disease or for enhancing the comfort and wellbeing. In the frame of 
our European project, ALADIN, light is intended to be a support for 
the elderly, in order to enhance their daily performance. The 
performance is appreciated by activity specific values of psycho-
physiological features that can be modified by light. This paper will 
describe the signal processing techniques deployed for extracting 
useful features and the algorithms used for developing an adaptive 
light controller. Two algorithms were used to implement the light 
controller: Monte Carlo and Simulated Annealing. Experimental 
results obtained using the Simulated Annealing algorithm will be 
presented. 

 
Keywords—adaptive lighting, bio-signal processing, stochastic 

methods.  

I. INTRODUCTION 
This paper is based on the work done inside the ALADIN 

project, which aims to extend our knowledge about the impact 
of lighting on the wellbeing and health of older people. 
Adaptive lighting can contribute considerably to sound sleep 
and a regular sleep-wake cycle, which are essential to preserve 
and enhance people’s health and wellbeing. This will assist 
older adults in living at home autonomously for a longer time 
and contribute to their quality of life.  

The project’s aim is to develop an intelligent assistive 
system based on ambient lighting to support mental alertness 
and memory performance as well as relaxation in specific 
situations. The system is also expected to assist with 
regulating circadian rhythms. The system receives information 
about the impact of differences in the luminous environment 

on the subject’s affective and cognitive state that is used by 
the lighting controller to automatically adapt the lighting 
parameters in order to achieve the subject’s relaxation or 
activation.  
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Figure 1. ALADIN system architecture 

Our work consisted on one hand in determining in 
collaboration with our project partners which signals best 
reflect the subject’s psycho-physiological state, and on the 
other, in choosing and implementing a suitable algorithm for 
the lighting controller. 

In the following section we will show how we chose the 
appropriate signals and features, and also the signal 
processing techniques that we applied in order to obtain the 
required information. 

The third section describes the process of selecting the best 
suited algorithm for the light controller and how we adapted 
and optimized this algorithm for our application. 

The forth section shows the results obtained during system 
tests, while in the final section some conclusions are drawn. 

II. SIGNAL PROCESSING AND FEATURE EXTRACTION 
The subject’s activation or relaxation state is reflected by 

several physiological parameters, amongst which the alpha 
brain waves, Electro-Dermal Activity (EDA) and 
Electrocardiogram (ECG) [1]. 

Because we want the system to be used by elderly persons 
in their households, it is of great importance that it offers a 
simple and non-intrusive interface. This means that the signals 
used have to be collected using simple and comfortable 
sensors. Based on these design criterions and a study of the 
published literature, we chose to use the EDA and ECG 
signals that are collected using electrodes placed on the 
subjects’ skin and that can be wirelessly transmitted to the 
system. Further tests performed by our project partners at the 
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University of Budapest prove that the two signals provide 
sufficient information on the subjects’ psycho-physiological 
state. 

Our partners at the University of Budapest conducted a 
study to determine what features best describe the subjects’ 
state. It consisted of recording the EDA and ECG signals 
while the members of a control group were asked to perform 
seven actions: 

1. Lying down relaxed with eyes closed. 
2. Lying down relaxed with eyes open. 
3. Sitting relaxed with eyes open. 
4. Sitting and watching a “calm” nature video. 
5. Sitting and watching an “exciting” nature video. 
6. Standing up from sitting and remain standing. 
7. Performing NVT task as quickly and as accurately 

as possible. 
A statistical study of the recordings showed that three 

features were correlated with the degree of relaxation or 
activation implied by the activities: Skin Conductance 
Response (SCR), Skin Conductance Level (SCL) from the 
EDA signal and Heart Rate (HR) from the ECG signal. It also 
showed that the SCR feature is the most important of the 
three, followed by the SCL and IBI features. 

 

 

Fig. 2 SCR and IBI values for several activities 

The SCL feature is defined by (1) as the mean values of the 
EDA signal over a moving window and represents the short 
term continuous component of the EDA signal. Figure 3 
shows how the moving window is filled with values of the 
processed signal. 

 
(1) 

 
 

 

Fig. 3 Extracting SCL from the EDA signal. 

The SCR feature is defined by (2) as the standard variation 

of the EDA signal’s alternative component over the moving 
window. SCR shows the subject’s current response to the 
active stimuli that he is currently, or had been recently 
exposed to. 

