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Abstract—In CBIR (Content-Based Image Retrieval), visual
features such as shape, color and texture are extracted to
characterize images. Each of the features is represented using
one or more feature descriptors. During the retrieval, features
and descriptors of the query are compared to those of the images
in the database in order to rank each indexed image according
to its distance to the query. In biometrics systems images used as
patterns (e.g. fingerprint, iris, hand etc.) are also represented by
feature vectors. The candidates patterns are then retrieved from
database by comparing the distance of their feature vectors. The
feature extraction methods for this applications are discussed.
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I. I NTRODUCTION

In various computer vision applications widely used is the
process of retrieving desired images from a large collection on
the basis of features that can be automatically extracted from
the images themselves. These systems called CBIR (Content-
Based Image Retrieval) have received intensive attention in
the literature of image information retrieval since this area
was started years ago, and consequently a broad range of
techniques has been proposed.
The algorithms used in these systems are commonly divided
into three tasks:

- extraction,
- selection, and
- classification.

The extraction task transforms rich content of images into
various content features. Feature extraction is the process of
generating features to be used in the selection and classifica-
tion tasks. Feature selection reduces the number of features
provided to the classification task. Those features which are
likely to assist in discrimination are selected and used in
the classification task. Features which are not selected are
discarded [10].

Of these three activities, feature extraction is most critical
because the particular features made available for discrimina-
tion directly influence the efficacy of the classification task.
The end result of the extraction task is a set of features,
commonly called a feature vector, which constitutes a rep-
resentation of the image.

In the last few years, a number of above mentioned systems
using image content feature extraction technologies proved
reliable enough for professional applications in industrial
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Fig. 1. Diagram of the image retrieval process.

automation, biomedicine, social security, biometric authenti-
cation and crime prevention [5].

Fig. 1 shows the architecture of a typical CBIR system. For
each image in the image database, its features are extractedand
the obtained feature space (or vector) is stored in the feature
database. When a query image comes in, its feature space will
be compared with those in the feature database one by one and
the similar images with the smallest feature distance will be
retrieved.

CBIR can be divided in the following stages:

• Preprocessing: The image is first processed in order to
extract the features, which describe its contents. The pro-
cessing involves filtering, normalization, segmentation,
and object identification. The output of this stage is a
set of significant regions and objects.

• Feature extraction: Features such as shape, texture, color,
etc. are used to describe the content of the image. Image
features can be classified into primitives.

CBIR combines high-tech elements such as:
- multimedia, signal and image processing,
- pattern recognition,
- human-computer interaction,
- human perception information sciences.

In Pattern Recognition we extract ”relevant” information
about an object via experiments and use these measurements
(= features) to classify an object. CBIR and direct object
recognition, although similar in principle, using many of
the same image analysis/statistical tools, are very different
operations. Object recognition works with an existing database
of objects and is primarily a statistical matching problem.
One can argue that object recognition is a particularly nicely
defined sub-set of CBIR.
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In CBIR, human factors play the fundamental role. Another
distinction between recognition and retrieval is evident in
less specialized domains - these applications are inherently
concerned with ranking (i.e., re-ordering database images
according to their measured similarity to a query example)
rather than classification (i.e., deciding process whetheror
not an observed object matches a model), as the result of
similarity-based retrieval.

First generation CBIR systems were based on manual
textual annotation to represent image content. This technique
can only be applied to small data volumes and, to be truly
effective, annotation must be limited to very narrow visual
domains.

In content-based image retrieval, images are automatically
indexed by generating a feature vector (stored as an index in
feature databases) describing the content of the image. The
similarity of the feature vectors of the query and database
images is measured to retrieve the image.

Let {F (x, y);x = 1, 2, . . . , X, y = 1, 2, . . . , Y } be a
two-dimensional image pixel array. For color imagesF (x, y)
denotes the color value at pixel(x, y) i.e., F (x, y) =
{FR(x, y), FG(x, y), FB(x, y)}. For black and white images,
F (x, y) denotes the grayscale intensity value of pixel(x, y).

The problem of retrieval is following: For a query imageQ ,
we find imageT from the image database, such that distance
between corresponding feature vectors is less than specified
threshold, i.e.,

D(Feature(Q), F eature(T ) ≤ t (1)

II. FEATURE EXTRACTION

The feature is defined as a function of one or more mea-
surements, each of which specifies some quantifiable property
of an object, and is computed such that it quantifies some
significant characteristics of the object.

