
 

 

  
Abstract— In this paper we present computational model based 

on first principles with the purpose to study the behavior of 
biological neural networks. A network is constructed using as 
elementary building blocks DLA clusters, a structure well known in 
solid state physics, giving thus the network spatial structure, and in 
this way differentiating the model from most previous studies in this 
field. The blocks are paced randomly on 2D-space and synapses are 
formed where neighboring blocks overlap. The behavior of the 
network is studied, focusing not only on signal transmission and 
analysis, but also on the results of synapse loss, common in 
biological systems under certain diseases, such as Alzheimer’s and 
Parkinson’s.  The network’s response follows the same basic 
characteristics as real biological systems under similar 
circumstances, and the importance of the spatial structure of the 
network in this behavior is examined.. 
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I. INTRODUCTION 
 HE elementary unit of the central nervous system is the 
neuron. Every neuron communicates with thousands of 

other neurons through synapses. In the presynaptic part of the 
synapse, the electrical signal activates a chain of complex 
chemical processing which ends with the release (exocytosis) 
of the neurotransmitter in the synaptic cleft. The molecules of 
the neurotransmitter are bound to the receptors of the 
postsynaptic part of the synapse causing an exchange of ions 
through the membrane of the second neuron changing the 
electric potential of it. So, the new voltage, called postsynaptic 
potential propagates through the second neuron. Neurons are 
not connected to each other in a random pattern. They are 
aggregated in formations, called nuclei, or they are located in 
layers, as in the cerebral cortex. Collections of neurons 
wherever they are located always have a specific function.  

Neurons and synapses are age depended. It is well known 
that after the age of 20 there is a gradual decrease of the 
number of synapses and neurons in many areas of the brain 
[1,2]. This loss does not affect the person’s performance 
mentally or otherwise at levels that can be considered as 
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manifestations of a disease. Persons over 60 or 70 can 
accomplish complex mental tasks although they have a 
gradual loss of synapses that started years before. This is the 
normal aging of the brain. The difference among the normal 
aging and the disease is the rate of the synapse or neuron loss. 
There are experimental data [3,4] which show that in the case 
of the disease the rate of synapse loss is statistically 
significant compared with normal aging. It seems that there is 
a critical point, beyond which there are clinical manifestations 
of the disease.  

This evidence motivates us to investigate if this is a 
property that can be simulated in similar complex systems. 
Such a study is important both from the theoretical point 
regarding the function of neural networks, but additionally it 
will help to answer the question of what part (percentage) of 
the brain neural networks can be incapacitated before total 
loss of functions will occur? How does this loss come about? 
Apparently, if we know this answer we will be able to predict 
the details of how and when does the human brain degrade, 
differentiate the degradation in normal age from that in a 
disease, and will possibly help in the search for a treatment. 

There are many citations in the literature about such 
relationships, for different parts of the brain, with a variety of 
different answers. However, they are all either qualitative or 
the data have a very large dispersion, and furthermore, there is 
no theoretical basis to explain, or establish, such a 
relationship. The present paper attempts to shed some light in 
this direction by utilizing a complex computational model 
[5,6]. Brain function is quantitatively described by network 
activity, a (see below), and we investigate this activity as a 
function of the neural loss and other net parameters. 

Since the connectivity pattern between the neurons is very 
complicated it is reasonable to assume that the relationship 
between synapse loss and network activity is not simply 
linear. Two neurons can be connected at several different 
points via different synapses. Thus, removing a single synapse 
does not necessarily preclude any connectivity between these 
two neurons. This behavior cannot be simulated when neurons 
are described as points. It is, thus, very important to treat the 
individual neurons not as simple binary entities, but as units 
with internal structure, and this is the approach taken in the 
present study. Each neuron (cell) is made of a very large 
number of parts, as a real one is. We believe that not 
considering the neuron as one single unit, as practically all 
theoretical models up to now have done, is the only possible 
way to address our basic question. 
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II. THE MODEL  
We introduce a computer simulation model of a neural 

