
 
 

 

     Abstract— The work presented in this paper concerns with 
synthesis of the two-dimensional Infinite Impulse Response (IIR) 

filters based on model order reduction. The synthesis is performed 

with two methods, the Prony's method (Prony modified) and Iterative 

method, in the spatial domain, and with the method of Semi-Definite 

iterative Programming (SDP), in the frequency domain. The order 

reduction of the filter is based on the Quasi-Gramians method.  

 

    Keywords— Stability, Recursively computable, Linear phase, 

State space, Balanced realization, Model reduction. 

I. INTRODUCTION 

    The fields of two-dimensional digital signal processing and 

digital image processing have maintained tremendous vitality 

over the past four decades and there is every indication that 

this trend will continue. Advances in hardware technology 

provide the capability in signal processing chips and 

microprocessors which were previously associated with 

mainframe computers. These advances allow sophisticated 

signal processing and image processing algorithms to be 

implemented in real time at a substantially reduced cost. New 

applications continue to be found and existing applications 

continue to expand in such diverse areas as communications, 

consumer electronics, medicine, defense, robotics, and 

geophysics.  

At a conceptual level, there is a great deal of similarity 

between one-dimensional signal processing and two-

dimensional signal processing. In one-dimensional signal 

processing, the concepts discussed are filtering, Fourier 

transform, discrete Fourier transform, fast Fourier transform 

algorithms, and so on. In two-dimensional signal processing, 

we again are concerned with the same concepts. 

At a more detailed level, however, considerable differences 

exist between one-dimensional and two-dimensional signal 

processing. For example, one major difference is the amount 

of data involved in typical applications ( in speech processing, 

we have 10.000 data points to process in a second. However, 

in video processing, we would have 7.5 million data points to 

process per second). Another example is the absence of the 

fundamental theorem of algebra for two-dimensional 

polynomials. For one-dimensional polynomials can be factored 

as a product of lower-order polynomials. An important 

structure for realizing a one-dimensional digital filter is the 

cascade structure. In this case, the z-transform of the digital 

filter's impulse response is factored as a product of lower-order 

polynomials and the realizations of these lower-order factors 

are cascaded. 

The z-transform of a two-dimensional digital filter's impulse 

response cannot, in general, be factored as a product of lower-

order polynomials and the cascade structure therefore is not a 

general structure for a two-dimensional digital filter 

realization. Another consequence of the nonfactorability of a 

two-dimensional polynomial is the difficulty associated with 

issues related to system stability. In a one-dimensional system, 

the pole locations can be determined easily, and an unstable 

system can be stabilized without affecting the magnitude 

response by simple manipulation of pole locations. In a two-

dimensional system, because poles are surfaces rather than 

points and there is no fundamental theorem of algebra, it is 

extremely difficult to determine the pole locations [1]. 

The work presented here is relates more particularly to the 

analysis and synthesis of the two-dimensional infinite impulse 

response filters of a reduced order. two parts are made, the 

synthesis (design) in the first part is complete in both areas, 

spatial with two methods, the Prony's method (modified Prony) 

and Iterative method, and iterative Semi-Definite 

Programming (SDP) in the frequency domain. In the second 

part of this work we make an order reduction of the filter 

synthesized (designed) by the method of Quasi-Gramians.  

II. DESIGNING A IIR FILTERS  

    An IIR filter with an arbitrary impulse response h(n1, n2) 

cannot be realized since computing each output sample 

requires a large number of arithmetic operations [1]. As a 

result, in addition to requiring h(n1, n2) to be real and stable, 

we require h(n1, n2) to have a rational z-transform 

corresponding to a recursively computable system.  

A. THE  DESIGN PROBLEM  

    The problem of designing an IIR filter is to determine a 

rational and stable H(z1, z2) with a wedge support output mask 

that meets a given design specification. In other words, we 

wish to determine a stable computational procedure that is 

recursively computable and meets a design specification.  

However, a given rational system function H(z1, z2) can lead to 

many different computational procedures [1]. To make the 

relationship unique, we will adopt a convention in expressing 

H(z1, z2). Specifically, we will assume that a(0, 0) is  always 1, 

so H(z1, z2) will then be in the form 
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where Ra –(0, 0) represents the region of support of a(k1, k2) 
except the origin (0, 0), and Rb represents the region of support 

of b(k1, k2). 

The unique computational procedure corresponding to (1) is 

then given by   
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Where the sequences a(n1, n2) and b(n1, n2) are the filter 

coefficients. 

The first step in the design of an IIR filter is usually an initial 

determination of Ra and Rb, the regions of support of a(n1, n2) 

and b(n1, n2). If we determine the filter coefficients by 

attempting to approximate some desired impulse response 

hd(n1, n2) in the spatial domain, we will want to choose Ra and 

Rb such that h(n1, n2) will have at least approximately the same 

region of support as hd(n1, n2). 