We classify the various features currently employed as
follows:

• General features: Application independent features such
as color, texture, and shape. According to the abstraction
level, they can be further divided into:

- Pixel-level features: Features calculated at each
pixel, e.g. color, location.

- Local features: Features calculated over the re-
sults of subdivision of the image band on image
segmentation or edge detection.

- Global features: Features calculated over the
entire image or just regular sub-area of an image.

• Domain-specific features: Application dependent features
such as human faces, fingerprints, and conceptual fea-
tures. These features are often a synthesis of low-level
features for a specific domain.

On the other hand, all features can be coarsely classified
into low-level features and high-level features. Low-level
features can be extracted directed from the original images,
whereas high-level feature extraction must be based on low-
level features [8].

A. Color

The color feature is one of the most widely used visual
features in image retrieval. Images characterized by color
features have many advantages:

• Robustness. The color histogram is invariant to rotation
of the image on the view axis, and changes in small
steps when rotated otherwise or scaled [15]. It is also
insensitive to changes in image and histogram resolution
and occlusion.

• Effectiveness. There is high percentage of relevance
between the query image and the extracted matching
images.

• Implementation simplicity. The construction of the color
histogram is a straightforward process, including scan-
ning the image, assigning color values to the resolution
of the histogram, and building the histogram using color
components as indices.

• Computational simplicity. The histogram computation has
O(X,Y ) complexity for images of sizeX × Y . The
complexity for a single image match is linear,O(n),
where n represents the number of different colors, or
resolution of the histogram.

• Low storage requirements. The color histogram size is
significantly smaller than the image itself, assuming color
quantisation.

Typically, the color of an image is represented through
some color model. There exist various color model to describe
color information. A color model is specified in terms of
3-D coordinate system and a subspace within that system
where each color is represented by a single point. The more
commonly used color models areRGB (red, green, blue),
HSV (hue, saturation, value) andY,Cb, Cr (luminance and
chrominance). Thus the color content is characterized by
3-channels from some color model. One representation of
color content of the image is by using color histogram.
Statistically, it denotes the joint probability of the intensities
of the three color channels.

Color is perceived by humans as a combination of three
color stimuli: Red, Green, Blue, which forms a color space
(Fig. 2). This model has both a physiological foundation and
a hardware related one.RGBcolors are called primary colors
and are additive. By varying their combinations, other colors
can be obtained. The representation of theHSV space (Fig. 2)
is derived from theRGB space cube, with the main diagonal
of the RGBmodel, as the vertical axis inHSV. As saturation
varies form 0.0 to 1.0, the colors vary from unsaturated (gray)
to saturated (no white component). Hue ranges from 0 to
360 degrees, with variation beginning with red, going through
yellow, green, cyan, blue and magenta and back to red. These
color spaces are intuitively corresponding to theRGB model
from which they can be derived through linear or non-linear
transformations.
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Fig. 2. TheRGBcolor space and theHSV color space

Fig. 3. Original image

H = cos−1

{

1
2 [(R − G) + (R − B)]

√

(R − G)2 + (R − B)(G − B)

}

S = 1 − 3[min(R,G,B)]

V
(2)

V =
1

3
(R + G + B)

The Y CbCr color space is used in the JPEG and MPEG
international coding standards. In MPEG-7 theY CbCr color
space is defined as

Y = 0.299R + 0.587G + 0.114B

Cb = −0.169R − 0.331G + 0.500B

Cr = 0.500R − 0.419G − 0.081B

(3)

For a three-channel image, we will have three of such
histograms. The histograms are normally divided into bins
in an effort to coarsely represent the content and reduce
dimensionality of subsequent matching phase. A feature vector
is then formed by concatenating the three channel histograms
into one vector. For image retrieval, histogram of query image
is then matched against histogram of all images in the database
using some similarity metric.

Color descriptors of images can be global or local and
consist of a number of histogram descriptors and color descrip-
tors represented by color moments, color coherence vectorsor
color correlograms [9].

Color histogram describes the distribution of colors within
a whole or within a interest region of image. The histogram
is invariant to rotation, translation and scaling of an object
but the histogram does not contain semantic information, and
two images with similar color histograms can possess different
contents.

Fig. 4. TheRGBcolor space

Fig. 5. TheHSV color space

Fig. 6. TheY CbCr

A color histogramH for a given image is defined as a
vectorH = {h[1], h[2], . . . h[i], . . . , h[N ]} wherei represents
a color in the color histogram,h[i] is the number of pixels
in color i in that image, andN is the number of bins in the
color histogram, i.e., the number of colors in the adopted color
model.

