
  

Abstract— We present a realistic and fully automatic 
content-based approach for retrieval MLB sports frames 
efficiently. Specifically, we present a rule-based method for 
detecting primary and recurrent scenes in MLB videos (e.g., 
MLB pitching scenes in baseball). The proposed approach 
transfers each MLB sports frame to a color cipher using only 
straightforward 8 rules. Subsequently, we utilize the color 
ciphers to compare the MLB sports frames, namely color ciphers 
comparison. We succeed in transferring the MLB sports frames 
retrieval problem to color ciphers comparison, so the 
computational complexity is decreased obviously. Our system 
keeps both advantages of the content based videos retrieval 
system (similarity-based retrieval) and a text based videos 
retrieval system (very rapid and mature). 
 

Keywords— Color; Color ciphers comparison, Content 
based videos retrieval (CBVR), MLB sports frames.  

I. INTRODUCTION 

huge amount of videos now stored in digital format 
and can only be searched by keywords on the World 

Wide Web (e.g., Google or Yahoo) as shown in Fig. 1. It 
would be impossible to cope with the rise of the 
world-wide web and the spread of digital information 
unless those data could be retrieved effectively and 
efficiently. A video retrieval system is a computer system 
for browsing, searching and retrieving videos from an 
enormous database of videos. Unfortunately, most 
traditional and common methods of videos retrieval 
methods are text-based methods that utilize some 
processes of adding metadata such as captioning, 
keywords, or descriptions to the videos. Subsequently, 
retrieval can be performed over the annotation words. The 
major drawback of text-based video retrieval is not all 
videos can be annotated excellently. Some information of 
videos cannot be expressed wonderfully as a set of text 
query terms. Moreover, manual videos annotation is 
time-consuming, laborious and expensive. Furthermore, 
the text-based retrieval without good annotation makes 
them unable to be retrieved. The rapid expanding of videos 
increases the necessity for videos retrieval. The movie 
industry is an extensive producer of videos, for example, 
328,530 movies representing a sum of 740,803 hours [1]. 
If we add the broadcast TV videos from millions of TV 
stations worldwide, and thousands upon thousands of 
Closed Circuit Television (CCTV) and from billions of 
mobile video phones we actually cannot realize the existent 

 
 
 

volume of videos. A video program can be divided into 
scenes, and a scene may be composed of one or more 
frames. A scene usually communicates to some consistent 
event in a video program, such as a sequence of frames 
making up a dialogue scene in comedy movies, or a 
fighting scene in action videos [2]. Consequently, the 
videos retrieval with content-based instead of text-based, 
plays a very important role in multimedia system. For 
comprehensive reviews of previous CBVR techniques, 
please see [2~7]. Most previous CBVR systems allow 
automatic retrieval based on characteristics and 
distribution of color, shape, and texture. We can categorize 
CBVR Systems into two types according to the technique 
they utilize to extract features: 1. Global features based 
category, global features such as different types of 
histograms are obtained from the entire image. Different 
global features similarity measures are used in the 
literature varying from simple methods like gray level 
histogram [8] or average intensity measure [9] to pair-wise 
comparison [10], and color histograms [11]. However 
most of the global based methods fail in the presence of 
severe motion or illumination changes. Furthermore, 
frames with totally different spatial layout can have similar 
global measure which is a common shortcoming for these 
techniques. For more information, please see [12~19]. 2. 
Region based category, the image is divided into segments 
and then features are extracted from each segment.  Region 
based approaches try to overcome the disadvantage of the 
global features based methods by considering the spatial 
distribution of the objects in the frame. These schemes 
include region based likelihood measure [20] and region 
based color histogram [21]. The local changes caused by 
camcorder and object movement can considerably alter the 
content are the common drawbacks of region based 
approaches. Motion compensation approaches [22] try to 
overcome this disadvantage by eliminating the motion 
difference between regions before comparing them. For 
more information, please see [23~30]. Each category 
contains many challenges. Although color plays an 
important role in the most systems for CBVR systems, the 
potential of color is not yet completely tapped. A problem 
of color arises if the illumination or color saturation is 
different between the query frames and the test frames. 
Most previous CBVR systems cannot consider different 
size, the defocus and noise problems, various lighting 
condition, partial occlusion, and diverse color saturation at 
the same time. 

 In the investigation, we present a CBVR system that can 
handle different size, miscellaneous color saturation, 
blurred and noise conditions, dissimilar illumination 
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circumstances, partial occlusion, and contemplating of 
spatial relation at the same time. Furthermore, our new 
approach can keep both benefits of the global features 
based category and the region based category. The 
overview of our system is shown in Fig. 2. The designed 
system contains three phases. First, we resize all frames of 
videos to decrease the effects of variation in size, and 
expedite the speed. Second, we convert each frame of 
videos to a color cipher. Finally, we compare the color 
ciphers, e.g., cipher1 and cipher2 (cipher1 is color cipher 
of the query frame and cipher2 is color cipher of the frame 
in the database). Subsequently, return the matching weight. 
Afterward we compare cipher1 and cipher3 (cipher3 is 
color cipher of another frame in the database), and return 
the matching weight, and so on. The rest of the paper is 
organized as follows. In section 2, color cipher coding and 
color ciphers comparison are illustrated. Experimental 
results are displayed in section 3. Finally, conclusions are 
given in section 4. 