 
(2) 

 
The HR feature is measured as the inverse of the time 

interval elapsed between two consecutive R waves – 
coresponding heart beats. It is more a measure of the physical 
effort, but it can also give away some information of the 
subject’s psycho-physiological state. 

 

 

Fig.4 Extracting IBI from the ECG signal. 

In order for the adaptive light system to function correctly, 
it needs to rely on a permanent flow of accurate data, which is 
insured by a strong signal processing module designed to 
eliminate any error. The module must handle two rather 
different signals: ECG and EDA, both with their particular 
problems [2]. In this section, we will present each of those 
problems and the manner we handled them. 

A. ECG 
The first signal we will discuss is the electrocardiogram 

(ECG), which is obtained by measuring the electrical activity 
of the heart. One of the most important is the R wave, from 
which information about the pulse and cardiac rhythm is 
extracted. 

The feature that we extract from the ECG is Heart Rate, 
which is defined as the inverse of the time interval elapsed 
between two consecutive R waves, which can be seen in the 
ECG as a high frequency spike [3]. The fact that the R wave 
has high frequency components induces restraints on the 
sampling rate that should be high enough to follow the rapid 
variation of the wave. The sampling rate that we chose is 150 
Hz.  
 

 

Fig. 5 Smoothing HR through integration 

The R wave is located as a local maximum that had been 
preceded by a steep enough and high enough rising front. 
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Because of the additive high frequency noise and of the time 
resolution dictated by the sampling rate, the instantaneous HR 
extracted from ECG is rather noisy. Considering that it is not 
the instantaneous variation of the feature that we are interested 
in, but rather its long-term evolution, the HR feature is passed 
through an integration filter that smoothes it, see Figure 5.The 
integration buffer’s size determines how much of the variation 
is cut off.  

 

  

Fig. 6 Physical activity generated ECG artefact. 

The ECG is meant to measure the activity of the heart, but it 
also picks up the signal from any other muscle in the body. 
This means that any movement of the subject induces artifacts 
in the ECG signal. An example of this situation is shown in 
Fig. 6.  

 

Fig. 7 Median filtered movement affected HR. 

This high power, high frequency noise generates a spike in 
the HR signal (Figure 7). Because the system is meant to be 
used in the subjects’ home, these events are relatively likely to 

occur, so the system must be able to handle them without 
eliminating too many measurement cycles. 

 
One way to avoid passing the afflicted data to the light 

controller is by eliminating the nonstandard measurement 
cycles based on a statistic criterion. This operation is done by 
the following algorithm: 

1. Compute the mean value for the first cycle. 
2. Let the dataset’s mean value be equal to that of the 

first cycle, and set the variance threshold. 
3. Compute the current cycle’s variation from the 

mean value. 
4. If the variation is higher than a given threshold, 

eliminate the cycle’s results. 
5. Else, include new measurements into the valid 

dataset and re-evaluate the mean and variation for 
the new data set. 

6. Repeat from Step 3. 

 

Fig. 8 HR measurement cycles. 

B. EDA 
Electro-Dermal Activity (EDA) is also referred to as skin 

conductivity or Skin Conductance (SC) and basically 
measures the electrical conductivity of the skin. The 
momentary fluctuations of EDA have been termed phasic 
responses – Skin Conductance Response (SCR), whereas the 
relatively stable EDA is referred to as the tonic level – Skin 
Conductance Level (SCL). Measures of EDA can be 
interpreted as mainly reflecting changes in sweating activity. 
This signal was found to be a good and sensitive indicator of 
psychological stress, as well as other stimuli, and helps to 
differentiate between conflict/no conflict situations. 

 

Fig. 9 EDA signals. a) 150 Hz Sampling Rate; b) 50 Hz Sampling Rate; c) Decimated EDA from 150 Hz Sampling Rate; d) Noise filtered decimated EDA. 
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Fig. 10 SCR values while performing NVT under different illumination 
conditions: 1. “Normal” lighting; 2. “Relaxing” lighting; 3. “Strong” 

lighting. 

Just like the ECG signal, EDA raises several problems for 
both the acquisition and processing modules. The first is 
choosing the sampling rate. If a sampling rate of 150 Hz is 
chosen, the same as for ECG, to ensure system uniformity, the 
signal picks up too much high frequency noise that is 
disturbing especially when extracting the SCR feature. A more 
appropriate value would be 50 Hz, but that would render two 
separate acquisition systems that would both be costly and 
would unnecessarily complicate the system. In order to 
overcome this problem, the EDA signal is re-sampled at 50 Hz 
by decimation procedure, thus suppressing part of the noise. A 
mean filter than eliminates the remaining noise. 