network that is based on a collection of dendritic structures 
that are called diffusion limited aggregates (DLA). These 
entities originated in solid state physics [7], but nevertheless, 
resemble very much the picture of the backbone of an actual 
brain neuron, and this is why we adopt them. Fig. 1 contains 
one DLA simulated structure, and a camera lucida [8] drawing 
of a Purkinje neuron. We can see that both units posses a 
dendritic nature. Thus, each neuron is made of several 
thousands of building blocks placed according to the DLA 
model on a lattice. At this stage no differentiation is made for 
the soma, axon, etc. but all building blocks are treated equally. 
With the exception of the work of Caserta et al [9] there have 
been no other references in the literature of a similar work, as 
far as the authors are aware. The network is constructed by 
placing a number of these units randomly in space at high 
densities. Such a network made of only 8 units is shown in 
Fig. 2. Because the neurons are closely packed there is a large 
overlap between them, especially on the branched dendrites. 
These overlaps will be treated as the synapses in our model. In 
this model a synapse can be declared active or inactive at will, 
and this is one of the external parameters that we can control. 
In each synapse connecting neurons A and B the signal can 
propagate only in one direction mean only from A to B or 
from B to A, and this direction is chosen at random when the 
network is formed. Also, the value of the signal must be 
greater than the synapse threshold, θ. Thus, each synapse is 
assigned a θ value. The signal transfer from one unit to the 
next is not instantaneous, but the transmission is delayed for a 
certain time, called the synaptic delay, SD, since signal 
transfer in the synapse is about 1000 times slower than the 
transfer inside a neuron. After firing the synapse goes into a 
refractory period, RP, during which the synapse cannot be 
active any more, but must necessarily remain passive. All 
synapses are characterized as either excitatory or inhibitory. 
The fraction of each (out of the total number of synapses) is fe 
and fi, respectively. The identity of each synapse is determined 
at random with a probability according to that fraction. 
Generally, the excitatory (inhibitory) characterization 
describes the property that brings closer (further away) the 
synapse signal value to the synapse threshold.  

We will first study signal transport throughout the network. 

This process is dynamic in nature, and thus we define the 
smallest increment of time to be the actual time that it takes 
for the signal to transfer from one lattice point to its nearest 
neighbor inside the same neuron. Originally, at time t=0 some 
initial signal is randomly given to a small subset of the neural 
network. This signal is allowed to travel throughout the 
system, i.e. both inside the neurons and also, when reaching a 
synapse, to transfer to adjacent neurons. This is done by 
“transferring” the signal to all of its nearest neighbor sites, and 
incrementing time by one time unit. Next, this step is repeated 
and time advances. 

III. RESULTS 
The behavior of the neural network described here is 

monitored via the network activity that it exhibits, as a 
function of time. The activity a is defined as the fraction (out 
of the total) of the active units at a given time. Thus 
a=(neurons that are active/total number of neurons in the 
system). In Fig. 3 we show the response of the neural network 
to a change in the values of the parameters discussed. 
Specifically, we have a network with refractory period 
RP=300, synaptic delay SD=800, and a fraction fe=0.8 of 
excitatory synapses. We vary fs, the fraction of synapses used, 
from fs=0.2 to fs=1.0. We observe that the activity exhibits an 
oscillatory behavior. It starts from a zero value, increases 
during the first 10000 steps, and then reaches an “equilibrium” 
value. This value is higher for the larger fraction of active 
synapses, as expected, since there are more pathways by 
which the signal can spread throughout the network. Thus, it 
ranges from about a=0.2 (for fs=0.2) to a=0.4 (for fs =1.0). We 
notice that the relation is far from linear, but actually 
sublinear, implying that in a system such as the present one, 
due to the large number of units and interconnections, one 
needs only a small fraction of active synapses for the signal 
propagation. Conversely, if a large number of synapses is 
destroyed over time, this does not lead to catastrophic 
consequences for the operation of the neural net. 

(a) (b)  
Fig. 1 Resemblance between a DLA cluster (a) and a camera lucida 

drawing of a Purkinje neuron (b). 

 
Fig. 2 A collection of eight DLA clusters built on a 350x350 

lattice. The mean cluster size is 2200 sites. 
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We see that the activity time series is not fully periodic. 
However, there is obviously some “approximate” periodicity 
as the distance between the peaks is almost constant. This 
means that some new information may be revealed in it, and 
this is presented in the following paragraph. 

A. Signal Analysis 
In order to quantitatively interpret the periodicity of the 

activity signals presented above we performed an analysis of 
several of these signals, according to the method of 
Grassberger and Procaccia [10]. In this method the signal is 
treated as a time series for which a possible characteristic 
fractal dimension can be derived.  