Another consideration relates to the filter specification 

parameters. In low-pass filter design, for example, a small δp, 

δs (filter templates), and transition region will generally require 

a larger number of filter coefficients. It is often difficult to 

determine the number of filter coefficients required to meet a 

given filter specification for a particular design algorithm, and 

an iterative procedure may become necessary [1].   

One major difference between IIR and FIR filters is on issues 

related to stability. An FIR filter is always stable as long as 

h(n1, n2) is bounded (finite) for all (n1, n2), so stability is never 

an issue. With an IIR filter, however, ensuring stability is a 

major task. One approach to designing a stable IIR filter is to 

impose a special structure on H(z1, z2) such that testing the 

stability and stabilizing an unstable filter become relatively 

easy tasks. Such an approach, however, tends to impose a 

severe constraint on the design algorithm or to highly restrict 

the class of filters that can be designed [1]. For example, if 

H(z1, z2) has a separable denominator polynomial of the form 

A1(z1)A2(z2), testing the stability and stabilizing an unstable 

H(z1, z2) without affecting the magnitude response is a 1-D 

problem. However, the class of filters that can be designed 

with a separable denominator polynomial without a significant 

increase in the number of coefficients in the numerator 

polynomial of H(z1, z2) is restricted. An alternative approach is 

to design a filter without considering the stability issue, and 

then test the stability of the resulting filter and attempt to 

stabilize it if it proves unstable. Although testing stability and 

stabilizing an unstable filter are not easy problems. 

In the 1-D case, there are two standard approaches to 

designing IIR filters. One is to design the filter from an analog 

system function. and the other is to design directly in the 

discrete domain. The first approach is typically much simpler 

and more useful than the second. Using an elliptic analog 

filter's system function and bilinear transformation. 

Unfortunately, this approach is not useful in the 2-D case. In 

the 1-D case, this approach exploits the availability of many 

simple methods to design 1-D analog filters. Simple methods 

do not exist for the design of 2-D analog filters. The second 

approach, designing an IIR filter directly in the discrete 

domain, can be classified into two categories. The first is the 

spatial domain design approach, where filters are designed by 

using an error criterion in the spatial domain. The second is the 

frequency domain design approach, where filters are designed 

by using an error criterion in the frequency domain. Therefore, 
the weighted Chebyshev error criterion, also known as the 

min-max error criterion, is a natural choice for designing IIR 

filters. An error criterion of this type, however, leads to a 

highly nonlinear problem [1]. 

B. THE  STABILITY PROBLEM   

    In the 1-D case, the problem of testing the stability of a 

causal system whose system function is given by H(z) =1/A(z) 

is quite straightforward. Since a 1-D polynomial A(z) can 

always be factored straightforwardly as a product of first-order 

polynomials, we can easily determine the poles of H(z). The 

stability of the causal system is equivalent to having all the 

poles inside the unit circle. The above approach cannot be 

used in testing the stability of a 2-D first quadrant support 

system. That approach requires the specific location of all 

poles to be determined. Partly because a 2-D polynomial  

A(z1, z2) cannot in general be factored as a product of lower-

order polynomials, it is extremely difficult to determine all the 

pole surfaces of H(z1, z2) = 1/A(z1, z2), and the approach based 

on explicit determination of all pole surfaces has not led to 

successful practical procedures for testing the system stability 

[1]. 

C. SPATIAL DOMAIN DESIGN  

    The input often used in IIR filter design is δ(n1, n2), and the 

desired impulse response that is assumed given is denoted by 

hd(n1, n2). Spatial domain design can be viewed as a system 

identification problem. Suppose we have an unknown system 

that we wish to model with a rational system function H(z1, z2). 

One approach to estimating the system model parameters 

[filter coefficients a(n1, n2) and b(n1, n2) in our case] is to 

require the impulse response of the designed system to be as 

close as possible in some sense to hd(n1, n2). 

The error criteria used in the filter design is 

            Error  =   ( )anne
eRnn
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where      e(n1, n2) = hd(n1, n2) – h(n1, n2)          ( )b3                        

and Re is the region of support of the error sequence. Ideally, 

Re is all values of (n1, n2). The mean square error in (3) is 

chosen because it is used widely in a number of system 

identification problems and some variation of it serves as the 

basis for a number of simple methods developed to estimate 

system parameters.  

Minimizing the Error in (3) with respect to a(n1, n2) and b(n1, 

n2) is a nonlinear problem. An approach is to slightly modify 

the Error in (3), so that the resulting algorithm leads to closed 
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form solutions that require solving only sets of linear equations 

[1]. 