Skin Conductance Level is the short term continuous 
component of the EDA signal. It is computed as the mean 
value of the samples in the processing frame (Eq. 2). In our 
measurements, the time window was 2 seconds long, but 
slightly shorter or longer windows are also applicable. 

Being a conductance the Electro-Dermal Activity (EDA) is 
measured in micro-Siemens; the value of an average adult is 
between 10 – 20 micro-Siemens. According to our and BLL’s 
experiments, elderly subjects’ skin conductance is often very 
low. 

Although there are many definitions in physiology used to 
describe the momentary state of this parameter, we finally – 
based on experience concerning our present purposes – settled 
on the following: SCR is, by definition, EDA’s alternative 
component standard deviation. To obtain the EDA alternative 
component, the SCL (moving average) is subtracted from the 
raw EDA data. The SCR feature shows a good response to the 
light stimulus. 

 

 

Fig. 11 The continuous (a) and alternative (b) components of EDA. 

EDA’s alternative component, shown in Fig. 11 b), is also 
low pass filtered before calculating its standard deviation and 
extracting SCR. 

 

 

Fig. 12 Signal processing chain architecture 

Fig. 12 shows the architecture of the system’s signal 
processing and feature extraction module. 

III. LIGHT CONTROLLER ALGORITHMS 
Using the information of the subject’s psycho-physiological 

state provided by the signal processing module, the light 
controller module has to adaptively optimize it by varying the 
lighting parameters so as to achieve the desired state [4]. 
One’s state is described by the objective function E, defined 
as a linear combination of the three biological features: 

 
IBISCLSCRE ⋅+⋅+⋅= 1.02.07.0            (3) 

 
The task of the controller is to try finding the optimal 

Dx ∈  based on measurements of an objective function 
( )xEE = . Stochastic searching algorithms are among the 

simplest optimization methods and can be quite effective in 
solving different applications. Their relative simplicity is an 
appealing feature to both practitioners and theoreticians. 
These methods have a number of advantages relative to most 
other search methods. The advantages include relative ease of 
software implementation, the need to only obtain E 
measurements (versus gradients or other ancillary 
information), reasonable computational efficiency (especially 
for those direct search algorithms that make use of some local 
information in their search), and broad applicability to non-
trivial energy functions and/or to search spaces that may be 
continuous, discrete, or some hybrid form. Some of these 
attributes were mentioned in [5]. A good recent survey of 
random search and related methods are presented in [6]. 

 This section describes three stochastic search techniques: 
Blind Random Search, Local Random Search and Simulated 
Annealing. These three algorithms represent only a tiny 
fraction of available methods described in [7] and [8]. The 
two algorithms here are intended to convey the essential 
flavor of most available direct random search algorithms. 
With the exception of some discussion at the end of the 
subsection, the methods here assume perfect (noise-free) 
values of the objective function E.  

A. Blind Random Search 
The first method we discuss is ''blind random search'' that 
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searches for solution in the entire states space D.  This is the 
simplest random search method, where the current sampling 
for x does not take into account the previous samples. That is, 
this blind search approach does not adapt the current sampling 
strategy to information that has been garnered in the search 
process. The approach can be implemented in batch (non-
recursive) form simply by laying down a number of points in 
D and taking the value of x yielding the lowest E value as our 
estimate of the optimum. The approach can be conveniently 
implemented in recursive form as we illustrate below.  

The simplest setting for conducting the random sampling of 
new (candidate) values of x is when D is a hypercube and we 
are using uniformly generated values of x. The uniform 
distribution is continuous or discrete for the elements of x 
depending on the definitions for these elements. In fact, the 
blind search form of the algorithm is unique among all 
general stochastic optimization algorithms in that it is the 
only one without any adjustable algorithm coefficients that 
need to be ''tuned'' to the problem at hand. (Of course, a de 
facto tuning decision has been made by choosing the uniform 
distribution for sampling.)  