II. COLOR CIPHER CODING AND CIPHERS COMPARISON 

The leading principle for our approach is simplicity and 
speed. First, we resize all frames of videos to reduce the 
effects of variation in size, and accelerate the speed. Since 
the videos are allowed to have different sizes, all frames of 
videos are normalized to a standard size (i.e. 20 × 20 
pixels) in this step. Herein, all frames of videos are resized 
by the bicubic interpolation technique as described in 
Gonzalez et al. [31]. 

A. Color Cipher Coding 

Since RGB color space is a 3-dimensional vector space, 
and each pixel, p (i), is defined by an ordered triple of red, 
green, and blue coordinates, (r (i), g (i), b (i)), which 
represent the intensities of red, green, and blue light color 
respectively. We realize that the values of r, g, and b are 
totally different with altered illumination conditions. 
However, the relative values between r (i), g (i), and b (i) 
are very similar. Therefore, we utilize 8 rules to transfer 
each frame of videos to a color cipher as below: 
If a pixel 235 =< r (i) =< 255, 235 =< g (i) =< 255, and 

235 =< b (i) =< 255  , then assigns the pixel as 'W'; (white 

color) 

If a pixel 0 =< r (i) =< 20, 0 =< g (i) =< 20, and 0 =< b (i) 

=< 20, then assigns the pixel as 'K'; (black color) 

If a pixel r (i) >  g (i) >= b (i), then assigns the pixel as 

'R'; (the first series of "Red" colors) 

If a pixel r (i) >= b (i )>  g (i), then assigns the pixel as 

'S'; (the second series of "Red" colors) 

If a pixel   g (i) > r (i) >= b (i), then assigns the pixel as ' 

G'; (the first series of "Green" colors) 

If a pixel   g (i) >= b (i) > r (i), then assigns the pixel as 

'H'; (the second series of "Green" colors) 

If a pixel b (i) > r (i) >= g (i) , then assigns the pixel as 

'B'; (the first series of "Blue" colors) 

If a pixel b (i) >= g (i) > r (i), then assigns the pixel as 'C'; 

(the second series of "Blue" colors) 

 

An example demonstrates the 20 X 20 pixels 32 bits color 
map with white and black, and its color cipher [We use 
purple color (e.g., W) instead of white color to able to be 
seen by readers.] is shown as Fig. 3. We can observe the 
"R" and "S" present two series of red colors, the "G" and 
"H" show the two series of green colors, the "B" and "C" 
demonstrate two series of blue colors, the "W" represents 
the white color, and "K" displays the black color 
respectively. 
An instance illustrates how to obtain a 2D color cipher is 
shown as Fig. 4. Fig. 4 (a) An original frame of sport 
videos (352X 240 pixels); (b) Resized frame of sport 
videos (20 X 20 pixels); (c) Resized the 20 X 20 pixels 
frame of sport videos to 322 X 322 pixels) to be seen 
clearly by readers; (d) Transfer the frame of the resized 
frame of sport videos (20 X 20 pixels) to a 2D color cipher 
array. From the 2D cipher array, you can see the layout of 
the sportsman with a gesture of victory (V). You can see 
the reflection of spatial relation. Since the 8 rules as above, 
we can obtain the impression of the characters "G" and "H" 
present two series of green colors. For instance, we can see 
the green grass in the frame of videos that is transferred to 
"G" (the first series of "Green" colors) and the light brown 
earth in the frame of videos that is transferred to "R" (the 
first series of "Red" colors) as demonstrated as Fig. 4. 
Subsequently, each frame of videos will become a 2D 
cipher array, and then we will convert the 2D cipher array 
to a 1D cipher as below: 
KKKCCCGGGCCCHCBCCCCC…RRHHHRRWWWW
RRR (20 X 20 = 400 characters) 
We can realize the power of discrimination between 
different frames of videos because 400 characters present 
8400 (= 21200) permutations. The 21200 permutations should 
have enough ability to distinguish most videos. 
 

B. Color Cipher Comparison 

We compare each element of cipher1 to the same location 
element in cipher2 (cipher1 is color cipher of the query 
frame and cipher2 is color cipher of the frame in the 
database), where cipher1 and cipher2 are equal-size cipher 
of characters. Subsequently, return the matching weight. 
Next, we compare each element of cipher1 to the same 
location element in cipher3 (cipher3 is color cipher of 
another frame in the database), and return the matching 
weight, and so on. When the same location character is the 
same one (e.g. both are ″R″), we increase 1 to the matching 
weight, and else we increase 0. For instance, if two frames 
of videos have all the same characters, then the maximum 
matching weight should be 400. If the matching weight is 
400, then the distance is 0.  The more similar frames of 
videos should have higher matching weight and the lower 
distance. 

