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Image Feature Extraction Technigues and Their
Applications for CBIR and Biometrics Systems
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Abstract—In CBIR (Content-Based Image Retrieval), visual

features such as shape, color and texture are extracted to U U
characterize images. Each of the features is represented using
one or more feature descriptors. During the retrieval, features |

Feature extraction |

and descriptors of the query are compared to those of the images U U
in the database in order to rank each indexed image according sf::f::l':y

to its distance to the query. In biometrics systems images used as Query D measure CI Feature
patterns (e.g. fingerprint, iris, hand etc.) are also representa by features Matching latal
feature vectors. The candidates patterns are then retrievedrém

database by comparing the distance of their feature vectors. Té
feature extraction methods for this applications are discussed.
images
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Fig. 1. Diagram of the image retrieval process.
I. INTRODUCTION

In various computer vision applications widely used is th
process of retrieving desired images from a large collaatio cation and crime prevention [5].

the basis of features that can be automatically extractad fr Fig. 1 shows the architecture of a typical CBIR system. For

the images themselves. These systems called CBIR (Content-,*: . X .
. . . , . __each image in the image database, its features are exteaaded
Based Image Retrieval) have received intensive attention

. . . X . . . the obtained feature space (or vector) is stored in the featu
the literature of image information retrieval since thigar

database. When a query image comes in, its feature space will
was started years ago, and consequently a broad range 0 . .
. e compared with those in the feature database one by one and
techniques has been proposed.

The algorithms used in these systems are commonly dividtrer;(iigggar images with the smallest feature distance vell b

into three tasks:
CBIR can be divided in the following stages:

sutomation, biomedicine, social security, biometric auti

- extraction, . . o ]
- selection, and » PreprocessingThe image is first processed in order to
- classification. extract the features, which describe its contents. The pro-

cessing involves filtering, normalization, segmentation,
and object identification. The output of this stage is a
set of significant regions and objects.

Feature extractionFeatures such as shape, texture, color,
etc. are used to describe the content of the image. Image
features can be classified into primitives.

The extraction task transforms rich content of images into
various content features. Feature extraction is the psooés
generating features to be used in the selection and classific
tion tasks. Feature selection reduces the number of feature®
provided to the classification task. Those features whieh ar
likely to assist in discrimination are selected and used in
the classification task. Features which are not selected ar€BIR combines high-tech elements such as:
discarded [10]. - multimedia, signal and image processing,
Of these three activities, feature extraction is mostaaiti - pattern recognition,
because the particular features made available for digwim - human-computer interaction,
tion directly influence the efficacy of the classificationktas - human perception information sciences.
The end result of the extraction task is a set of features,
commonly called a feature vector, which constitutes a rep-In Pattern Recognition we extract "relevant” information
resentation of the image. about an object via experiments and use these measurements
In the last few years, a number of above mentioned systefrs features) to classify an object. CBIR and direct object
using image content feature extraction technologies proveecognition, although similar in principle, using many of
reliable enough for professional applications in indadtrithe same image analysis/statistical tools, are very @iffer
operations. Object recognition works with an existing tate
Manuscript received March 10, 2007, Revised June2, 2007 of objects and is primarily a statistical matching problem.
Ryszard S. Chofais with the University of Technology & Life Sciences, . " . . .
One can argue that object recognition is a particularly lpice

Institute of Telecommunications, Image Processing GroupyS85Bydgoszcz, )
S. Kaliskiego 7, Poland, e-mail:choras@utp.edu.pl defined sub-set of CBIR.
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In CBIR, human factors play the fundamental role. Anothek. Color

distinction between recognition and retrieval is evidemt i
less specialized domains - these applications are inlgrent

concerned with ranking (i.e., re-ordering database imagesThe color feature is one of the most widely used visual
according to their measured similarity to a query exampléatures in image retrieval. Images characterized by color
rather than classification (i.e., deciding process whetrer features have many advantages:

not an observed object matches a model), as the result of
similarity-based retrieval.

First generation CBIR systems were based on manual
textual annotation to represent image content. This tecteni
can only be applied to small data volumes and, to be truly
effective, annotation must be limited to very narrow visual
domains. .

In content-based image retrieval, images are automaticall
indexed by generating a feature vector (stored as an index in
feature databases) describing the content of the image. Theg
similarity of the feature vectors of the query and database
images is measured to retrieve the image.