For a domain D that is not a hypercube or for other 
sampling distributions, one may use transformations, rejection 
methods, or Markov chain Monte Carlo to generate the sample 
x values (see, [9]). For example, if D is an irregular shape, one 
can generate a sample on a hypercube superset containing D 
and then reject the sample point if it lies outside of D.  

The steps for a recursive implementation of blind random 
search are given below. This method applies when x has 
continuous, discrete, or hybrid elements.  

Step 0: (Initialization) Choose an initial value of x, say 
, either randomly or deterministically. (If random, 

usually a uniform distribution on D is used). Calculate 
Dx ∈0ˆ

( )0x̂E . 
Set k=0.  

Step 1: Generate a new independent value ( ) Dkxnew ∈+1

( )1+

, 
according to the chosen probability distribution. 
If , set . Else, take 

.  
( )( ) 0ˆ1 xEkxE new <+

kk xx ˆˆ 1 =+

B. Local Random Search 
This algorithm was first described in [11]. Note that the use 

of the term ''local'' here pertains to the sampling strategy and 
does not imply that the algorithm is only useful for local 
(versus global) optimization. As with blind search, the 
algorithm may be used for continuous or discrete problems.  

Step 0: (Initialization) Pick an initial guess Dx ∈0ˆ , either 
randomly or with prior information. Set k=0.  

Step 1: Generate an independent random vector 
and add it to the current x value, . Check if p

k Rd ∈

dx kk

kx̂
D∈+ˆ . If Ddx kk ∉+ˆ

kx +ˆ
, generate a new  and repeat 

or, alternatively, move  to the nearest valid point 

within D. Let 

kd

kd
( )1+kxnew  equal Ddx kk ∈+ˆ  or the 

aforementioned nearest valid point in .  
Step 2: If ( )( ) ( 0ˆ1 xEkxE new < )+ , set ( )1ˆ 1 +=+ kxx newk ; 

else, set kx̂kx̂ 1 =+ .  
Step 3: Stop if the maximum number of E evaluations has 

been reached or the user is otherwise satisfied with the current 
estimate for x via appropriate stopping criteria; else, return to 
Step 1 with the new k set to the former k+1.  

In [11], the (multivariate) normal distribution was used for 
generating dk for continuous problems. However, the user is 
free to set the distribution of the deviation vector dk. The 
distribution should have mean zero and each component 
should have a variation (e.g., standard deviation) consistent 
with the magnitudes of the corresponding x elements. This 
allows the algorithm to assign roughly equal weight to each of 
the components of x as it moves through the search space. 
Although not formally allowed in the convergence theory, it is 
often advantageous in practice if the variability in dk is 
reduced as k increases. This allows one to focus the search 
more tightly as evidence is accrued on the location of the 
solution (as expressed by the location of our current estimate 

).  kx̂
( ) ˆ 1 =+ kxx newk

Step 2: Stop if the maximum number of E evaluations has 
been reached or the user is otherwise satisfied with the current 
estimate for x via appropriate stopping criteria; else, return to 
Step 1 with the new k set to the former k+1.  

The above algorithm converges almost surely to x* under 
very general conditions (see [10]). Of course, convergence 
alone is an incomplete indication of the performance of the 
algorithm. It is also of interest to examine the rate of 
convergence. The rate is intended to tell the analyst how close 

 is likely to be to x* for a given cost of search. While blind 
random search is a reasonable algorithm when x is low 
dimensional, it can be shown that the method is generally 
a very slow algorithm for even moderately dimensioned x (see 
[10]). This is a direct consequence of the exponential increase 
in the size of the search space as p increases.  

kx̂

C. Simulated Annealing 
Simulated annealing is a generalization of a Monte Carlo 

method for examining the equations of state and frozen states 
of n-body systems [12]. The concept is based on the manner in 
which liquids freeze or metals re-crystallize in the process of 
annealing. In an annealing process a melt, initially at high 
temperature and disordered, is slowly cooled so that the 
system at any time is approximately in thermodynamic 
equilibrium. As cooling proceeds, the system becomes more 
ordered and approaches a "frozen" ground state at T=0. Hence 
the process can be thought of as an adiabatic approach to the 
lowest energy state. If the initial temperature of the system is 
too low or cooling is done insufficiently slowly the system 
may become quenched forming defects or freezing out in 
meta-stable states (i.e. trapped in a local minimum energy 
state).  