In order to compare images of different sizes, color his-
tograms should be normalized. The normalized color his-
togramH

′

is defined forh
′

[i] = h[i]
XY

whereXY is the total
number of pixels in an image (the remaining variables are
defined as before).

The standard measure of similarity used for color his-
tograms:

- A color histogramH(i) is generated for each image
h in the database (feature vector),

- The histogram isnormalizedso that its sum equals
unity (removes the size of the image),

- The histogram is then stored in the database,
- Now suppose we select amodel image (the new

image to match against all possible targets in the
database).
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TABLE I
COLOR MOMENTS

R G B H S V Y Cb Cr

M1

k
46.672 25.274 7.932 117.868 193.574 78.878 88.192 110.463 134.1

M2

k
28.088 16.889 9.79 15.414 76.626 41.812 48.427 11.43 7.52

M3

k
-0.065 0.114 1.059 -1.321 -0.913 0.016 0.215 -0.161 -0.28

We tried 3 kinds of histogram distance measures for a his-
togramH(i), i = 1, 2, . . . , N .

Color moments have been successfully used in many re-
trieval systems. The first order (mean), the second (variance)
and the third order (skewness) color moments have been
proved to be efficient and effective in representing color
distributions of images.
The first color moment of thek-th color component(k =
1, 2, 3) is defined by

M1
k =

1

XY

X
∑

x=1

Y
∑

y=1

fk(x, y) (4)

wherefk(x, y) is the color value of thek-th color compo-
nent of the image pixel(x, y) andXY is the total number of
pixels in the image.
The h-th moment,h = 2, 3, . . . of k-th color component is
then defined as

Mh
k =

(

1

XY

X
∑

x=1

Y
∑

y=1

(

fk(x, y) − M1
k

)h

)

1
h

(5)

Since only 9 (three moments for each of the three
color components) numbers are used to represent the color
content of each image, color moments are a very compact
representation compared to other color features.
The similarity function used for retrieval is a weighted sum
of the absolute differences between the suitable moments.

Let H andG represent two color histograms. The intersec-
tion of histograms is given by:

d(H,G) =
∑

k

min(Hk, Gk) (6)

Color correlogram characterize color distributions of pixels
and spatial correlation of pairs of colors. LetI be an image
that comprises of pixelsf(i, j). Each pixel has certain color
or gray level. Let[G] be a set ofG levelsg1, g2, . . . , gG that
can occur in the image. For a pixelf let I(f) denote its level
g, and letIg correspond to a pixelf , for which I(f) = g.
Histogram for levelgx is defined as:

hgx
(I) ≡ Pr

f∈I
|f ∈ Igi

| (7)

Second order statistical measures are correlogram and au-
tocorrelogram. Let[D] denote a set ofD fixed distances
d1, d2, . . . , dD. Then the correlogram of the imageI is defined
for level pair (gx, gy) at a distanced

γ(d)
gx,gy

(I) ≡ Pr
f1∈Igx ,f2∈Igy

⌊f2 ∈ Igx
||f1 − f2 = d|⌋ (8)

which gives the probability that given any pixelf1 of level
gx, a pixel f2 at a distanced in certain direction from the
given pixelf1 is of level gx.

Autocorrelogram captures the spatial correlation of identical
levels onlyα

(d)
g (I) = γ

(d)
g,g(I).

B. Texture

Texture is another important property of images. Texture
is a powerful regional descriptor that helps in the retrieval
process. Texture, on its own does not have the capability of
finding similar images, but it can be used to classify textured
images from non-textured ones and then be combined with
another visual attribute like color to make the retrieval more
effective.

Texture has been one of the most important characteristic
which has been used to classify and recognize objects and have
been used in finding similarities between images in multimedia
databases.

Basically, texture representation methods can be classified
into two categories: structural; and statistical. Statistical meth-
ods, including Fourier power spectra, co-occurrence matrices,
shift-invariant principal component analysis (SPCA), Tamura
features, Wold decomposition, Markov random field, fractal
model, and multi-resolution filtering techniques such as Gabor
and wavelet transform, characterize texture by the statistical
distribution of the image intensity.