Let {F(z,y);z = 1,2,..., X,y = 1,2,...,Y} be a
two-dimensional image pixel array. For color imagé&e, y)
denotes the color value at pixdlr,y) ie., F(x,y) = .
{Fr(z,y), Fa(x,y), Fe(z,y)}. For black and white images,
F(z,y) denotes the grayscale intensity value of pikely).

The problem of retrieval is following: For a query image,
we find imagel” from the image database, such that distance
between corresponding feature vectors is less than smkcifie,
threshold, i.e.,

D(Feature(Q), Feature(T) < t @)

Robustness. The color histogram is invariant to rotation
of the image on the view axis, and changes in small
steps when rotated otherwise or scaled [15]. It is also
insensitive to changes in image and histogram resolution
and occlusion.

Effectiveness. There is high percentage of relevance
between the query image and the extracted matching
images.

Implementation simplicity. The construction of the color
histogram is a straightforward process, including scan-
ning the image, assigning color values to the resolution
of the histogram, and building the histogram using color
components as indices.

Computational simplicity. The histogram computation has
O(X,Y) complexity for images of sizeX x Y. The
complexity for a single image match is linead(n),
where n represents the number of different colors, or
resolution of the histogram.

Low storage requirements. The color histogram size is
significantly smaller than the image itself, assuming color
guantisation.

Typically, the color of an image is represented through
some color model. There exist various color model to describ
color information. A color model is specified in terms of

The feature is defined as a function of one or more MERH coordinate system and a subspace within that system

surements, each of which specifies some quantifiable p;opertnere each color is represented by a single point. The more

of an object, and is computed such that it quantifies some
' an object, > comp . q commonly used color models aRGB (red, green, blue),
significant characteristics of the object.

We classify the various features currently employed HSV (hue, saturation, value) ant, Cy, ;. (luminance and
y ploy %?wominance). Thus the color content is characterized by
follows: _
o 3-channels from some color model. One representation of
« General features: Application mdepe_:ndent features Sl{@@lor content of the image is by using color histogram.
as color, texture, and shape. According to the abstractigfatistically, it denotes the joint probability of the intities
level, they can be further divided into: of the three color channels.
- Pixel-level features: Features calculated at each

ixel, e.g. color, location. . . L
P 9 i Color is perceived by humans as a combination of three
- Local features: Features calculated over the re-

o . : color stimuli: Red, Green, Blue, which forms a color space
sults of subdivision of the image band on image_. . : : .
seqmentation or edae detection ?Flg. 2). This model has both a physiological foundation and
9 ) 9 ' a hardware related on®GB colors are called primary colors
- Global features: Features calculated over the d dditi ing thei binati h |
entire image or just regular sub-area of an imagi:j:m are a .|t|ve. By varying t err com Inations, ot er 1o
) - o ¢an be obtained. The representation of &V space (Fig. 2)

« Domain-specific features:_ Appllc_atlon dependent featur@s gerived from theRGB space cube, with the main diagonal
such as human faces, fingerprints, and conceptual fef-the RGBmodel, as the vertical axis iIHSV. As saturation
tures. These features are often a synthesis of low-leYglries form 0.0 to 1.0, the colors vary from unsaturatedyjgra
features for a specific domain. to saturated (no white component). Hue ranges from 0 to

On the other hand, all features can be coarsely classifig6l0 degrees, with variation beginning with red, going tigfou

into low-level features and high-level features. Low-leveyellow, green, cyan, blue and magenta and back to red. These
features can be extracted directed from the original imageslor spaces are intuitively corresponding to RR&B model
whereas high-level feature extraction must be based on lofem which they can be derived through linear or non-linear

level features [8]. transformations.

Il. FEATURE EXTRACTION
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Fig. 3. Original image
Fig. 5. TheHSV color space

The Y C,C, color space is used in the JPEG and MPEG & L B N
international coding standards. In MPEG-7 ti€’,C,. color
space is defined as

H:{ 5(R—G)+ (R B) }
V(R—-G)?+ (R—-B)(G - B)

3[min(R, G, B)]
e oL
vz%m+a+m

S=1- @)

Fig. 6. TheYC,C\r

Y =0.299R + 0.587G + 0.114B
Cp = —0.169R — 0.331G + 0.500B (3) A color histogramH for a given image is defined as a
C, = 0.500R — 0.419G — 0.081B vectorH = {h[1], h[2], - i, ... zh_[N]} wherei represents
a color in the color histogramy[i] is the number of pixels

For a three-channel image, we will have three of sudR colori in that image, andV is the number of bins in the
histograms. The histograms are normally divided into piffolor histogram, i.e., the number of colors in the adoptedrco
in an effort to coarsely represent the content and redugodel-
dimensionality of subsequent matching phase. A featurvec In order to compare images of different sizes, color his-
is then formed by concatenating the three channel histagraf@grams should be norrr)alized}; The normalized color his-
into one vector. For image retrieval, histogram of querygma togram H' is defined forh [i] = & where XY is the total
is then matched against histogram of all images in the dagabuUmber of pixels in an image (the remaining variables are
using some similarity metric. defined as before).