The original Metropolis scheme was that an initial state of a 
thermodynamic system was chosen at energy E and 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

Issue 4, Vol. 1, 2007 72



temperature T, holding T constant the initial configuration is 
perturbed and the change in energy dE is computed. If the 
change in energy is negative the new configuration is 
accepted. If the change in energy is positive it is accepted with 
a probability given by the Boltzmann 
distribution ( TdE−exp ) . This processes is then repeated 
sufficient times to give good sampling statistics for the current 
temperature, and then the temperature is decremented and the 
entire process repeated until a frozen state is achieved at T=0.  

By analogy the generalization of this Monte Carlo approach 
to combinatorial problems is straight forward [13], [14]. The 
current state of the thermodynamic system is analogous to the 
current solution to the combinatorial problem, the energy 
equation for the thermodynamic system is analogous to at the 
objective function, and ground state is analogous to the global 
minimum. The major difficulty (art) in implementation of the 
algorithm is that there is no obvious analogy for the 
temperature T with respect to a free parameter in the 
combinatorial problem. Furthermore, avoidance of 
entrainment in local minima (quenching) is dependent on the 
"annealing schedule", the choice of initial temperature, how 
many iterations are performed at each temperature, and how 
much the temperature is decremented at each step as cooling 
proceeds.  

Despite its name, simulated annealing has nothing to do 
either with simulation or annealing. Simulated annealing is a 
problem solving technique based loosely on the way in which 
a metal is annealed in order to increase its strength. When a 
heated metal is cooled very slowly, it freezes into a regular 
(minimum-energy) crystalline structure.  

A simulated annealing algorithm searches for the optimum 
solution to a given problem in an analogous way. Specifically, 
it moves about randomly in the solution space looking for a 
solution that minimizes the value of some objective function. 
Because it is generated randomly, a given move may cause the 
objective function to increase, to decrease or to remain 
unchanged.  

A simulated annealing algorithm always accepts moves that 
decrease the value of the objective function. Moves that 
increase the value of the objective function are accepted with 
probability  

T
dE

ep
  −

=                                      (4) 
 

where dE is the change in the value of the objective function 
E and T is a control parameter called the temperature i.e., a 
random number generator that generates numbers distributed 
uniformly on the interval (0, 1) is sampled, and if the sample 
is less than p, the move is accepted.  

By analogy with the physical process, the temperature T is 
initially high. Therefore, the probability of accepting a move 
that increases the objective function is initially high. The 
temperature is gradually decreased as the search progresses, 
i.e. the system is cooled slowly. In the end, the probability of 
accepting a move that increases the objective function 
becomes vanishingly small. In general, the temperature is 
lowered in accordance with an annealing schedule.  

The most commonly used annealing schedule is the 
exponential cooling. Exponential cooling begins at some 
initial temperature T0, and decreases the temperature in steps 
according to Tk+1=α Tk where 0<α<1 [15]. Typically, a fixed 
number of moves must be accepted at each temperature before 
proceeding to the next. The algorithm terminates either when 
the temperature reaches some final value Tf, or when some 
other stopping criterion has been met. 

The choice of suitable values for α, T0 and Tf is highly 
problem-dependent. However, empirical evidence suggests 
that a good value for α is 0.95 and that T0 should be chosen so 
that the initial acceptance probability is 0.8. The search is 
terminated typically after some fixed, total number of 
solutions has been considered.  

Finally, there is the question of selecting the initial solution 
from which to begin the search. A possible solution is to 
generate it randomly. However, sometimes the initial solution 
can be generated by some other means such as with a greedy 
algorithm. 

D. Choosing the algorithm 
In Figure 13 we compare the paths that the three previously 

presented algorithms would take through the domain D as 
they  

   

a) b) c) 

Figur 13. Different paths took by the optimum search algorithms on a given system: a) Global Search; b) Local Search; c) Simulated Annealing 
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 search for the minimum energy. The global search 
algorithm, shown in Figure 13 a), finds the system’s optimum, 
but it regularly has jumps of up 80% of the search domain’s 
extend that are very unpleasant in the case of adaptive 
lighting, as it induces rapid radical changes of both color and 
intensity of the light that wouldn’t be able to relax, nor 
activate the subject, as they would rather annoy him. The local 
search algorithm  eliminates this unpleasant effect of high 
variation in the lighting parameters, but it has high chances to 
get trapped in a local optimum, as it can be seen in Figure 13 
b). The simulated annealing algorithm, shown in Figure 13 c) 
solves both of the previous problems, as its jumps are also 
local, but by allowing certain jumps to higher valued system 
states correlated with T, it can avoid local minimums if the 
color temperature parameter is high enough to permit the 
system to overcome or tunnel the energy barriers next to the 
local minimum. 