The co-occurrence matrixC(i, j) counts the co-occurrence
of pixels with gray valuesi and j at a given distanced.
The distanced is defined in polar coordinates(d, θ), with
discrete length and orientation. In practice,θ takes the val-
ues 0◦; 45◦; 90◦; 135◦; 180◦; 225◦; 270◦; and 315◦. The co-
occurrence matrixC(i, j) can now be defined as follows:

C(i, j) =

= card































((x1, y1), (x2, y2)) ∈ (XY ) × (XY )

for f(x1, y1) = i, f(x2, y2 = j

(x2, y2) = (x1, y1) + (d cos θ, d sin θ);

for 0 < i, j < N































(9)

wherecard {.} denotes the number of elements in the set.

Let G be the number of gray-values in the image, then the
dimension of the co-occurrence matrixC(i, j) will be N ×N .
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So, the computational complexity of the co-occurrence matrix
depends quadratically on the number of gray-scales used for
quantization.

Features can be extracted from the co-occurrence matrix to
reduce feature space dimensionality and the formal definitions
of five features from the co-occurrence matrix are done

Energy =
∑

i

∑

j

C(i, j)2 (10)

Inertia =
∑

i

∑

j

(i − j)2C(i, j) (11)

Correlation =

∑

i

∑

j

(ij)C(i, j) − µiµj

σiσj

(12)

DifferenceMoment =
∑

i

∑

j

1

1 + (i − j)2
C(i, j) (13)

Entropy = −
∑

i

∑

j

C(i, j) log C(i, j) (14)

where

µi =
∑

i

i
∑

j

C(i, j)

µj =
∑

j

j
∑

i

C(i, j)

σi defined as:

σi =
∑

i

(i − µi)
2
∑

j

C(i, j)

σj defined as:

σj =
∑

i

(j − µj)
2
∑

j

C(i, j)

Motivated by biological findings on the similarity of two-
dimensional (2D) Gabor filters there has been increased in-
terest in deploying Gabor filters in various computer vision
applications and to texture analysis and image retrieval. The
general functionality of the 2D Gabor filter family can be
represented as a Gaussian function modulated by a complex
sinusoidal signal [4].

In our work we use a bank of filters built from these Gabor
functions for texture feature extraction. Before filtration, we
normalize an image to remove the effects of sensor noise and
gray level deformation.

The two-dimensional Gabor filter is defined as

Gab(x, y,W, θ, σx, σy) =

=
1

2πσxσy

e

[

− 1
2

(

( x
σx

)
2
+
(

y

σy

)2
)

+jW (x cos θ+y sin θ)

]

(15)

wherej =
√
−1 andσx andσy are the scaling parameters

of the filter, W is the radial frequency of the sinusoid and
θ ∈ [0, π] specifies the orientation of the Gabor filters.

Fig. 7. Gabor filters evaluated in a single location at0◦, 45◦, 90◦ and135◦.

Gabor filtered output of the image is obtained by the convo-
lution of the image with Gabor function for each of the orienta-
tion/spatial frequency (scale) orientation (Fig. 8). Given an im-
ageF (x, y), we filter this image withGab(x, y,W, θ, σx, σy)

FGab(x, y,W, θ, σx, σy) =

=
∑

k

∑

l

F (x − k, y − l) ∗ Gab(x, y,W, θ, σx, σy) (16)

The magnitudes of the Gabor filters responses are repre-
sented by three moments

µ(W, θ, σx, σy) =
1

XY

X
∑

x=1

Y
∑

y=1

FGab(x, y,W, θ, σx, σy)

(17)

std(W, θ, σx, σy) =

=

√

√

√

√

X
∑

x=1

Y
∑

y=1

||FGab(x, y,W, θ, σx, σy)| − µ(W, θ, σx, σy)|2

(18)

Skew =
1

XY
×

×
X
∑

x=1

Y
∑

y=1

(

FGab(x, y,W, θ, σx, σy) − µ(W, θ, σx, σy)

std(W, θ, σx, σy)

)

3

(19)

The feature vector is constructed usingµ(W, θ, σx, σy),
std(W, θ, σx, σy) andSkew as feature components.