C0|0r descriptors Of images can be g|0ba| or |Oca| and The Standard measure Of S|m||ar|ty Used fOI’ CO|OI’ hiS-
consist of a number of histogram descriptors and color gescrtograms:

tors represented by color moments, color coherence veators - A color histogramH (i) is generated for each image
color correlograms [9]. h in the database (feature vector),
Color histogram describes the distribution of colors withi - The histogram isnormalizedso that its sum equals

a whole or within a interest region of image. The histogram unity (removes the size of the image),

is invariant to rotation, translation and scaling of an obje The histogram is then stored in the database,

but the histogram does not contain semantic informatiod, an Now suppose we select model image (the new
two images with similar color histograms can possess differ image to match against all possible targets in the
contents. database).
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TABLE |
COLOR MOMENTS

L I &[] ¢ [ 5] # s vy ]o o]
M} || 46.672| 25274 7.932 || 117.868 | 193574 | 78.878 || 88.192 | 110.463| 134.1

M,f 28.088 | 16.889 | 9.79 15414 | 76.626 | 41.812 || 48.427 | 11.43 7.52

M;:’ -0.065 | 0.114 | 1.059 -1.321 -0.913 0.016 0.215 -0.161 | -0.28

We tried 3 kinds of histogram distance measures for a his-
togramH (i), s =1,2,..., N.
v @D = P el lfi-fmd] ®

Color moments have been successfully used in many re- g - f1€lg, f2€lg,

trieval systems. The first order (mean), the second (vagjlanc hich ai h bability that ai ixél of level
and the third order (skewness) color moments have beerfV"ich gives the probability that given any pixgi of leve

proved to be efficient and effective in representing coldf a p!xel f2 _at a distancel in certain direction from the
distributions of images. given pixel fy is of level g,.

The first color moment of thé-th color componentk — Autocorrelogram captures the spatial correlation of ibaht

d d
1,2,3) is defined by levels onlyag® (1) = vy (1).
X Y
1 B. Texture
1 _ .
My = XY ;;ﬁ“(l’y) ) Texture is another important property of images. Texture

is a powerful regional descriptor that helps in the retdieva
where fi(z,y) is the color value of thé-th color compo- process. Texture, on its own does not have the capability of
nent of the image pixelz,y) and XY is the total number of finding similar images, but it can be used to classify texture

pixels in the image. images from non-textured ones and then be combined with
The h-th moment,h = 2,3, ... of k-th color component is another visual attribute like color to make the retrievalreno
then defined as effective.

Texture has been one of the most important characteristic

| XY W which has been used to classify and recognize objects ard hav
M} = (XY Z Z (fr(z,y) — M,i)h> (5) been used in finding similarities between images in multiaed
z=1y=1 databases.

Sin AV 9 (thr moments for h of the thr Basically, texture representation methods can be clagsifie
ce only (three moments for each o € Shito two categories: structural; and statistical. Stetigtmeth-
color componentg) numbers are used to represent the cBa5 including Fourier power spectra, co-occurrence Gei
content of _each image, color moments are a very Comp%ﬁﬁﬁ-invariant principal component analysis (SPCA), Taan
representation compared to other color features.

he similarity f ! df ieval i iahted features, Wold decomposition, Markov random field, fractal
Zf ?hslr;lgsglmeu dr}?fg?gng: bect)\:véztr??x: slzithVIv:Ir%otrienstz odel, and multi-resolution filtering techniques such abd@a
"and wavelet transform, characterize texture by the stalst
distribution of the image intensity.
. Let H_andG represent two color histograms. The intersec- ¢ ¢4 occurrence ?natri@(i,ji/ counts the co-occurrence
tion of histograms is given by: of pixels with gray valuesi and j; at a given distancel.
The distanced is defined in polar coordinategl, ), with
d(H,G) = min(Hy, Gy) (6) discrete length and orientation. In practi¢etakes the val-
k ues 0°; 45°; 90°; 135°; 180°; 225°; 270°; and 315°. The co-
Color correlogram characterize color distributions ofghix 0ccurrence matrixC'(é, j) can now be defined as follows:
and spatial correlation of pairs of colors. LEtbe an image
that comprises of pixelg (i, j). Each pixel has certain color C(i, )