We have implemented two light controllers using the Local 
Random Search and the Simulated Annealing algorithms and 
tested them in the laboratory in order to determine which one 

is the best suited for the current application. The preliminary 
tests were conducted on one volunteer and consisted of him 
being exposed to the lighting environment controlled by each 
of the implemented algorithms. 

Figure 14 shows the SCR feature and lighting parameter 
variation during relaxation tests using the two implemented 
algorithms. The tests confirmed the theoretical analysis, 
showing that the Simulated Annealing algorithm was able to 
avoid local minima entrapment and converge to a better global 
solution. 

E. Adapting and optimizing the algorithm 
In Figure 15 we show some examples of acceptance rate’s 

evolution during two tests. The first shows a system with a 
very high initial temperature and low α, while the second 
shows the desired behavior using optimal parameters. The 
first graphic shows the acceptance function’s evolution with 
the optimal cooling parameters, and the second shows it for a 
very high temperature and a low α.  In the first case, the 
acceptance function decreases slowly and almost linear, 

 
a) b) 

c) d) 

Figure 14. SCR and Lighting Parameters evolution during relaxation tests using Local Random Search (a, b) and Simulated Annealing (c, d) 

a) b) 

Figure 15. The evolutions of the acceptance function during tests using different cooling parameters. a) T0 = 8, α = 0.9467; b) T0 = 60, α = 0.90 
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allowing the system to avoid entrapment in local minimums 
and ensuring a steady path towards the optimum. The second 
set of cooling parameters generates a very poor and unwanted 
evolution. In this case, the acceptance function is very high for 
a long time in the beginning, and then it rapidly decreases to a 
low. This means that the algorithm is free to accept any move 
in the search space at the beginning for a rather long time, and 
then, suddenly, it becomes a Local Search Algorithm at a time 
when the solution may be very far from the optimum. This 
behavior both lengthens the path to the optimum and increases 
the chances of local minima entrapment. A more detailed 
description of the optimization process can be found in [16]. 

IV.  RESULTS 
In this section, we will analyze the experimental results 

obtained during the tests performed in our facilities at the 
¨Politehnica” University of Bucharest and in the field tests 
performed by our partners. The testing facility is a dark room 
whose only source of light is provided by the Adaptive 
Lighting System. The Lighting System is composed of ten 
independent lighting devices – five with a Color Temperature 
of 2700K and five with 4000K, controlled by the Adaptive 
Lighting Control System. By individually varying the 
intensity of each channel, the Color Temperature and Intensity 
of the ambient and local lighting can be changed. The 
simplified formula for computing the ambient Intensity and 
Color Temperature is: 

∑
=

+=
5

1k
ckwk III                        (5) 

∑
=

⋅+⋅=
5

1

1
k

cckwwk CTICTI
I

CT       (6) 

A test consists of exposing elderly persons (aged above 65 
years old) to the light generated by the system, and adapting 
the light in such a manner that the subject would relax. The 
measured used to determine the subject’s degree of relaxation 
is the objective function E described in the previous section. 

There are two questions that need answering. The first is 
whether a “relaxing” set of lighting parameters exists. The 
second is whether the system really determines a change in the 
subject’s psycho-physiological state, measured by the features 

extracted, and if it does, how big is the change, and how stable is 
the result.  

We have also studied the system’s behavior for three 
different analysis window sizes and configurations: 20 and 40 
seconds-long window starting just after applying the light 
stimulus and a 20 second window starting 20 seconds after 
applying the light stimulus. The results are presented in Table 
1 and Figures 16. 

The tests were conducted on two volunteers, and were each 
approximately 1 hour long for the 20 seconds analysis 
window, providing sufficient time for the system to cool and 
converge to an optimal solution.  The tests performed using 
the 40 second and the delayed 20 second windows were two 
hours long. Each person performed 10 tests, yielding about 
3600 measurements. 

Table 1 

 
Final SCR Final Intensity Final Color 

Temperature 

Mean Std. 
dev. Mean Std. 

dev. Mean Std. 
dev. 

