
 

 

  
Abstract—Signal transduction networks of biological 

systems are highly complicated. How to mathematically 
describe a signal transduction network by systematic 
approaches so as to further exploit appropriate control 
strategies is becoming attractive to engineers. In this 
paper, a mathematical model of signal transduction 
networks with a simplified structure is proposed and 
related analyses are performed. 
 

Keywords—biological system, S-system, sensitivity, signal 
transduction network 

I. INTRODUCTION 

HERE are plenty of publication dedicated in 
construction of the biochemical networks and gene 

networks, see, for example, [1-4]. Within theses networks, 
signal transduction networks of biological systems are 
characterized by their high complexity level, and the 
networks are composed of many biochemical reactions. 
The complexity of cellular signal transduction network is 
incomprehensible. Thus, an effective method to develop a 
mathematically equivalent model of the biochemical 
networks is highly desirable.  

The synergism and saturation system (S-system) in [1, 
5] has been a well-studied approach in modeling 
biochemical networks which characterizes the signal 
transduction networks. It was shown that the S-system 
representation in terms of ordinary differential equations 
(ODEs) is capable of capturing behaviors of the 
biochemical dynamics. Applying logarithm on the state 
variables further linearizes the state equations of the 
S-system at steady state. Based on the linearlized 
S-system, it is possible to analyze and predict the system 
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behavior without directly resorting to the original 
nonlinear model. A linearized S-system was presented 
and the robust stability analysis was proposed in [6].  

Instead of the S-system description, the Michaelis- 
Menten equation [7, 8] was widely adopted in modeling 
of biological systems. With the concentration change 
equations expressed as ODEs, the concentration change 
of metabolites in each pathway of biochemical networks 
was investigated. However, it may cost significant 
computation time to analyze all cellular signal reactions 
and interactions which are not all important and crucial to 
the signal transduction networks. Removing the 
redundant parts is thus an issue worthy of further 
concerns. 

For simplifying the construction of the mathematical 
model, we propose a method called as the cascaded 
analysis model. The cascaded analysis model is used to 
construct a mathematical model of the S-systems form. 
On the basis of the model, we do not need to solve the 
complete model, which can be extremely complicated 
structurally, in a single iteration. Rather, the problem can 
be broken down into smaller partitions to lessen 
computational burden. 

The purpose of this paper is to model and analyze the 
signal transduction networks in biological systems and 
transform the mathematical model described by the 
S-system and the Michaelis-Menten rate law to a reduced 
system model. With the simplified model, there will be 
less computational efforts while performing related 
analysis and even leading to simpler control designs. A 
example for is presented for demonstration.  

II. ANALYSIS METHODS  

A signal transduction network includes many scaffolds 
which can be bound with molecules. The entire pathways 
which would influence reactions are too large to be 
conducted, and it requires an effective method for 
constructing a mathematical model. We demonstrate a 
new method and construct the mathematical model in the 
follows.  

A. System Modeling 
First, consider the scaffold protein with each binding 
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domain that can be bound with one molecule. We define 
all states and pathways of the scaffold protein as follows 
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where S  means states, P means pathways, n  means 
binding domains, and 
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Second, there are many pathways in the system. Thus, 
to simplify the system from the complete model to a 
smaller one is necessary. Consider here the case where the 
scaffold protein can bind only with one molecule at a time. 
Under this situation, one can neglect the redundant 
pathways. To simplify the exceedingly complicated 
structure, the new pathways are written as follows 
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For instance, we consider a scaffold which can be bound 
with three molecules. There are 8 states and 19 pathways 
in the original signal transduction network. The original 
model is shown in Fig. 1. According to (4), we can reduce 
the number of the reactive pathways (2) in the original 
system to 12 pathways. The reduced model is shown in 
Fig. 2. 
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Molecule 1 Molecule 2 Molecule 3  
Fig. 1 Original mathematical model of the signal 

transduction pathway (dashed lines denote all possible 
connections) 

 
Fig. 2 Simplified mathematical model of the signal 

transduction pathway 

Third, define states and molecules as state variable x  
and implement the pathways to reactions. By the 
Michaelis-Menten rate law, each reaction can be 
represented as an ODE. We implement the S-system by 
using ODEs and describing the temporary changes in the 
biochemical system as follows [9] 
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where 1 2 1( , , ..., , , ..., )i i n n n mV V x x x x x+ +
+ +=  and 

1 2 1( , , ..., , , ..., )i i n n n mV V x x x x x− −
+ +=  are the general 

functions of dependent variables 1 2, ,..., nx x x  and 
independent variables 1 2, ,...,n n n mx x x+ + + ; iα  and iβ  are 
rate constants; ijg  and ijh  are kinetic orders. 