or gray level. Let|G] be a set ofGG levels gy, go, . . ., g¢ that

can occur in the image. For a pixgllet I(f) denote its level (@1, 90), (IQ’yQ))'E (XY) x (XY)

g, and letI, correspond to a pixef, for which I(f) = g. for flzi,y1) =i, f(x2,92 = j

Histogram for levelg, is defined as: = card (9)
(z2,y2) = (z1,91) + (dcos b, dsin b);

Second order statistical measures are correlogram and auwherecard {.} denotes the number of elements in the set.
tocorrelogram. Let[D] denote a set ofD fixed distances
di,ds,...,dp. Then the correlogram of the imagdes defined Let G be the number of gray-values in the image, then the
for level pair (g, g,) at a distancel dimension of the co-occurrence matfixi, j) will be N x N.
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So, the computational complexity of the co-occurrence imatr
depends quadratically on the number of gray-scales used for
guantization.

Features can be extracted from the co-occurrence matrix to
reduce feature space dimensionality and the formal defirsti
of five features from the co-occurrence matrix are done

Energy = Z Z C(i,5)? (10)
i
Fig. 7. Gabor filters evaluated in a single locatiord@t45°, 90° and135°.
Inertia =33 (i - §)*C(i, j ay ° ? 4
2222 (i9)C ) — pa; Gabor filtered output of the image is obtained by the convo-
Correlation = —2 e (12) Ilution of the image with Gabor function for each of the or@nt
i0j

tion/spatial frequency (scale) orientation (Fig. 8). Gi im-
ageF(x,y), we filter this image withGab(x,y, W, 0, 0,,0y)

Dif ferenceMoment = Z Z ﬁc(l ) (13)
FGab(m, Y, VVv 97 Oz, Uy) =
Entropy = —ZZC(i,j)logC’(i,j) (14) :ZZF(x_kay_l)*Gab(xvyvmevazao—y) (16)
5 k1
where The magnitudes of the Gabor filters responses are repre-

sented by three moments

=Y i> C(i.j)
L W, 6 S EX:EY:FGb( W6 )
=353 ) HI 0] = Sy 2 2y ren i b
7 i

17)
o; defined as: std(W,0,0,,0,) =
oi =Y (i—p)*Y _ C(i,j) X X
7 J ZZHFGG’I) ayvmaao—zao—y”7,”(”/7970—130—21”2

- defined as: p=ty=t

% (18)
o;=>_ (i —p)*> CG,j)
i i 1
J Skew = %7 X

Motivated by biological findings on the similarity of two- < v 3
dimensional (2D) Gabor filters there has been increased i FGab(z,y,W,0,04,0,) — (W, 0,04, 0,)
terest in deploying Gabor filters in various computer vision z_:lz_; std(W,0,0,,0,)
applications and to texture analysis and image retrievaé T = ¥~ (19)
general functionality of the 2D Gabor filter family can be
represented as a Gaussian function modulated by a complexhe feature vector is constructed usingW, 0, o, o),
sinusoidal signal [4]. std(W,0,0,,0,) and Skew as feature components.

In our work we use a bank of filters built from these Gabor
functions for texture feature extraction. Before filtratiove

Shape

normalize an image to remove the effects of sensor noise and
gray level deformation. Shape based image retrieval is the measuring of similarity

The two-dimensional Gabor filter is defined as between shapes represented by their features. Shape is an

important visual feature and it is one of the primitive featl
for image content description. Shape content descriptson i

Gab(z,y, W,0,0,0,) = difficult to define because measuring the similarity between
1 [,%((L)a(if)+jW(Mosg+ysin9)] shapes is difficult. Therefore, two steps are essential apeh
i ’ ! (15) based image retrieval, they are: feature extraction and sim
zCy

ilarity measurement between the extracted features. Shape
wherej = /=1 ando, ando, are the scaling parametersdescriptors can be divided into two main categories: region

of the filter, W is the radial frequency of the sinusoid andased and contour-based methods. Region-based methods use

6 € [0, ] specifies the orientation of the Gabor filters. the whole area of an object for shape description, while