Consider a computational procedure given by  
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We will assume that there are p unknown values of a(n1, n2) 

and q + 1 unknown values of b(n1, n2), and thus a total of   

N = p + q +1 filter coefficients to be determined. 

Replacing x(n1, n2) with δ(n1, n2) and y(n1, n2) with hd(n1, n2) 

in (4) and noting that ∑∑
∈

−−
bRkk
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Since we wish to approximate hd(n1, n2) as well as we can with 

h(n1, n2), it is reasonable to define an error sequence eM(n1, n2) 

as the difference between the left-hand and right-hand side 

expressions of (5) : 

   

( )6),(),(),(

),(),(

21

),(

221121

2121

21

nnbknknhkka

nnhnne

aRkk

d

dM

∑∑
∈

−−−

+=

It is clear that eM(n1, n2) in (6) is not the same as e(n1, n2) in 

(3b). The subscript M in eM(n1, n2) is used to emphasize that 

eM(n1, n2) is a modification of e(n1, n2). Minimizing eM(n1, n2) 

with respect to the unknown coefficients a(n1, n2) and b(n1, n2) 

is a linear problem. 

 

Prony's method 

    In Prony's method, the error expression minimized is 

           Error = ( )7),(
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where eM(n1, n2)  is given by (6). 

The Error in (7) is a quadratic form of the unknown 

parameters a(n1, n2) and b(n1, n2). Careful observation of the 

Error in (7) shows that can be solved by first solving p linear 

equations for a(n1, n2)  and then solving q +1 linear equations 

for b(n1, n2). It is useful to rewrite (7) as     
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The expression E1 in (8b) consists of q +1 terms, and E2 in 

(8c) consists of a large number of terms. Minimizing E2 in (8) 

with respect to a(n1, n2) results in p linear equations for p 

unknowns given by 
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Once a(n1, n2) is determined, we can minimize the Error in 

(8a) with respect to b(n1, n2).  

Since Prony's method attempts to reduce the total square error, 

the resulting filter is likely to be stable [1]. 

 

Iterative Algorithm 

    It is an extension of a 1-D system identification method 

developed by Steiglitz and McBride [1]. 

From (6), e(n1, n2) = hd(n1, n2) – h(n1, n2) is related to eM(n1, 

n2) by :  

             eM(n1, n2) = a(n1, n2)*e(n1, n2)            ( )10            

Equation (10) can be rewritten as 

             e(n1, n2) = v(n1, n2)*eM(n1, n2)            ( )11  

The sequence v(n1, n2) is the inverse of a(n1, n2). 

From (8) and (11)  

       e(n1, n2) = v(n1, n2)* eM(n1, n2) 

                     = v(n1, n2)*( a(n1, n2)*hd(n1, n2) – b(n1, n2)) ( )12  

From (12), if v(n1, n2) is somehow given, then e(n1, n2) is 

linear in both a(n1, n2) and b(n1, n2), so minimization of 

∑ ∑
1 2

),( 21

2

n n
nne  with respect to a(n1, n2) and b(n1, n2) is 

a linear problem. 
 

Algorithm: 

Step 1: We start with an initial estimate of a(n1, n2), obtained 

following a method such as Prony. 

Step 2: Obtain v(n1, n2) from a(n1, n2). 

Step 3: Minimize∑ ∑
1 2

),( 21

2

n n
nne

 
with respect to a(n1, 

n2) and b(n1, n2) by solving a set of linear equations. 

Step 4: We now have a new estimate of a(n1, n2), and the 

process continues until we get a desired a(n1, n2) and b(n1, n2). 

 

Zero-Phase Filter Design 

    One characteristic of a zero-phase filter is its tendency to 

preserve the shape of the signal component in the passband 

region of the filter. In applications such as speech processing, 

the zero-phase (or linear phase) characteristic of a filter is not 

very critical. The human auditory system responds to short 

time spectral magnitude characteristics, so the shape of a 

speech waveform can sometimes change drastically without 

the human listener's being able to distinguish it from the 

original. In image processing, the linear phase characteristic 

appears to be more important. Our visual world consists of 

lines, scratches, etc. A nonlinear phase distorts the proper 

registration of different frequency components that make up 

the lines and scratches. This distorts the signal shape in various 

ways, including blurring.  
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It is simple to design zero-phase FIR filters. It is impossible, 

however, for a single recursively computable IIR filter to have 

zero phase. To have zero phase, h(n1, n2) must be equal to h(–

n1, –n2).  An IIR filter requires an infinite extent h(n1, n2), and 

output mask to have wedge support. These requirements 

cannot all be satisfied at the same time. It is possible, however, 

to achieve zero-phase by using more than one IIR filter. A 

method particularly well suited to spatial domain design is to 

divide hd(n1, n2) into different regions, design an IIR filter to 

approximate hd(n1, n2)  in each region, and then combine the 

filters by using a parallel structure. 