In Fig. 4 we plot the correlation function C(l) vs. l in log-
log form for several different numbers of characteristic 
parameters of our system (m). We see that for small m the 
slopes of the ensuing curves increase, but after m=5 
(approximately) the slopes become constant. We performed 
the same analysis for some more such signals, resulting is 
similar curves, and similar fractal dimensions. The implication 
of this analysis is that for our system the minimum embedding 
dimension is approximately in the range of m=5-6, signifying 
that this is the number of parameters that is necessary to 
describe the system. This number most probably maps the 
total number of parameters used in the simulation, and thus it 
includes the refractory period, the synaptic delay, the 
percentage of synapses used, and the percentage of excitatory 
synapses (total of four parameters). 

B. Network behavior with the loss of synapses 
 In this paragraph we are going to discuss in detail what 

happens when the synapses in the network stop functioning. 
We will do this by changing the value of the parameter fs, the 
fraction of synapses used. The results are given in Figures 5-7. 
In all three figures we plot the network activity vs. fs, but 
varying different parameters in each case. In Fig. 5 we vary 
the refractory period, in Fig. 6 we vary the synaptic delay, 
while in Fig. 7 we vary the fraction of excitatory synapses. 

In all figures the behavior is the same. We see that there is a 
sharp drop in the activity around the value fs=0.2-0.3, which 
must be a critical value or critical threshold for neural 
networks. Above and below this critical value the increase is 
almost linear, while there is a crossover between the two 
regions at the 0.2 or 0.3 value. This result implies that a neural 
network can sustain destruction of its synapses up to 70% or 
80% maximum, and still operate normally. After this point 
there is a catastrophic degradation, leading to zero activity. 

In Figure 8 we employ neurons of size 50 and 190 units, 

 

 
Fig. 3 Normalized (neuron) activity vs. time (in Monte Carlo 

steps – MCS). RP=300, SD=800, fe=0.80. The four 
diagrams depict the percentage of the synapses that is 
used, f s , which is (bottom to top): fs=1.0, 0.75, 0.50, 0.20. 
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Fig. 4 The correlation coefficients C(l) vs l for the signal of Fig. 

3, for different number of system parameters (m). 
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Fig. 5 System activity a vs. the fraction of the synapses used, 

fs, for various values for the refractory period RP=300, 
700, 1200. SD=800, fe=0.8. Mean neuron size 2200, 
lattice 800x800. 
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which are 10 and 40 times smaller than the size (2200 units) 
used in the previous figures. We immediately observe that we 
do not have the catastrophic breakdown at the critical value, 
as we did earlier, but instead we have a rather smooth 
behavior. Thus, this is clear evidence that the internal neuron 
structure plays a dominant role in the appearance of a 
breakdown of the entire network, as it has been hypothesized 
before. Systems that use neurons as single point elements 
cannot exhibit this behavior. 

The concept of disease in the CNS is unique because during 
the process of cell destruction the CNS reacts with a 
continuous remodeling of the dendritic structure of the 
remaining neurons in order to maintain its functionality 
(neuronal plasticity). Obviously, there is a critical point, 
which differentiates the healthy state from that of disease. 
This critical point is a function of many factors, where the 
most important is the number of the remaining functional cells 
and the number of synapses and, of course, the overall 
metabolic capacity of the neurons for the synthesis of the 

neurotransmitters. Other factors, such as the functionality of 
the blood supply system (arteriols and capillaries), etc. can be 
mentioned, but these almost always manifest themselves as 
decrease of cell number. 

A disease that has been extensively studied in the last 
decades is Alzheimer’s disease, which is well known that 
results in a tremendous loss of neurons. Microscopically this 
neuronal depletion is observed in the cerebral cortex, in the 
nucleus basalis of Meynert and Locus Coeruleus [11]. It is 
found that the same loss occurs in the substantia nigra of 
patients with Alzheimer disease, where the number of neurons 
was reduced in the range 97-78% of the control values from 
the medial to the lateral substantia nigra [12]. 

A typical example of neuronal depletion and the 
manifestation of a disease is the substantia nigra and the 
Parkinson disease [13]. It has been found that there is a loss of 
91% in the lateral ventral tier of the substantia nigra and 71% 
and 56% in the medial ventral tier and dorsal tier, respectively 
[14]. The same authors suggest that the onset of symptoms 
starts at around 68% of cells in the lateral ventral tier and 48% 
in the caudal nigra as a whole [14]. 