C. Shape

Shape based image retrieval is the measuring of similarity
between shapes represented by their features. Shape is an
important visual feature and it is one of the primitive features
for image content description. Shape content description is
difficult to define because measuring the similarity between
shapes is difficult. Therefore, two steps are essential in shape
based image retrieval, they are: feature extraction and sim-
ilarity measurement between the extracted features. Shape
descriptors can be divided into two main categories: region-
based and contour-based methods. Region-based methods use
the whole area of an object for shape description, while
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TABLE II
TEXTURE FEATURES FOR LUMINANCE COMPONENTS OF IMAGE” MOTYL ”

d = 1 α = 0◦ d = 1 α = 90◦ d = 10 α = 0◦ d = 10 α = 90◦

Energy 872330.0007 864935.0010 946010.0004 1387267.00649

Inertia 1.531547E7 1.049544E7 5.6304255E7 4.1802732E7

Correlation -2.078915E8 -2.007472E8 -7.664052E8 -8.716418E8

Inverse Difference Moment 788.930555 742.053910 435.616177 438.009592

Entropy -24419.08612 -24815.09885 -37280.65796 -44291.20651

TABLE III
COLOR MOMENTS

Coke Motyl

θ σ = 0.3 σ = 0.3

µ(W, θ, σ) std(W, θ, σ) Skew µ(W, θ, σ) std(W, θ, σ) Skew

0◦ 6,769 15,478 5,887 24,167 25,083 1,776

45◦ 5,521 14,888 6,681 20,167 21,549 1,799

90◦ 6,782 17,189 6,180 25,018 26,605 1,820

θ σ = 3 σ = 3

µ(W, θ, σ) std(W, θ, σ) Skew µ(W, θ, σ) std(W, θ, σ) Skew

0◦ 6,784 10,518 3,368 29,299 27,357 1,580

45◦ 14,175 22,026 3,431 27,758 26,405 1,558

90◦ 7,698 12,118 3,578 29,995 28,358 1,586

Fig. 8. Gabor filtered output of the image

contour-based methods use only the information present in
the contour of an object.

The shape descriptors described here are:

• shape descriptors - features calculated from objects con-
tour: circularity, aspect ratio, discontinuity angle irreg-
ularity, length irregularity, complexity, right-angleness,
sharpness, directedness. Those are translation, rotation
(except angle), and scale invariant shape descriptors. It
is possible to extract image contours from the detected
edges. From the object contour the shape information is
derived. We extract and store a set of shape features from
the contour image and for each individual contour. These
features are (Fig. 9):

Fig. 9. Shape and measures used to compute features.

1) Circularity cir = 4pA
P 2

2) Aspect Ratioar = p1+p2

C

3) Discontinuity Angle Irregularity dar =
√

(
∑

|θi−θi+1|

2π(n−2)

A normalized measure of the average absolute
difference between the discontinuity angles
of polygon segments made with its adjoining
segments.

4) Length Irregularitylir =

∑

|Li−Li+1|

K
, whereK =

2P for n > 3 andK = P for n = 3.
A normalized measure of the average absolute dif-
ference between the length of a polygon segment
and that of its preceding segment.

5) Complexitycom = 10
−3

n . A measure of the number
of segments in a boundary group weighted such
that small changes in the number of segments have
more effect in low complexity shapes than in high
complexity shapes.

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

Issue 1, Vol. 1, 2007                                                                        11



6) Right-Anglenessra = r
n

. A measure of the propor-
tion discontinuity angles which are approximately
right-angled.

7) Sharpnesssh =
∑ max(0,1−(

2|θ−π|
π

)2)

n
. A measure

of the pro-portion of sharp discontinuities (over
90◦).

8) Directednessdir = M
∑

Pi

. A measure of the propor-

tion of straight-line segments parallel to the mode
segment direction.

where: n - number of sides of polygon enclosed by
segment boundary,A - area of polygon enclosed by
segment boundary,P - perimeter of polygon enclosed
by segment boundary,C - length of longest boundary
chord, p1, p2 - greatest perpendicular distances from
longest chord to boundary, in each half-space either side
of line through longest chord,θi - discontinuity angle
between(i−1)-th andi-th boundary segment,r - number
of discontinuity angles equal to a right-angle within a
specified tolerance, andM - total length of straight-
line segments parallel to mode direction of straight-line
segments within a specified tolerance.

• region-based shape descriptor utilizes a set of Zernike
moments calculated within a disk centered at the center
of the image.

In retrieval applications, a small set of lower order moments
is used to discriminate among different images [15], [12], [16].
The most common moments are:

- the geometrical moments [15],
- the central moments and the normalized central mo-

ments,
- the moment invariants [20],
- the Zernike moments and the Legendre moments

(which are based on the theory of orthogonal poly-
nomials) [17],

- the complex moments.

A object can be represented by the spatial moments of its
intensity function

mpq =

∫ ∫

Fpq(x, y)f(x, y)dxdy (20)

wheref(x, y) is the intensity function representing the image,
the integration is over the entire image and theF (x, y) is
same function ofx andy for examplexpyq, or a sin(xp) and
cos(yq).