Further consider the steady state of the system (5). 
Since all derivatives should be zero at the steady state, 
therefore 
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Given all constants and variable rates in (6) are nonzero, 
one can take logarithm on it and obtain: 
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Defining lnj jy x=  gives 
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Let ln i
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β
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 and ij ij ija g h= − . A general S-system 

with n  dependent variables and m  independent 
variables can then be characterized by a set of n  linear 
equations:  

11 1 12 2 1 1, 1 1 1, 1

21 1 22 2 2 2, 1 1 2, 2

1 1 2 2 , 1 1 ,

... ... ,
... ... ,

... ...

n n n n n m n m

n n n n n m n m

n n nn n n n n n n m n m n

a y a y a y a y a y b
a y a y a y a y a y b

a y a y a y a y a y b

+ + + +

+ + + +

+ + + +

+ + + + + + =

+ + + + + + =

+ + + + + + =

 (10) 

Or equivalently,  
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where the subscripts D  and I means, respectively, the 
dependent and independent variables. It is seen from (11)
that all dependent variables have been separated from the 
independent variables.  

   From (11), the solution of Dy  is obtained as 

( )1
D D I Iy A b A y−= −  (12) 

provided that DA  is invertible. By using the 
pre-described procedure, the originally complicated 
system could be further transformed into an analyzable 
form.  

B.  Cascaded Analysis Model  

To simplify the mathematical analysis, we propose here 
a cascaded analysis model. This is used to construct a 
simplified mathematical model of an S-system. With it, 
one does not need to solve the complete model, rather, the 
problem is broken down into smaller partitions to lessen 
computational burden.  

A molecule bind with a scaffold protein is the basic 
reactions in the mathematical model. The basic reaction 
can be described as a signal transduction pathway as 
shown in Fig. 3. By the Michaelis-Menten rate law, the 
reactions can be presented as ODEs and built as an 
S-system.  

After estimating all parameters of the S-system, one 
can compute the output concentration 1x  at the steady 
state. On the basis of the output concentration, we cascade 
the output concentration with a new molecule to generate 
a new signal transduction pathway as shown in Fig. 4. 
With the same reason, we can cascade molecules to 
construct a complete mathematical model as shown in Fig. 
5. Applying the cascaded analysis model, one can 
construct the mathematical model step by step that is 
more easily than construct the model at a time.  
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Fig. 3 Basic bimolecular reaction 
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Fig. 4 Two-layer cascaded analysis model. The block 
constructed by 2 3 4, ,x x x  and 5x  is replaced by a new 

independent variable 9x  
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Fig. 5 Complete cascaded analysis model 
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The proposed method and analyses were demonstrated 
by a signal transduction network with one scaffold 
protein and two binding domains, see Fig. 6.  
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Fig. 6 Reduced model with two binding domains 
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Fig. 7 Signal transduction network with one scaffold 
protein and two binding domains 
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Fig. 8 Adding independent variables to modify the signal 

transduction network 
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Fig. 9 Example for the cascaded analysis model 

We compute the original number of states and 
pathways of the signal transduction network model. 
According to (1) and (2), the original number of states and 
pathways are 4 and 5. Neglecting the redundant pathways 
described by (4) simplifies the complete model. The 
number of pathways of the new model becomes 4. 
Defining states ( S ) and molecules as state variables ix  
and implementing the pathways to reactions, one can then 
modify the reactions and construct the new signal 
transduction pathways as shown in Fig. 7.  

On the basis of the signal transduction pathways in Fig. 
7, we introduce three independent variables ( 7 8 9, ,x x x ) 
to construct the analyzable model (See Fig. 8). Applying 
the cascaded analysis model and considering the top part 
in Fig. 8, we separate the pathways into two parts and 
define a new variable iz  to substitute ix  as shown in Fig. 
9.  

Consider part one in Fig. 9, the system includes three 
dependent variables ( 1 2 3, ,z z z ) and two independent 

variables ( 4 5,z z ), and the fluxes contain variables 

( ,V V+ − ). The S-system is built as follows 
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Consider the system at the steady state and take logarithm 

on both sides: 
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separate the dependent and independent variables, and 
rearrange (14) as follows 
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Similarly, one can construct the S-system model for part 

two in Fig. 9: 
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One can proceed to perform steady state analysis for the 
subsequent layer in the similar way.  

Using the cascaded analysis model, the original 
complete model can be replaced by a simplified one. This 
is useful for the purpose of numerical analysis of the large 
biochemical systems. 

C. Parameter Thresholds 

For S-systems, the local stability analysis can be 
accomplished with simple linear algebra techniques. One 
can linearize the nonlinear biochemical system around the 
steady status to yield a linear one. Then, proceeding to 
analyze the linear biochemical system would provide a 
useful insight into the nonlinear system.  