Other authors have reported a 76% decrease of pigmented 
neurons in the entire substantia nigra in respect to control 
values [15]. The same is true using different methods of 
investigation. A correlation between single section and 
dissector counts for estimating the pigmented neurons in the 
pars compacta of the substantia nigra showed 75% and 55% 
decrease, respectively [16]. 

These are only a few of several dozen studies of similar 
nature that we are aware of. They all point to the same 
conclusion: patients with diseases have well above 50% of the 
constituent neurons destroyed, a conclusion in good 
agreement with our theoretical model. They are all 
experimental, over a wide time period, referring to several 
different brain sections, a wide variety of patients, all pointing 
to the same conclusion, as in the present study. 
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Fig. 6 System activity a vs. the fraction of the synapses used, fs, 

for various values for the synaptic delay. SD=200, 800, 
1500. RP=200, fe=0.8. 
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Fig. 7 System activity a vs. the fraction of the synapses used, 
fs, for various values of the excitatory synapses ratio, 
fe=0.8, 0.4, 0.2. SD=800, RP=300. 
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Fig. 8 Plot of network activity (a) vs. the percentage of 

synapses used (fs). (a) with squares: Mean neuron size 
190, Lattice 300x300, Distance between neurons 13 
lattice sites, fe=0.8, RP=100, SD=100. (b) with triangles: 
Mean neuron size 50, Lattice 100x100, Distance between 
neurons 5 lattice sites, fe=0.8, RP=5, SD=5. 
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IV. CONCLUSIONS 
Building a model to simulate the behavior of biological 

neural networks is a task extremely difficult if at all possible 
at the present time. So, one has to choose carefully the subset 
of parameters and functions that will go in the model, and of 
course should be very careful in the interpretation of the 
results of the model. Following this concept we have 
attempted to build a very basic model incorporating a set of 
functions and parameters for which it is known from 
physiology that they are very important in the dynamics of 
neural networks in living organisms. These characteristics 
include the presence of excitatory and inhibitory synapses, the 
propagation time in the synapse, the refractory period, etc. 
The main novelty of our model, is that the neuron is not 
treated as the smallest unit of the network, a mathematical 
point with no physical substance, but is built of thousand 
smaller blocks, giving it a ramified dendritic structure, which, 
as we have showed in the previous paragraph plays an 
important role in the signal transfer. Thus, we describe the 
geometrical structure of the neuron and subsequently the 
geometrical distribution of the synapses. The main missing 
feature of the model at this stage is that it maintains its 
structure unchanged during the simulation time, whereas we 
know well that there is a continuous remodeling of the 
dendritic neural structure. This feature, among others is a 
topic of a future study. 

In the previous paragraphs we have shown that the activity 
of a net made of DLA structures produces a very complex, 
“chaotic”-looking signal, which, upon elaborate analysis is 
found to contain information about the magnitude of the 
system parameters. This signal is the response of the system to 
the random impulse presented. A detailed approach shows that 
it is far from random or white noise, but it quantitatively gives 
a measure of the ability of the neural net to sustain its activity. 
Every set of initial conditions that is used, leads to a 
characteristic fractal dimension, which is always monotonic, 
and within a given range. The numerical value of the fractal 
dimension gives information about the signal magnitude and 
other characteristics, making it a useful quantity to monitor. 

The other important result is the behavior that the network 
exhibits with the loss of synapse. The loss of functionality is 
not linear as synapses are removed, but there is instead a 
catastrophic decrease of the functions, after a critical point of 
around 20-30% of active synapses (80-70% loss). The model 
agrees quantitatively with several experimental observations 
in the literature, and is also in agreement with studies done on 
various types of networks, including the Internet, the WWW 
etc., examining their vulnerability to attacks [17, 18]. It gives 
a first handle at distinguishing the degradation of synapses 
due to age vs. due to one of the well known diseases, such as 
Parkinson’s or Alzheimer’s. In the aging process one expects 
a linear loss of neurons/synapses. This loss occurs gradually, 
it affects very little the CNS, which continues to function 
satisfactorily until late in one’s life. Therefore, if no disease 
has appeared the critical damage will occur, but it will occur 

quite late. On the other hand, if a disease has appeared, then, 
relatively early in one’s life the symptoms of the catastrophic 
damage will become evident. 
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