In the spatial case

mpq =

X
∑

x=1

Y
∑

y=1

xpyqf(x, y) (21)

The central moments are given by

mpq =

X
∑

x=1

Y
∑

y=1

(x − I)p(y − J)qf(x, y) (22)

where(I, J) areI = m10

m00
andJ = m01

m00
.

Normalized central momentµpq

µpq =
mpq

(m00)α
, α =

p + q

2
+ 1 (23)

Hu [9] employed seven moment invariants, that are invariant
under rotation as well as translation and scale change, to
recognize characters independent of their position size and
orientation.

φ1 = µ20 + µ02

φ2 = [µ20 − µ02]
2 + 4µ2

11

φ3 = [µ30 − 3µ02]
2 + [3µ21 − µ03]

2

φ4 = [µ30 + µ12]
2 + [µ21 + µ03]

2 (24)

φ5 = [µ30 − 3µ12][µ30 + µ12]×
×[(µ30 + µ12)

2 − 3(µ21 + µ03)
2]+

+[3µ21 − µ03][µ21 + µ03]×
×[3(µ30 + µ

12
)2 − (µ21 + µ03)

2]

φ6 = [µ20 − µ02][(µ30 + µ12)
2 − (µ21 + µ03)

2]+

+4µ11[µ30 + µ12][µ21 + µ03]

φ7 = [3µ21 − µ03][µ30 + µ12]×
×[(µ30 + µ12)

2 − 3(µ21 + µ03)
2]−

−[µ03 − 3µ12][µ21 + µ03]×
×[3(µ30 + µ12)

2 − (µ21 + µ03)
2]

The kernel of Zernike moments is a set of orthogonal
Zernike polynomials defined over the polar coordinate space
inside a unit circle. The Zernike moment descriptor is the
most suitable for shape similar-based retrieval in terms of
computation complexity, compact representation, robustness,
and retrieval performance. Shape is a primary image feature
and is useful for image analysis, object identification and
image filtering applications [11], [13]. In image retrieval, it is
important for some applications in which shape representation
is invariant under translation, rotation, and scaling. Orthogonal
moments have additional properties of being more robust in
the presence of image noise.

Zernike moments have the following advantages:
- Rotation invariance: the magnitude of Zernike mo-

ments has rotational invariant property,
- Robustness: they are robust to noise and minor

variations in shape,
- Expressiveness: Since the basis is orthogonal, they

have minimum information redundancy,
- Effectiveness: an image can be better described by

a small set of its Zernike moments than any other
types of moments such as geometric moments.

- Multilevel representation: a relatively small set of
Zernike moments can characterize the global shape
of pattern. Lower order moments represent the global
shape of pattern and higher order moments represent
the detail.

Therefore, we choose Zernike moments as our shape de-
scriptor in recognition and/or retrieval systems.

Block diagram of computing Zernike moments is presented
in Fig. 11 [17].
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Fig. 10. The categorization of the moment invariants.

Fig. 11. Block diagram of computing Zernike moments.

Zernike polynomials are an orthogonal series of basis func-
tions normalized over a unit circle. These polynomials increase
in complexity with increasing polynomial order [14].
To calculate the Zernike moments, the image (or region of
interest) is first mapped to the unit disc using polar coordi-
nates, where the centre of the image is the origin of the unit
disc (Fig. 12). Those pixels falling outside the unit disc are
not used in the calculation. The coordinates are then described
by the length of the vector from the origin to the coordinate
point. The mapping from Cartesian to polar coordinates is:

x = r cos θ, y = r sin θ (25)

wherer =
√

x2 + y2, θ = tan−1( y
x
).

An important attribute of the geometric representations of
Zernike polynomials is that lower order polynomials approxi-
mate the global features of the shape/surface, while the higher
ordered polynomial terms capture local shape/surface features.
Zernike moments are a class of orthogonal moments and have
been shown effective in terms of image representation.

The Zernike polynomials are a set of complex,
orthogonal polynomials defined over the interior of

Fig. 12. The square to circular transformation.

a unit circle x2 + y2 = 1 [13], [21],

Vmn(r, θ) = Rmn(r) exp(jnθ) (26)

where r, θ) are defined over the unit disc,j =
√
−1 and

Rmn(r) is the orthogonal radial polynomial, defined as:

Rmn(r) =

m−|n|
2
∑

s=0

(−1)sF (m,n, s, r) (27)

where

F (m,n, s, r) =
(m − s)!

s!(m+|n|
2 − s)!(m−|n|

2 − s)!
rm−2s (28)

wheren is a non-negative integer,m is an integer such that
n − |m| is even and|m| ≤ n.