Consider the biochemical systems, which have been 
modeled as an S-system at the steady state. By using the 
Gershgorin theory, the eigenvalues of the S-system at 
steady state satisfy the following inequalities:  
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where λ  denotes the eigenvalue and ija denotes the 

element of the system matrix. The inequalities above 
characterize n Gershgorin discs which can be used to 
estimate distribution of all eigenvalues. 

For example, consider an S-system model of three 
dependent variables as follows  
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The steady-state system matrix SA  can be described as 
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Applying the Gershgorin theory, we can obtain three 
Gershgorin discs shown as in Fig. 10. The discs one and 
two are two cycles with the center at  -0.5 and the radius  
0.5. The disc three has the center at -0.5 and the radius 1.  

 
Fig. 10 Gershgorin discs 

It is also interested in determining the parameter 
threshold of the biochemical system under which the 
system will exhibit stability. To this aim, the F-factors of 
S-systems are introduced here, which are defined as the 
relative fluxes at steady state and can be computed from 
the following equation:  
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where iSx  and jSx  denote, respectively, the steady states 

of ix  and jx . By applying the F-factors to the system 

matrix, the characteristic polynomial ( )λΔ  can be 
determined as  
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It is straightforward to determine the threshold of 
parameter values, within which the system would be 
stable, by applying the Routh-Hurwitz criterion. 
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D. Sensitivity Analysis 

When the system remains close to the steady state, 
sensitivity analysis provides results that relate 
steady-state concentrations and fluxes. It helps one to 
predict how the system performance is influenced by 
changes in related factors of concerns. It can also be used 
as quantitative measures that show how fast the responses 
of any system components change with parameter 
variations. In S-systems, all rate laws for individual steps 
of the system that tend to increase/decrease a given 
metabolite are aggregated into a net or aggregate rate law 
of synthesis/degradation [10].  

Logarithmic gain 

Consider the logarithmic gain of the steady-state of a 
metabolite with respect to a change in an independent 
variable. Our objective now is to predict how strongly 
changes in independent variables affect the steady state of 
the system without the need of solving the differential 
equations.  

Special interest is in the relative change in the 
metabolite ix  caused by the relative change in jx . We 
characterize the system response by describing how 

lni iy x=  responses to changes in lnj jy x= . Define 

the logarithmic gain; the change in iy  per unit change in 

jy  is given as the derivative of iy  with respect to jy : 
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for small ixΔ . For small changes in the independent 
variables, the logarithmic gain predicts correspondingly 
the relative change in the dependent variables.  

Sensitivity of rate constants 

The analysis of the sensitivities ( ),i jS x α  and 

( ),i jS x β  begin with the steady-state solution of the 

biochemical system as in the case of logarithmic gains 
where [9] 
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with jα  and jβ  being rate constants.  

If one would like to know the change of the steady-state 
concentration of ix  with respect to the change of jα  ( jβ ) 

then  
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Sensitivity of kinetic orders 

Comparing to the rate constant sensitivity, sensitivity 
of the kinetic orders can be defined as [9] 
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where jkg  and jkh  are kinetic orders. 

Furthermore, one can define the sensitivity of kinetic 
orders as relative changes in iy  rather than ix : 
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The advantage of the definitions is that they can be 
translated as sensitivity of weighted kinetic orders for the 
linear system at the steady state [11].  

Sensitivity of fluxes 

The flux can be defined at the steady state as [9] 
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Consider the sensitivity of flux with respect to the 
change in the parameter. As the logarithmic gain 
sensitivity, the rate constant sensitivity, the kinetic order 
sensitivity and the flux sensitivity are defined as 
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Consider (31), the equation shows that jα  has direct 

effect with respect to the flux only if i j= . When i j≠ , 
the equation shows that jα  has indirect effect with 

respect to the flux. The flux sensitivity is 

( )
( )

( )
1

1

1 , ,   if    ,
,

, ,   if   

n m

ik k j
k

i j n m

ik k j
k

g S x i j
S V

g S x i j

α
α

α

+

=

+

=

⎧ + =⎪⎪= ⎨
⎪ ≠
⎪⎩

∑

∑
 (37) 

Consider (32), the equation shows that jβ  has direct 

effect with respect to the flux only if i j= . When i j≠ , 
the equation shows that jβ  has indirect effect with 

respect to the flux. The flux sensitivity is: 
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Fig. 11 Complete signal transduction network 
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Fig. 12 Dynamic response of (39) 

III. DEMONSTRATIVE RESULTS 
A. Cascaded Analysis Model 
Consider the complete S-system as follows and the 

signal transduction pathways shown as in Fig. 11.  
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 (39) 

The simulation result of (39) is shown in Fig. 12. The 
final output concentration of the S-systems is 

5 ( ) 0.707z t∞ = . 