Issue 1, Vol. 1, 2007 10
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TABLE I

TEXTURE FEATURES FOR LUMINANCE COMPONENTS OF IMAGEMOTYL”

[d=1a=0"]d=1a=90° ] d=10 a=0° | d=10 a=90°
Energy 872330.0007 864935.0010 946010.0004 1387267.00649
Inertia 1.531547E7 1.049544E7 5.6304255E7 4.1802732E7
Correlation -2.078915E8 -2.007472E8 -7.664052E8 -8.716418E8
Inverse Difference Moment 788.930555 742.053910 435.616177 438.009592
Entropy -24419.08612 -24815.09885 -37280.65796 -44291.20651
TABLE Il
COLOR MOMENTS
Coke Motyl
0 oc=0.3 oc=0.3
u(W,0,0) | std(W,60,0) | Skew || p(W,0,0) | std(W,0,0) | Skew
0° 6,769 15,478 5,887 24,167 25,083 1,776
45° 5,521 14,888 6,681 20,167 21,549 1,799
90° 6,782 17,189 6,180 25,018 26,605 1,820
0 c=3 o=3
u(W,8,0) | std(W,0,0) | Skew || p(W,0,0) | std(W,0,0) | Skew
0° 6,784 10,518 3,368 29,299 27,357 1,580
45° 14,175 22,026 3,431 27,758 26,405 1,558
90° 7,698 12,118 3,578 29,995 28,358 1,586

Fig. 8. Gabor filtered output of the image

Fig. 9. Shape and measures used to compute features.

1)
2)
3)

contour-based methods use only the information present in
the contour of an object.

The shape descriptors described here are:

« shape descriptors - features calculated from objects con-

4)

tour: circularity, aspect ratio, discontinuity angle gre
ularity, length irregularity, complexity, right-anglese
sharpness, directedness. Those are translation, rotation
(except angle), and scale invariant shape descriptors. It

is possible to extract image contours from the detected

5)

edges. From the object contour the shape information is
derived. We extract and store a set of shape features from
the contour image and for each individual contour. These

features are (Fig.

Issue 1, Vol. 1, 2007

9):

11

Circularity cir = 222

Aspect Ratiour = 21tP2
Discontinuity  Angle
O 10i=0i41]
27 (n—2)
A normalized measure of the average absolute

Irregularity  dar

difference between the discontinuity angles
of polygon segments made with its adjoining
segments.

Lo |Li—Liq1]
Length Irregularitylir = Z# where K =

2P forn >3 and K = P for n = 3.

A normalized measure of the average absolute dif-
ference between the length of a polygon segment
and that of its preceding segment.

Complexitycom = 107 . A measure of the number

of segments in a boundary group weighted such
that small changes in the number of segments have
more effect in low complexity shapes than in high
complexity shapes.
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6) Right-Anglenessa = . A measure of the propor-
tion discontinuity angles which are approximately ,
right-angled. (1m200)° 2

7) Sharpnessh — 3° max(0,1-(2)%) A eoeure HU 9] employed seven moment invariants, that are invariant
of the pro-portion of sha?p discontinuities (Ove[under rotation as well as translation and scale change, to

90°). recognize characters independent of their position sizé an
8) Directednesgir = <. A measure of the propor- orientation.

tion of straight-line seé;ments parallel to the mode
segment direction.

where: n - number of sides of polygon enclosed by
segment boundaryA - area of polygon enclosed by
segment boundaryP - perimeter of polygon enclosed
by segment boundang' - length of longest boundary
chord, py,ps - greatest perpendicular distances from
longest chord to boundary, in each half-space either side
of line through longest chordj; - discontinuity angle
between(i —1)-th andi-th boundary segment,- number

of discontinuity angles equal to a right-angle within a

Mpg o, _PHa

Hpq = (23)

@1 = p20 + o2
b2 = [p20 — pro2]” + 43,

$3 = (130 — 3pt02]* + [Bu21 — po3)?

b4 = [p30 + p12)” + [p21 + pos)? (24)
¢5 = (130 — 3p12][ps0 + p12] x

x[(us0 + p12)? — 3(p21 + po3)?]+
+[3p21 — pos)[p21 + pos) <

X [3(us0 + ,5)* — (p21 + o3)?]

specified tolerance, and/ - total length of straight-
line segments parallel to mode direction of straight-line
segments within a specified tolerance.

region-based shape descriptor utilizes a set of Zernike
moments calculated within a disk centered at the center
of the image.

b6 = (120 — po2] (130 + p12)? — (p21 + pos)?]+
+4pn1[pso + piz)per + pos]
o7 = [Bu21 — pos)pso + p2] x

X [(p30 + p12)? — 3(p21 + pos)?]—
—[p03 — 3pi2) {21 + pos]

In retrieval applications, a small set of lower order morsent
is used to discriminate among different images [15], [126]]
The most common moments are:

- the geometrical moments [15],

- the central moments and the normalized central m
ments,

- the moment invariants [20],

x[3(p30 + p12)? — (po1 + po3)?]