Starting values 6.9 0.9 1350 500 3500 600 
S1, 20s 3.52 0.56 232 163 3207 327 
S2, 20s 2.74 0.66 227 158 3406 354 
S1, 40s 2.85 0.25 480 280 3440 414 

S1, 20+20s 2.87 0.31 317 84 3067 242 
 
 In Table 1 we show the results of the statistical studies 

performed on the data gathered from the two subjects. The 
values of SCR, Intensity and Color Temperature 
corresponding for each test’s last accepted move were stored 
and their mean and dispersion were computed.  

Both subjects show a low value of the SCR feature at the 
end of the test. Concerning the Lighting Parameters, the data 
indicates that the system stabilizes around a Color 
Temperature of 3400 K and an Intensity of 230 – about 10% 
of the system’s maximum Intensity. 

Because SCR is the most important feature in determining 
the psycho-physiological state of the subject, we will base our 
studies of the experimental results on it. The first thing that we 
would like to know is what the relationship between SCR and 
the lighting parameters is. In order to answer this question, a 
map of the SCR feature over the lighting parameters space has 
been built. The map was created by interpolating a set off 

 
a) b) c) 

Figure 16. SCR (a), Light Intensity (b) and Color Temperature (c) values evolution for different analysis windows. 
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about 900 points, given by measurements done during the 
tests. As Figure 17 shows, the SCR values are decreasing with 
the light’s intensity. In the middle of the SCR map, there is a 
local minimum zone that may entrap the algorithm, so the use 
of an appropriate cooling schedule becomes even more 
evident. By the time it reaches the low region, the system 
should still be able to accept large enough unfavorable moves 
to overcome the barrier, but it should not accept those large 
enough to stray it away from the global optimum.  

The fact that for both subjects, the means and dispersions of 
the lighting parameters have close values confirms our 
presumption that there is a region in the lighting space that 
induces a relaxed psycho-physiological state. On the other 
side, concerning our second question, the data shows that, for 
both subjects, the system induces a significant drop in the 
SCR feature and that its final value is low and constant. 

The different analysis windows that were used did not 
produce a significant change in the final results, so the 20 
second window was chose for the final implementation as it 
needs less to converge to an acceptable and stable solution. 

In the following paragraphs, the evolution of the selected 
psycho-physiological features in the field tests performed by 
our partners will be discussed. The tests were conducted in 
four different locations: two in Austria, at Dornbirn and 
Aldrans, one in Germany at Bad Tolz, and one in Italy in 
Bolzano. In each location the Adaptive Lighting System was 
given to 4 senior citizens and they were asked to use it daily. 
Figure 18 shows the means and standard deviation of the 
features at the beginning and end of each test. 

The results show that the SCR feature varies the most 
during tests and that it is the most useful in determining the 
subject’s state. The SCL feature decreases slightly and has a 
smaller variation at the end of the tests, while IBI is more or 

less constant along the entire test. 
 

a) 

 
 

b) c) 

Figure 18. Evolution of SCR (a), SCL (b) and IBI (c) features during field 
tests 

V. CONCLUSION 
We have designed and developed an Adaptive Lighting 

System for elderly people psycho-physiological state 
improvement. In doing this, a first step was to analyze the 
biomedical signals that better describe their state and also the 
psycho-physiological feature extraction procedures were 
analyzed.  

Two Adaptive Lighting Controllers were implemented 
using the Local Random Search and Simulated Annealing 
optimization algorithms and compared them, choosing the 
second due to its robustness to local minimum entrapment. 
During the development phase, we have tested the system in 

Figure 17. Map of the SCR values over the lighting space. 
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order to optimize the algorithm’s parameters, thus insuring its 
proper functioning and convergence.  

After optimizing the Simulated Annealing algorithm, we 
have performed a study of the light’s impact on the humans’ 
psycho-physiological state. The study was performed on two 
subjects and was aimed at determining whether there is a 
certain set of lighting parameters that would induce a state of 
relaxation and if the analysis window size is important. 

After a statistical analysis of the data gathered during tests, 
we can say that the system functioned well and that a dimmer 
and warmer light induces a state of relaxation. We have also 
built a map of the SCR’s feature values over the lighting 
space, and determined that the 20 seconds analysis window is 
optimum. 

In the future we will continue our study and extend it to the 
activated psycho-physiological state. Also we intend to 
develop new algorithms for the Adaptive Lighting Controller. 
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