Suppose we have a desired hd(n1, n2) , we assume that 

             hd(n1, n2)  = hd(–n1, –n2)                                        ( )13                                                     

We can divide hd(n1, n2)  into an even number of regions: two, 

four, six, eight, or more.  

Suppose we divide hd(n1, n2) into four regions by 

             hd
I
(n1, n2) = hd(n1, n2)w(n1, n2)                            ( )a14  

             hd
II
(n1, n2) = hd(n1, n2)w(–n1, n2)                         ( )b14  

             hd
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(n1, n2) = hd(n1, n2)w(–n1, –n2)                      ( )c14  

and       hd
IV
(n1, n2) = hd(n1, n2)w(n1, –n2)                        ( )d14                             

where w(n1, n2) is a first-quadrant support sequence given by 
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Suppose we use one of the spatial IIR filter design techniques 

discussed earlier to design H
I
(z1, z2)  that approximates hd

I
(n1, 

n2). Similarly, suppose we have designed H
II
(z1, z2)  that 

approximates hd
II
(n1, n2). From (13) and (14), 

            hd
III
(n1, n2) = hd

I
(–n1, –n2)                                      ( )16  

Therefore, H
III
(z1, z2)  that approximates hd

III
(n1, n2) can be 

obtained from H
I
(z1, z2) by 

            H
III
(z1, z2) = H

I
(z1

-1
, z2

-1
)                                         ( )17  

Similarly, H
IV
(z1, z2) can be obtained from H
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(z1, z2) by 
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Since H
I
(z1, z2), H

II
(z1, z2) , H

III
(z1, z2) , and H

IV
(z1, z2) 

approximate hd
I
(n1, n2), hd

II
(n1, n2), 

 hd
III
(n1, n2) and hd

IV
(n1, n2), respectively, hd(n1, n2) will be 

approximated by H(z1, z2) given by                       

         H(z1, z2) = H
I
(z1, z2) + H

II
(z1, z2) + H

III
(z1, z2) + H

IV
(z1, z2) 

                       = H
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(z1, z2) + H
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(z1, z2) + H

I
(z1

-1
, z2

-1
) +  

                          H
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(z1

-1
, z2

-1
)                                              ( )19  

H(z1, z2) has zero phase since H(z1, z2) = H(z1
-1
, z2

-1
).The 

system in (19) can be implemented by using a parallel 

structure as shown in Figure 1. The input is filtered by each of 

the four recursively computable systems, and the results are 

combined to produce the output. 

 

 

 

 

 

              

 

                              

 x(n1, n2)                                                                         y(n1, n2) 

 

 

 

 

 

 

Fig. 1.  Implementation of H(z1, z2) using a parallel structure. 

 

If hd(n1, n2) has fourfold symmetry, 

            hd
II
(n1, n2) = hd

I
(–n1, n2)                                         ( )20                     

and therefore H
II
(z1, z2) can be determined from H

I
(z1, z2) by 

            H
II
(z1, z2) = H

I
(z1

-1
, z2)                                            ( )21     

In this case, H(z1, z2) in (19) is given by  

            H(z1, z2) = H
I
(z1, z2) + H

I
(z1

-1
, z2) + H

I
(z1

-1
, z2
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) +  

                            H
I
(z1, z2
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)                                              ( )22  

From (22), only one filter needs to be designed in this case.                                         

D. FREQUENCY DOMAIN DESIGN BY THE ITERATIVE SEMI-

DEFINITE PROGRAMMING 

    Semi-definite programming (SDP) has recently attracted a 

great deal of research interest. Among other things, the  

optimization tool  was proven to be applicable to the design  

various types of FIR digital filters. An attempt on extending 

the SDP approach to 2-D IIR filters [2]. Throughout this 

section the IIR filters are assumed to have separable 

denominators. This assumption simply imposes a constraint on 

the type of IIR filters being quadrantally symmetric. 

Nevertheless this class of filters is broad enough to cover 

practically all types of IIR filters that have been found useful 

in image/video [3]. 

Consider a quadratically symmetric 2-D IIR digital filter 

whose transfer function is given by 
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Since the filter is quadratically symmetric, we have b(k1, k2) = 

b(k2, k1). As a result, there are only r + (n + 1)(n + 2)/2 

variables in (23), which form a [r + 0.5 (n + 1) (n + 2)]-

dimension vector                                           
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Denote vector x in the k
th
 iteration as xk and the frequency 

response of the filter for x = xk as ),,( 21

k

jwjw
xeeH . In the 

vicinity of xk, the design variable can be expressed as 

δ+= kxx  

 The transfer function can be approximated in terms of linear 

function of δ by                                                  
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where gk is the gradient of de ),,( 21 xeeH jwjw
 for  x = xk. 