The kernel of Zernike moments is a set of orthogonal
Zernike polynomials defined over the polar coordinate space
'Bw_side a unit circle. The Zernike moment descriptor is the
most suitable for shape similar-based retrieval in terms of
computation complexity, compact representation, rolasstn

- the Zernike moments and the Legendre momen?gd r_etrieval perfor_mance. Shap_e Is a primary i_”?ag.e feature
(which are based on the theory of orthogonal pol ._nd IS .use.ful for image analysis, ObJe.Ct |dent|f|c_at|_or_1 and
nomials) [17], image filtering apphcathns _[11],.[13]. .In image retrle,vqlls

) the complex moments. !mporta}nt for some appllc_atlons |n_Wh|ch shapg represiemtat

. , is invariant under translation, rotation, and scalinghOgonal
~ A object can be represented by the spatial moments of jig,ments have additional properties of being more robust in
intensity function the presence of image noise.

Zernike moments have the following advantages:

(200 . Rotation invariance: the magnitude of Zernike mo-
ments has rotational invariant property,
Robustness: they are robust to noise and minor
variations in shape,
Expressiveness: Since the basis is orthogonal, they
have minimum information redundancy,
Effectiveness: an image can be better described by
a small set of its Zernike moments than any other
types of moments such as geometric moments.

iy = [ [ Fuules) s,y

where f(z,y) is the intensity function representing the image, -
the integration is over the entire image and thér,y) is
same function of: andy for examplexz?y?, or asin(zp) and -

cos(yq).
In the spatial case -

X Y
Mpqg = Z Z Pyt f(z,y)

oot (1) Multilevel representation: a relatively small set of
U Zernike moments can characterize the global shape
The central moments are given by of pattern. Lower order moments represent the global
shape of pattern and higher order moments represent
X X the detail.
mpg =Y Y (= DPy—J)f(zy) (22

Therefore, we choose Zernike moments as our shape de-
scriptor in recognition and/or retrieval systems.

Block diagram of computing Zernike moments is presented
in Fig. 11 [17].

r=1y=1

wherd, J) arel = Tioand] = 7oL,

moo

Normalized central moment,,
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MOMENT INVARIANTS| aunit circle 22 +¢% =1 [13], [21],
L 1 Vinn (1,0) = Ry (1) exp(jnb) (26)
¥
£ 4 > O alele) 4 . . .
[FEGULAR MOMENT| - [ALGEBRAIC MOVENT| |ORTHOGONAL MOVENT | wherer, ) are defined over the unit disg,= v~T and
l l R, (r) is the orthogonal radial polynomial, defined as:
SCALE INVARIANT HU MOMENT ZERNIKE, LEGANDRE m=|n|
CENTRAL MOMENTS INVARIANTS HERMIT‘EI.:{? OMENT 2
INVARIANT S Ry (r) = Z (=1)°F(m,n,s,r) (27)
s=0
Fig. 10. The categorization of the moment invariants. where

—3)!

m S).

—'lenary!magel > Scale | | Translation F(m’n’ 8,7’) = 1 mtin| (_ | 'rr)L—\n\ AN
Normalization Normalization S( 2 S)( 2 8)'

wheren is a non-negative integenr is an integer such that
< Normalized || Zernike ] Basis n-— |m| IS even andm| =n. .
M NoMomentsin Calculation We haveRmn(r) = Rm}_n(r), and Rmn(r) = 0 if the
above conditions depictes and are not true.

,rm72s (28)

Fig. 11. Block diagram of computing Zernike moments. . ) . ) .
So for a discrete image, if(x,y) is the current pixel then:

m+1 N
Zernike polynomials are an orthogonal series of basis func- Amn = T Z Z (@, y) Vinn (2, y) (29)
tions normalized over a unit circle. These polynomialséase cY
in complexity with increasing polynomial order [14]. wherez? + y? < 1.