Next, consider the basic bimolecular reaction 
describing the signal transduction pathway shown in Fig. 
3. By the Michaelis-Menten rate law, the reaction is 
presented as an S-system as 
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 (40) 
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On the basis of the output concentration and (16), we can 
determine the parameters 7α  and 7β  to construct the 
next stage as follows 

0.5 0.5 1
6 7 8 6

0.5 0.6 0.4
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9

10

2 2 ,

1.68 1.68 ,

2 2 ,
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x x x x

x x x x

x x x x
x
x

= −

= −

= −
=
=

 (41) 

Simulation of (41) is shown in Fig. 13 and the final output 
concentration is 6 ( ) 0.769x t∞ = .   
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Fig. 13 Response of the second layer in the cascaded 

analysis model 

Results of comparison of Figs. 12 and 13 are listed in 
Table 1. Compared the cascade analysis model (41) with 
the complete model (39), we see that the change of output 
concentration and the system eigenvalues didn’t change 
significantly.  

Table 1 Comparison of cascaded analysis model and 
complete S-system 

 Final output 

concentration 

Eigenvalues Convergent 

time (s) 

First layer 0.707 -2, -2, -0.4 4.2 

Second layer 0.769 -2, -2.088, 

-0.322 

4.8 

Complete 

S-system 

0.707 -2, -2, -2, 

-0.4, -0.4 

7.5 

 

B. Sensitivity Analysis 
Logarithmic gain 

We know that changes in one of the independent 
variables can cause the system converging to different 
steady states. The logarithmic gains can correctly predict 
changes in steady-state values for changes in independent 

variables. The advantage of logarithmic gains sensitivity 
is to predict how changes in independent variables affect 
the steady state of the system. We use the PLAS to predict 
the logarithmic gains sensitivity of the simplified system 
model and the resulting sensitivities are listed in Table 2. 
The gains reflect the approximate percentage change in 
dependent variables 6 7 8,  and x x x  caused by 1% changes 
in independent variables 9 10 and x x . 
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Fig. 14 Logarithmic gain of the simplified model 

Sensitivity of rate constants 

 Rate constants sensitivity quantifies how a system 
responds to changes in rate constants. These changes only 
affect the dependent variables. It can be used to predict 
how a relative change in a rate constant affects the 
steady-state concentration of the metabolite. The results 
are listed in Table 2. 
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Fig. 15 Sensitivity of rate constants of the simplified 

model 

Sensitivity of kinetic orders  

Similar to the rate constant sensitivity, the kinetic order 
sensitivity is used to predict how a relative change in a 
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kinetic order affects the steady-state concentration of the 
metabolite. The results are listed in Table 2.  
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Fig. 16 Sensitivity of kinetic orders of the simplified 

model 

Sensitivity of fluxes 

Flux sensitivity can be used to predict how a relative 
change in a parameter value affects the flux of a 
metabolite. The results are summarized in Table 3. The 
sensitivities of ( ) ( ) ( )6 7 8,  and V x V x V x  reflect the 
approximate percentage changes in fluxes caused by 1% 
changes in the parameters 9x , 10x , iα , iβ , ijg  and ijh . 
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Fig. 17 Sensitivity of fluxes of the simplified model 

 
Table 2 Parameter sensitivity  

 6x  7x  8x  

9x  0.25 1.5 -1

10x  0.25 -1 1.5

6α  1 0 0

6β  -1 0 0

7α  0.5 3 -2

7β  -0.5 -3 2

8α  0.5 -2 3

8β  -0.5 2 -3

67g  0.08014 0 0

68g  -0.34224 0 0

66h  0.2621 0 0

79g  -0.08881 -0.53287 0.35525

77h  -0.04808 -0.2885 0.19233

78h  0.13689 0.82137 -0.54758

8,10g  -0.17329 0.69315 -1.03972

87h  -0.03206 0.12822 -0.19233

88h  0.20534 -0.82137 1.23205
 

IV. CONCLUSION 

This paper presents a method for constructing the 
dynamic model of signal transduction networks. A 
cascaded analysis method is proposed for constructing 
simplified mathematical models of signal transduction 
networks and related analyses are performed. A 
numerical example of the biochemical system of one 
scaffold protein with two binding domains is presented 
for demonstration. On the basis of the ODEs obtained, it 
is expected that the traditional control theory can be 
applied to prompt biochemical reactions of the signal 
transduction networks on the theoretical basis. 

Table 3 Flux Sensitivity 
 6( )V x  7( )V x  8( )V x  

9x  0.25 0.5 0

10x  0.25 0 0.5

6α  1 0 0

6β  0 0 0

7α  0.5 1 0

7β  -0.5 0 0

8α  0.5 0 1

8β  -0.5 0 0

67g  0.08014 0 0

68g  -0.34224 0 0

66h  0 0 0

79g  -0.08881 -0.17762 0
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77h  -0.04808 0 0

78h  0.13689 0 0

8,10g  -0.17329 0 -0.34657

87h  -0.03206 0 0

88h  0.20534 0 0
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