Problem  Formulation  

    Design in the sense of min-max is obtained as solution of 

the following optimization problem:  
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where µ is treated as an additional design variable, 
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W(ω1, ω2) ≥ 0 is a weighting function, eℜ  is the real part of 
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and                                                  
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 where τ is a positive scalar that stability margin of the filter.  

and 

 





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=
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T

k

k
I

a
D

ˆ

)( 1δ
                                             ( )35                

 
Denote the vectors formed from the first r components of  xk + 

δ by ak + δ1.  Since the denominator of H(z1, z2) is separable, it 

can be shown that the IIR filter with coefficient vector xk + δ 

is stable if and only if the magnitudes of the eigenvalues of 

matrices kD are strictly less than one, where rÎ denote a matrix 

of size (r - 1)×r obtained by augmenting the identity matrix 

with a zero column on the right. Applying the well-known 

Lyapunov theory [4], one conclude that matrix Dk is stable if 

and only if there exist positive definite matrix P such that: 

            0fk

T

k PDDP −                                                 ( )36  

Where 0fM denote that matrix M is positive definite. The 

matrix P in (34) is not considered as design variable. Rather, 

this positive definite matrix is fixed in each iteration and can 

be obtained by solving the Lyapunov equation: 

            IDPDP k

T

k =− ˆˆ                                                 ( )37       

where 






−
=

r

T

k

k
I

a
D

ˆ
ˆ                                                         ( )38  

With P fixed in Yk, the minimization problem in (26-27) is an 

SDP problem of size 1 + r + 0.5(n + 1)(n + 2). 

 

Design steps 

     Give the order of the IIR filter (n, r) and the desired 

frequency response ),( 21 wwHd
. 

Step 1: The proposed design method starts with an initial point 

x0 that corresponds to a stable filter obtained following using a 

conventional method. For example, one can design an FIR 

filter of order n approximate ),( 21 wwHd
and simply set 

 A(z1) ≡ 1 and A(z2) ≡ 1 as an initial design.  

Step 2: With this x0, positive definite matrix P can be obtained 

by solving the Lyapunov equation of (37), and quantities Gk, 

qk, and ck  can be evaluated by using (31-33). 

Step 3: Next we solve the SDP problem in (26-27) . 

Step 4: The solution [ ]TTx ∗∗∗ = δµˆ obtained can be used 

to update  x0 to x1 = x0 +
∗δ . The iteration continues until 

∗δ is less than prescribed tolerance ε. 

III. ORDER REDUCTION 

    It is often desirable to represent a high order system by a 

lower order system. A suitable model reduction procedure 

should provide a model that approximates the original well, it 

should produce stable models from a stable original, and it 

should be able to be implemented on a computer with high 

computational efficiency and less memory requirements.    

The reduction of models in the state space (SS) realization 

environment  has definite advantages. It is possible to apply 

the vast knowledge of matrix theory in the analysis, while the 

non-uniqueness of SS realization provides the choice of using 

one that is better suited for the purpose at hand [5].  
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A. STATE-SPACE MODEL  

    Roesser's model is the following [6]: 
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where x is the local state, x
h
 , an n-vector, is the horizontal 

state,  x
v
 , an m-vector, is the vertical state, and 
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where u, the input, is an l-vector and y, the output, is a  

p-vector. Clearly x
h
, the horizontal state, is propagated 

horizontally, and x
v
, the vertical state is propagated vertically 

by first-order difference equations. 

the 2-D transfer function can be write as:      

                                          

( )40
0

0
),(

1

2

1

21 dBA
Iz

Iz
CzzH +








−







=

−

It is clear that there is a one-to-one correspondence between 

Roesser's model and circuit implementations with delay 

elements z1
-1

 and z2
-1
. 

B. MINIMAL REALIZATION IN STATE-SPACE 

    The minimal state-space realizations  are not always 

possible for all 2-D transfer functions [7]. However, minimal 

state-space realizations have been determined for a system 

with separable denominator [8]. 

Consider the linear time invariant 2-D system, described by the 

spatial transfer function [9]:  
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The numerator coefficients of (41) can be arbitrary, while the 

denominator coefficients satisfy the following relationship: 

            a(k1, k2) = a(k1, 0)a(0, k2)                                      ( )42                         

with a(0, 0) =1.  