We haveRmn(r) = Rm,−n(r), and Rmn(r) = 0 if the
above conditions depictes and are not true.

So for a discrete image, iff(x, y) is the current pixel then:

Amn =
m + 1

π

∑

x

∑

y

f(x, y)[Vmn(x, y)]∗ (29)

wherex2 + y2 ≤ 1.
It is easy to verify that

V11(r, θ) = rejθ

V20(r, θ) = (2r2 − 1)

V22(r, θ) = r2ej2θ

V31(r, θ) = (3r3 − 2r)ej3θ

(30)

and in the Cartesian coordinates

V11(x, y) = x + jy

V20(x, y) = 2x2 + 2y2 − 1)

V22(x, y) = (x2 − y2) + j(2xy)

V31(x, y) = (3x3 + 3x2y − 2x) + j(3y3 + 3xy2 − 2y)

(31)
Zernike moments are rotationally invariant and orthogonal.

If A
′

nm is the moment of ordern and repetitionm, associated
with fr(x, y) obtained by rotating the original image by an
angleϕ then

fr(r, ϕ) = f(r, θ − ϕ) (32)

Ar
nm =

m + 1

π

∑

x

∑

y

fr(x, y)[Vmn(x, y)]∗ = Anme−jmϕ

(33)
If m = 0, Ar

nm = Anm, there is no phase difference
between them. Ifm 6= 0, we havearg(Ar

nm) = arg(Anm) +

mϕ that is ϕ =
arg(Ar

nm)−arg(Anm)
m

which means that if an
image has been rotated, we can compute the rotation degree
ϕ.
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If f(x
a
, y

a
) represent a scaled version of the image function

f(x, y), then the Zernike momentA00 of f(x, y) andA
′

nm of
f(x

a
, y

a
) are related by:

|A′

00| = a2|A00| where a =

√

|A′

00|
|A00|

(34)

Therefore|Anm| can be used as a rotation invariant feature
of the image function. SinceAn,−m = Anm, and therefore
|An,−m| = |Anm|, we will use only|Anm| for features. Since
|A00| and|A11| are the same for all of the normalized symbols,
they will not be used in the feature set. Therefore the extracted
features of the order n start from the second order moments
up to thenth order moments.

The first two true invariants areA00 and A11A1,−1 =
|A11|2, but these are trivial where they have the same value
for all images, these will not be counted.

There are two second order true Zernike moment invariants

A20 and A22A2,−2 = |A22|2 (35)

which are unchanged under any orthogonal transformations.
There are have four third order moments

A33, A31, A3,−1, A3,−3. The true invariants are
written as the following:

A33A3,−3 = |A33|2 and A31A3,−1 = |A31|2 (36)

Teague [16] suggested a new term as

A33(A3,−1)
3 = A33[(A31)

∗]3 (37)

which is an additional invariant. This technique of forming
the invariants is tedious and relies on trial and errors to
guarantee its function independence.

To characterize the shape we used a feature vector consisting
of the principal axis ratio, compactness, circular variance
descriptors and invariant Zernike moments. This vector is used
to index each shape in the database. The distance between two
feature vectors is determined by city block distance measure.

III. C LASSIFIERS

As the feature are extracted, a suitable classifier must be
chosen. A number of classifiers are used and each classifier
is found suitable to classify a particular kind of feature
vectors depending upon their characteristics. The classifiers
used commonly is Nearest Neighbor classifier. The nearest
neighbor classifier is used to compare the feature vector of the
prototype with image feature vectors stored in the database.
It is obtained by finding the distance between the prototype
image and the database.

IV. A PPLICATIONS

The CBIR technology has been used in several applications
such as fingerprint identification, biodiversity information sys-
tems, crime prevention, medicine, among others. Some of
these applications are presented in this section.

A. Medical applications

Queries based on image content descriptors can help in the
diagnostic process. Visual features can be used to find images
of interest and to retrieve relevant information for a clinical
case. One example is a content-based medical image retrieval
that supports mammographical image retrieval. The main aim
of the diagnostic method in this case is to find the best features
and get the high classification rate for microcalcification and
mass detection in mammograms [6], [7].