To calculate the Zernike moments, the image (or region oflt is easy to verify that
interest) is first mapped to the unit disc using polar coordi-

nates, where the centre of the image is the origin of the unit Vii(r,0) = rel?
disc (Fig. 12). Those pixels falling outside the unit dise ar Vao(r,0) = (2r2 —1)
not used in the calculation. The coordinates are then destri 2526 (30)
.. . VQQ(Ta 0) - rel
by the length of the vector from the origin to the coordinate 3 ;36
point. The mapping from Cartesian to polar coordinates is: Vai(r,0) = (3" —2r)e
. and in the Cartesian coordinates
x=rcosf, y=rsind (25)
wherer = /2?2 + 2, 6 =tan"'(¥). Vir(z,y) = T+ jy
An_ important gttrib_ute of the geometric repre_sentatic_)ns of Vaolz,y) = 22242y%—1)
Zernike polynomials is that lower order polynomials apfrox Vas(,y) = (2% —y?) + j(22y)
mate the global features of the shape/surface, while theehig > )= 5 Y ) J\ery s )
ordered polynomial terms capture local shape/surfacefest ~ V31(7,Y) (32° + 3z%y — 2z) + j(3y° + 3wy® — 2y)
Zernike moments are a class of orthogonal moments and have (31)
been shown effective in terms of image representation. Zernike moments are rotationally invariant and orthogonal

The Zernike polynomials are a set of complexf A, is the moment of orden and repetitionn, associated
orthogonal polynomials defined over the interior oWith f"(x,y) obtained by rotating the original image by an

angley then
fr(ra QD) = f(rv 0 — QD) (32)
m—+1 )
A, = —— " mn\&L, * = Anm —Ime
nm - ;Zy:f (@, ) [Vinn (2, y)] €
(33)
If m =0, A, = A.», there is no phase difference

between them. lin # 0, we havearg(A},,) = arg(Anm) +

me that is¢ = arg(A""I);Larg(A"m which means that if an
image has been rotated, we can compute the rotation degree
@.

Fig. 12. The square to circular transformation.
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Queries based on image content descriptors can help in the

If f(£,%) represent a scaled version of the image functioh. Medical applications
f(z,y), then the Zernike momento, of f(z,y) andA, of
f(%£,2) are related by:

diagnostic process. Visual features can be used to find isnage

of interest and to retrieve relevant information for a dali

|A00| (34)

|AE)0| = a?|Ao| where a=
[ Aool

case. One example is a content-based medical image rétrieva
that supports mammographical image retrieval. The main aim

o i of the diagnostic method in this case is to find the best featur
Therefore|4,,,,| can be used as a rotation invariant featurg,q get the high classification rate for microcalcificationt a

of the image function. Sincel,, _,, = A,.,, and therefore
|Ap. | = |Anml|, we will use only|A,,,| for features. Since

mass detection in mammograms [6], [7].
The microcalcifications are grouped into clusters based on

| Aoo| and|A;, | are the same for all of the normalized symbolsy e proximity. A set of the features was initially calctee

they will not be used in the feature set. Therefore the etethc
features of the order n start from the second order moments
up to thenth order moments. )

The first two true invariants areloy and 41141 =
|A11|%, but these are trivial where they have the same value
for all images, these will not be counted. i

There are two second order true Zernike moment invariants

AQO and A22A2,72 = |A22‘2 (35)

which are unchanged under any orthogonal transformations:

There are have four third order moments
Ass, Asq, As 1, Az _3. The true invariants are -
written as the following:

or each cluster:

Number of calcifications in a cluster

Total calcification area / cluster area

Average of calcification areas

Standard deviation of calcification areas

Average of calcification compactness

Standard deviation of calcification compactness
Average of calcification mean grey level

Standard deviation of calcification mean grey level
Average of calcification standard deviation of grey
level

Standard deviation of calcification standard deviation
of grey level.

Mass detection in mammography is based on shape and
texture based features.

AszAsz 3 =|As3|* and Az Az = |Az|? (36)

Teague [16] suggested a new term as -

Azz(Az _1)% = As3[(A31)*]? (37)

which is an additional invariant. This technique of forming
the invariants is tedious and relies on trial and errors to
guarantee its function independence.