The state-space model sought is of the Givone-Roesser type 

[10] described with l = p =1, and A1, A2, A3, A4, B1, B2, C1 and 

C2 have dimension (n×n), (n×m), (m×n), (m×m), (n×1), 
(m×1), (n×1) and (m×1), respectively. 
The minimal realization in this case requires only n + m 

dynamic elements. A realization of the state-space can be 

written by:  
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where  
h(1, 1) = b(1, 1) + a(1, 0)a(0, 1)b(0, 0)  – [ b(1, 0)a(0, 1)  + a(1, 0)b(1, 0)] 

MMMMMMMMM  

h(m, n) = b(m, n) + a(m, 0)a(0, n)b(0, 0) – [ b(m, 0)a(0, n)  + a(m, 0)b(0, n)] 

and
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, [ ]0,,012 L=C , and d = b(0, 0) [11]. 

C. REDUCTION METHODS  

    The most popular 1-D model reduction techniques  are 

based on the concept of balanced realization which was 

originally proposed by Moore [12]. Given a discrete system, 

its balanced realization describes the system in a state-space 

representation in which the importance of the i
th
 state variable 

can be measured by the i
th
  Hankel singular value of the 

system. This suggest that one way of obtaining a low-order 

approximation a state-space model is to form a balanced 

realization and then to retain those states corresponding to r 

largest Hankel singular values where r is the order of the 

reduced-order system. One of the problems in the study of 2-D 

model reduction is to extend the balanced realization concept 

to the 2-D case. Since a balanced realization is essentially 

determined by the controllability and observability Gramians 

of the system, and since there are several types of Gramians of 

the system that can be properly defined for a given 2-D 
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system, there are different types of balanced realizations for a 

given 2-D discrete system, leading to different balanced 

approximations [13]. 
 

Three types of Gramians for 2-D discrete systems 
    Consider the Givone-Roesser state-space model of (SISO) 

described in (39), we defined [13] 

            F(z1, z2) = (I(z1, z2)  – A)
-1

B                                 ( )a43  

            G(z1, z2) = C(I(z1, z2) – A)
-1
                                 ( )b43                       

where I(z1, z2) = z1In⊕ z2Im.  

The first type of 2-D Gramians, known as the pseudo-

controllability and observability Gramians [14], are defined as: 
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The second type of Gramians, known as the structured 

controllability and observability Gramians [15], are defined by 

the positive definite solutions set of P
s
 and Q

s
 Lyapunov 

inequalities: 

            AP
s
A

T 
– P

s
 + BB

T
 < 0                                                  

            A
T
Q

s
A – Q

s 
+ C

T
C < 0                                                  

Note that the positive definite matrices P
s
 and Q

s
, if they exist, 

are not unique. This lead to the non-uniqueness of structurally 

balanced realizations that are based on P
s
 and Q

s
. 

The third type of Gramians, known as quasi-controllability and 

observability Gramians [16], are defined by the positive 

definite block-diagonal matrices P
q
 =diag{P1,P2} and  

Q
q
 = diag{Q1, Q2} where Pi and Qi (i = 1,2) satisfy the 

Lyapunov equations: 

            AlPlA1
T
 – P1 + B1B1

T
 + A2P2A2

T
 = 0 

            A4P2A4
T
 – P2 + B2B2

T
 + A3

T
PlA3 = 0 

            Al
T
QlA1 – Q1+ C1

T
 c1 + A3

T
Q2A3 = 0 

            A4
T
Q2A4 – Q2 + C2

T
 C2 + A2

T
QlA2 = 0 

In terms of computation complexity, the structured Gramians 

are the most expensive to evaluate while the quasi-Gramians 

are the most economical [13]. 

 

Balanced approximations  

     Since there are at least three types of Gramians, one can 

accordingly derive three different types of balanced 

realizations. In effect, once a certain type of Gramians is 

chosen, the upper left and lower right diagonal blocks of the 

Gramians are used to compute the transformation matrix  

T = T1⊕  T2  by using, for example, Laub's algorithm [17] such 

as the realization characterized by {T
-1

AT, T
-l
B, BT, d} is 

balanced. A reduced-order system of order (r1, r2), denoted by 

{Ar, Br, Cr, d}, can be obtained by truncating the matrices A, 

B, and C as
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where  

A1r = A1( l: r1, 1: r1), A2r = A2(l: r1, 1: r2), A3r = A3( l: r2, 1: r1), 

A4r = A4(l: r2, 1: r2), 

B1r = B1(1: r1), B2r = B2(1: r2), C1r = C1(1: r1), C2r = C2(1: r2) 

[13]. 

 

Iterative Algorithm for the case Quasi-Gramians 

     An iterative method for the computation of Quasi-Gramians 

is described, where each iteration involves solving two 1-D 

Lyapunov equations. For 2-D system stable, the algorithm 

converges to the 2-D quasi-Gramians very quickly [18]. 