The microcalcifications are grouped into clusters based on
their proximity. A set of the features was initially calculated
for each cluster:

- Number of calcifications in a cluster
- Total calcification area / cluster area
- Average of calcification areas
- Standard deviation of calcification areas
- Average of calcification compactness
- Standard deviation of calcification compactness
- Average of calcification mean grey level
- Standard deviation of calcification mean grey level
- Average of calcification standard deviation of grey

level
- Standard deviation of calcification standard deviation

of grey level.

Mass detection in mammography is based on shape and
texture based features.

The features are listed below:

- Mass area. The mass area,A = |R|, whereR is the
set of pixels inside the region of mass, and|.| is set
cardinal.

- Mass perimeter length. The perimeter lengthP is the
total length of the mass edge. The mass perimeter
length was computed by finding the boundary of the
mass, then counting the number of pixels around the
boundary.

- Compactness. The compactnessC is a measure of
contour complexity versus enclosed area, defined as:
C = P 2

4πA
whereP andA are the mass perimeter and

area respectively. A mass with a rough contour will
have a higher compactness than a mass with smooth
boundary.

- Normalized radial length. The normalized radial
length is sum of the Euclidean distances from the
mass center to each of the boundary co-ordinates,
normalized by dividing by the maximum radial
length.

- Minimum and maximum axis. The minimum axis of
a mass is the smallest distance connecting one point
along the border to another point on the border going
through the center of the mass. The maximum axis of
the mass is the largest distance connecting one point
along the border to another point on the border going
through the center of the mass.

- Average boundary roughness.
- Mean and standard deviation of the normalized radial

length.
- Eccentricity. The eccentricity characterizes the
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lengthiness of aRegion Of Interest. An eccentricity
close to 1 denotes aROI like a circle, while values
close to zero mean more stretchedROIs.

- Roughness. The roughness index was calculated for
each boundary segment (equal length) as

R(j) =

L+j
∑

k=j

|Rk − Rk+1| (38)

for j = 1, 2, . . . , n
L

where R(j) is the roughness
index for thejth fixed length interval.

- Average mass boundary. The average mass boundary
calculated as averaging the roughness index over the
entire mass boundary

Rave

L

n

L
n
∑

j=1

R(j) (39)

wheren is the number of mass boundary points and
L is the number of segments.

B. Iris recognition

A typical iris recognition system often includes iris cap-
turing, preprocessing, feature extraction and feature matching.
In iris recognition algorithm, pre-processing and featureex-
traction are two key processes. Iris preprocessing, including
localization, segmentation, normalization and enhancement,
is a basic step in iris identification algorithm. Iris feature
extraction is the most important step in iris recognition, which
determines directly the value of iris characteristics in actual
application. Typical iris recognition system is illustrated in Fig.
13.

Fig. 13. Typical iris recognition stages

Robust representations for iris recognition must be invariant
to changes in the size, position and orientation of the patterns.
Irises from different people may be captured in different
sizes and, even for irises from the same eye, the size may
change due to illumination variations and other factors. In

order to compensate the varying size of the captured iris it
is common to translate the segmented iris region, represented
in the cartesian coordinate system, to a fixed length and
dimensionless polar coordinate system. The next stage is the
feature extraction [1], [2].

The remapping is done so that the transformed image is
rectangle with dimension512 × 32 (Fig. 14).

Fig. 14. Transformed region.

Most of iris recognition systems are based on Gabor func-
tions analysis in order to extract iris image features [3]. It
consists of convolution of image with complex Gabor filters
which is used to extract iris feature. As a product of this
operation, complex coefficients are computed. In order to
obtain iris signature, complex coefficients are evaluated and
coded.

The normalized iris images (Fig. 14) are divided into two
stripes, and each stripe intoK × L blocks. The size of each
block is k × l. Each block is filtered according to (16) with
orientation anglesθ = 0◦, 45◦, 90◦, 135◦ (Fig. 15).

Fig. 15. Original block iris image (a) and real part of (bcde) for θ =
0◦, 45◦, 90◦, 135◦

To encode the iris we used the real part of (bcde) and the
iris binary Codecan be stored as personal identify feature.

V. CONCLUSIONS

The main contributions of this work are the identification
of the problems existing in CBIR and Biometrics systems -
describing image content and image feature extraction. We
have described a possible approach to mapping image content
onto low-level features. This paper investigated the use ofa
number of different color, texture and shape features for image
retrieval in CBIR and Biometrics systems.
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