To characterize the shape we used a feature vector cogsistin
of the principal axis ratio, compactness, circular var@anc .
descriptors and invariant Zernike moments. This vectosesu
to index each shape in the database. The distance between two
feature vectors is determined by city block distance measur

Ill. CLASSIFIERS

As the feature are extracted, a suitable classifier must be
chosen. A number of classifiers are used and each classifier
is found suitable to classify a particular kind of feature
vectors depending upon their characteristics. The classifi
used commonly is Nearest Neighbor classifier. The nearest
neighbor classifier is used to compare the feature vectdreof t
prototype with image feature vectors stored in the database
It is obtained by finding the distance between the prototype
image and the database.

IV. APPLICATIONS

The CBIR technology has been used in several applications
such as fingerprint identification, biodiversity infornaatisys- -
tems, crime prevention, medicine, among others. Some of
these applications are presented in this section. -
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The features are listed below:

Mass area. The mass are= |R|, whereR is the

set of pixels inside the region of mass, grds set
cardinal.

Mass perimeter length. The perimeter lengtlis the
total length of the mass edge. The mass perimeter
length was computed by finding the boundary of the
mass, then counting the number of pixels around the
boundary.

Compactness. The compactnéssis a measure of
contour complexity versus enclosed area, defined as:
C= ﬁ—; where P and A are the mass perimeter and
area respectively. A mass with a rough contour will
have a higher compactness than a mass with smooth
boundary.

Normalized radial length. The normalized radial
length is sum of the Euclidean distances from the
mass center to each of the boundary co-ordinates,
normalized by dividing by the maximum radial
length.

Minimum and maximum axis. The minimum axis of

a mass is the smallest distance connecting one point
along the border to another point on the border going
through the center of the mass. The maximum axis of
the mass is the largest distance connecting one point
along the border to another point on the border going
through the center of the mass.

Average boundary roughness.

Mean and standard deviation of the normalized radial
length.

Eccentricity. The eccentricity characterizes the
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lengthiness of &Region Of InterestAn eccentricity order to compensate the varying size of the captured iris it
close to 1 denotes ROI like a circle, while values is common to translate the segmented iris region, repredent
close to zero mean more stretchR@Is in the cartesian coordinate system, to a fixed length and
- Roughness. The roughness index was calculated fimensionless polar coordinate system. The next stageeis th
each boundary segment (equal length) as feature extraction [1], [2].
Lt The remapping is done so that the transformed image is

R(j) = Z IRy, — Ry (38) rectangle with dimensiof12 x 32 (Fig. 14).
k=j

for j = 1,2,..., % where R(j) is the roughness
index for thejth fixed length interval.

- Average mass boundary. The average mass boundary . 1 i
calculated as averaging the roughness index over the ﬂ'I :’

entire mass boundary

e
L
R L Z R(j) (39) | i
ave J z -
n =1 ﬂ
wheren is the number of mass boundary points and
L is the number of segments. Fig. 14. Transformed region.
B. Iris recognition Most of iris recognition systems are based on Gabor func-

A typical iris recognition system often includes iris caplions analysis in order to extract iris image features [8]. |
turing, preprocessing, feature extraction and featureiniag. consists of convolution of image with complex Gabor filters
In iris recognition algorithm, pre-processing and feataxe which is used to extract iris feature. As a product of this
traction are two key processes. Iris preprocessing, ifuud OPeration, complex coefficients are computed. In order to
localization, segmentation, normalization and enhanogmePbtain iris signature, complex coefficients are evaluated a
is a basic step in iris identification algorithm. Iris featur coded. o _ o
extraction is the most important step in iris recognitiomje ~ 1"e normalized iris images (Fig. 14) are divided into two
determines directly the value of iris characteristics ituat StriPes, and each stripe intii x L blocks. The size of each
application. Typical iris recognition system is illusedtin Fig. Plock is k x . Each block is filtered according to (16) with

13. orientation angle$ = 0°,45°,90°,135° (Fig. 15).
- H 1
Iris
.. Image _
Initial Image Database | I] C I:I L
Preprocessing - :tu 529.451(35.90()0?%2& block iris image (a) and real part of (bcdey & =
a ra ) ) )
Segmentation Database
Mormalization To encode the iris we used the real part of (bcde) and the
# v iris binary Codecan be stored as personal identify feature.

The main contributions of this work are the identification
of the problems existing in CBIR and Biometrics systems -
describing image content and image feature extraction. We
have described a possible approach to mapping image content
Fig. 13. Typical iris recognition stages onto low-level features. This paper investigated the usa of
number of different color, texture and shape features fagien
retrieval in CBIR and Biometrics systems.
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