Step 1: Set P2
(0)
 =  Q2

(0)
 = 0 and k =1. 

Step 2: Solve the following 1-D Lyapunov equations for P1
(k)
 

et Q1
(k)
 : 

            AlP1
(k)

A1
T
 – P1

(k)
 + F1 = 0                                    ( )a44                                          

            Al
T
Q1

(k)
A1 – Q1

(k)
 + G1 = 0                                   ( )c44                                           

 where F1 = B1B1
T
 + A2P2

(k-1)
A2

T
  

            G1 = C1
T
C1 + A3

T
Q2

(k-1)
A3 

Step 3: Solve the following 1-D Lyapunov equations for P2
(k)
 

et Q2
(k)
 : 

            A4P1
(k)

A1
T
 – P2

(k)
 + F2 = 0                                   ( )b44                       

            A4
T
Q2

(k)
A4 – Q2

(k)
 + G2 = 0                                  ( )d44  

where F2 = B2B2
T
 + A3P1

(k)
A3

T
  

           G2 = C2
T
C2 + A2

T
Q1

(k)
A2 

Step 4: Set k=k+1 and repeat Step 2 and 3 until 

ε<− − )1()( k

i

k

i PP , (i =1, 2) 

ε<− − )1()( k

i

k

i QQ , (i =1, 2) 

where ε is a prescribed tolerance [18].  

 

IV. A DESIGN EXAMPLES 

    We have divide the simulation into two parts: 

 

Part 1: the Design 

 

The design have been finished in two domains: 

- Spatial domain by two methods: Prony's method and  

the Iterative method.  

The numerator b(n1, n2), and the denominator a(n1, n2) 

matrices are generated, then we use the function  

Impulse_2D.m to produce the impulse response and frequency 

response. 

- Frequency domain  we use the method of Semi-definite  

Programming (SDP) to do the same. 

 

For the Prony's method and Iterative method the IIR digital 

filters given by the following templates: 

Filter's order  n = 5, m = 5, (the a and b matrix dimension). 

The passband and stopband corresponds to each type of filter 

are: 

Lowpass: Rp = [0  0.4], and Rs = [0.5  1]. 

Bandpass: Rp = [0.4  0.6], Rs1 = [0  0.3] and Rs2 = [0.7  1]. 
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20*log( |H(w1, w2)|) 

 

 

 

 
 

                                           

                 (b) 
Fig. 2 . Zero-phase lowpass IIR  filter. a) Impulse response.  b) : Amplitude 

responses (in decibels),"X-Z" perspective. 
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                      (b) 
Fig. 3.  Zero-phase bandpass IIR  filter. a) Impulse response.  b) : Amplitude 

responses (in decibels),"X-Z" perspective. 

 

Iterative method 
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                           (b) 
Fig. 4. Zero-phase lowpass IIR  filter. a) Impulse response.  b) : Amplitude 

responses (in decibels),"X-Z" perspective. 
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                        (b) 
Fig. 5. Zero-phase bandpass IIR  filter. a) Impulse response.  b) : Amplitude 

responses (in decibels),"X-Z" perspective. 

 

For the SDP method: Let IIR digital filters given by the 

following templates: 

Filter order n = 13, r = 13 (the a and b matrix dimension). 

The passband and stopband corresponds to each type of filter 

are: 

Lowpass: Rp = [0 0.4], and Rs = [0.5 1]. 

Bandpass: Rp = [0.48 0.55], Rs1 = [0 0.3] and Rs2 = [0.7 1]. 

Number of iterations : it = 2. 

 

SDP method 
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20*log( |H(w1, w2)|) 

 

 

 
 

                                              

                       (b) 
Fig. 6. Lowpass IIR  filter. a) Impulse response.  b) : Amplitude responses (in 

decibels),"X-Z" perspective. 
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                          (b) 
Fig. 7. Bandpass IIR  filter. a) Impulse response.  b) : Amplitude responses (in 

decibels),"X-Z" perspective. 

 

Part 2: the Reduction 

 

    We apply the method of Quasi-Gramians to lowpass filter 

designed in the first part, we use our function 

tf2ss2_2D.m to transfer matrices a and b to the state-space 

model (A, B, C, d), then applied Quasi-Gramians method to 

produce a reduced-order model (Ar, Br, Cr, d). 

 

Iterative method 

The order of original filter is: n = 5, m = 5. 

- the total number of coefficient is: (5×5 (matrix b) + 5×5 
(matrix a))×4 =200). 
The dimension of the matrix A, B, and C  are (n+ 2×m)×  
(n+2×  m), (n+ 2×m)×1, 1×  (n+ 2×m), respectively. 

Number of iterations is: it = 10. 

Order of reduced filter  is: r1 = 4, r2 = 5.  

- the total number of coefficient is (4× 5 (matrix b) + 4× 5 
(matrix a))×4 =160). 
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                           (b) 
Fig.  8. Lowpass IIR  filter amplitude responses (in decibels),"X-Z" 

perspective. a) Original filter 5× 5 (200 coefficients). b) Reduced-order filter 

4× 5, (160 coefficients). 
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                   Fig. 9. Error specter between original and reduced filter. 

 

SDP method  

The order of original filter is: n =13, m = 13. 

- the total number of coefficient is: 13×13 (matrix b) + 

13×13 (matrix a) =338). 

The dimension of the matrix A, B, and C  are(n+ m)×  (n+ m), 

(n+ m)×1, 1×  (n+ m), respectively,(minimal realization).  

Number of iterations is: it = 2.  

Order of reduced filter is: r1 = 8, r2 = 8. 

- the total number of coefficient is: 8×8 (matrix b) + 8×8 
(matrix a) =128).  
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                        (b) 
Fig. 10. Lowpass IIR  filter amplitude responses (in decibels),"X-Z" 

perspective. a) Original filter 13× 13 (338 coefficients). b) Reduced-order 

filter 8× 8, (128 coefficients). 

 

 

 

 

 

 

 

 

 

 
Fig. 11. Error specter between original and reduced filter. 

V.  RESULT  AND INTERPRETATION     

The results obtained lead to the following: 
 

  * The Design: 

- There is not much difference between the Prony method and 

the Iterative method. However, we can notice that there is a 

small improvement at stop-band (attenuation ) when Iterative 

method applied : 

Prony / min (H (w1, w2) = -49.09 dB (lowpass filter). 

Iterative / min (H (w1, w2) = -55.77 dB (lowpass filter). 

- The results obtained in the SDP method are comparable to 

the other two methods, we found a performance decreasing in 

both bands (passband and stopband). It is possible to improve 

results by increasing number of coefficients (n, r) or number of 

iterations. There is a good aspect of this method is the 

stability, which can be measured by the max of roots of vector 

of column or row of the denominator matrix ‘a’, we found the 

following results: 

max (abs (roots (a (:, 1)))) = 0.8926 => (low-pass filter). 

                                           = 0.8578 => (bandpass filter). 

where max, abs, and roots are functions in Matlab, which 

represents the maximum value of a vector, the absolute value, 

and the roots of a vector, respectively. 

* The reduction: 

- Due to the non-minimal realization of filter designed by 

Prony and Iterative methods, and because the reduced filter 

can be unstable, therefore the reduction results are not good 

(see fig 8, 9). 

- But in the SDP method the stability is preserved: 

max (abs (roots (a (:, 1)))) = 0.8926 => (original filter) => 

0.9119 => (filter reduces) for low-pass filter. 

The results obtained apparent that the reduced low-pass filter 

is acceptable as the number of coefficients decrease from 338 

to 128, and the max error between the reduced and original 

filter is : max (E) = 0.02 (fig 11) . 

 

VI. CONCLUSION 

 

    In the design stage stability and zero-phase of a 2-D IIR 

filter may be become a big problems. In 1-D  we represent a 

pole or a zero by point in a 2-D plan (real part and imaginary 

part), but in 2-D, poles are surfaces in 4-D plan, it is extremely 

difficult to test the stability and stabilize an unstable filter. In 

image processing, the output image from system (a filter in this 

case) can be deformed because the nonlinearity of the phase. 

    The reduction also suffer from some problems, reduction in 

state-space by conventional methods, for example, reduction 

by the balanced transformation require a minimal realization of 

a transfer function in state-space, then find a method to 

compute the transformation matrix to a balanced model, which 

requires that as small number as possible of calculation and at 

the same time maintaining the stability. 

- In this work we attempt to find a design method that solve 

these problems with conventional methods such as Prony's 

method or Iterative method where they based on identification 

idea. For a zero-phase filter, we divided the support region of 

the desired impulse response on four regions, then we have 

synthesized the four filters (one filter in the case where 

hd(n1, n2) have a four-fold symmetry) by the Prony method or 

Iterative method. The result is a linear phase filter has minimal 

order (total number of coefficients equal 200) compared by the 

third method. In the method for Semi-definite Programming 

(total number of coefficients equal 338), but in this method the 

stability is guaranteed, with approximately linear phase. 

- In the order reduction we have chosen the method of Quasi-

Gramians due to its simplicity. But this method has a 

disadvantage that it does not preserve the stability in general, 

but if the system has a separable denominator, the reduced 

system remains stable as a filter designed by the SDP method. 
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