III. EXPERIMENTAL RESULTS 

The experimental database contains 31,566 MLB sports 
frames. The MLB sports frames are taken from TV video 
programs. The original/normal extracting the frames of 
videos is 30 frames per second (fps), but these extracting 
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frames are too similar. Therefore, we extract the MLB 
sports frames with 3 frames per second (fps). Since it is 
very arduous to find enough similar frames with noise, 
blur, partial occlusion, disparate brightness, dissimilar 
color saturation, and different sizes, we add these 
conditions to the frames (e.g. LP means "enhance 
brightness to the frames", LM means "diminish intensity to 
the frames", CSP denotes "increase color saturation to the 
frames", CSM symbolizes "decrease color saturation to the 
frames", RS signifies "reduce the sizes of the frames", OC 
designates "partial occlusion the frames", and BN indicates 
"make indistinct first, then add noise to the frames", and 
NB represents "insert noise first, next blur the frames" 
using Photoshop 7.0.1). Therefore, in our database, we 
collect MLB sports frames with noise, blur, partial 
occlusion, different sizes, dissimilar illumination 
conditions, and diverse color saturations.  
Besides, we compare our new system with R. P. Kumar’s 
system [12]. The R. P. Kumar’s system proposed a 
methodology based on regression line features for further 
reducing the computational complexity of these 
multiresolution histogram based techniques. The detail on 
performance evaluation of multiresolution histograms and 
wavelet based multiresolution histogram can be found in 
[12, 13 and 14]. 
The first example is shown as Fig. 5. Fig. 5(a) 
demonstrates the R. P. Kumar’s system is not work for 
different lighting circumstances. Fig. 5(b) exhibits ours is 
perfect in various illumination conditions. The second 
illustration is displayed as Fig. 6. Fig. 6 (a) illustrates the R. 
P. Kumar’s system is not spotless for partial moving object 
conditions (only some parts are moving). Fig. 6(b) exhibits 
ours is wonderful for partial moving object conditions. The 
third exhibition is demonstrated as Fig.7.  Fig. 7 (a) 
displays the R. P. Kumar’s system is not faultless for 
different color saturation situations. Fig. 7(b) illustrates 
ours is ideal for various color saturation circumstances. 
The fourth exposition is demonstrated as Fig. 8. Fig. 8(a) 
demonstrates the R. P. Kumar’s system is deficient in 
blurred circumstances. Fig. 8(b) illustrates ours is 
outstanding in blurred situations. The fifth show is 
demonstrated as Fig. 9. Fig. 9(a) presents the R. P. 
Kumar’s system is not work in "blurred first, then add 
noise" circumstances. Fig. 9(b) illustrates ours is 
marvelous in "blurred first, then add noise" conditions. The 
sixth presentation is displayed as Fig. 10. Fig. 10(a) 
demonstrates the R. P. Kumar’s system is deficient in "add 
noise first, next blurred the frames" circumstances.  Fig. 
10(b) illustrates ours is outstanding in "add noise first, next 
blurred the frames" conditions. The seventh demonstration 
is exhibited as Fig. 11.  Fig. 11(a) exhibits the R. P. 
Kumar’s system is inadequate in occlusion circumstances. 
Fig. 11(b) illustrates ours is marvelous in occlusion 
situations 
From the above examples, their system has 57 faults from 
63 retrieval results. On the other hand, ours has 0 faults 
from 63 retrieval results. Therefore, we can profess our 
new system is superior to R. P. Kumar’s system because 
their system cannot handle above conditions. Our new 

system not only can handle different size, miscellaneous 
color saturation, blurred and noise conditions, dissimilar 
illumination circumstances, and partial occlusion, but also 
consider the layout/spatial relation of the color. 
Consequently, our retrieval system is more reliable.  

IV. CONCLUSION 

One of the main differences between a content based 
videos retrieval system and a text based videos retrieval 
system is the capability of the previous one can rank videos 
by the degree of similarity with the query frame of MLB 
sports frames, namely, similarity-based retrieval. 
Conversely, a text based videos retrieval system typically 
process queries based on precise match. Most established 
and common platforms of videos frames retrieval utilize 
some processes of adding metadata such as captioning, 
keywords, or descriptions to the MLB sports frames. 
Afterward retrieval can be performed over the annotation 
words. Manual videos frames annotation is 
time-consuming, laborious and expensive. The text-based 
retrieval methods could be retrieved if the videos frames 
are well-annotated. In other words, the data without 
annotation make them incapable of being retrieved. Since 
we transfer each frame of videos frames to a color cipher, 
the videos frames retrieval system becomes an analogous 
text based videos retrieval system. Since each 
character/letter of a cipher contains a series of colors (e.g., 
red, green, blue, white, or black), our system can conquer 
different size, assorted brightness conditions, 
miscellaneous color saturation, partial occlusion, blurred 
and noise states, and tolerates some dissimilarity between 
the result and the query frames of videos frames at the same 
time. Unlike most region-based retrieval systems, no 
segmentation of images is needed in our approach. 
Moreover, the ciphers comparison is very fast in computer; 
accordingly, our approach is very speedy. In other words, 
our system keeps both advantages of the content based 
videos retrieval system (similarity-based retrieval) and a 
text based videos retrieval system (very rapid and mature). 
Furthermore, our new approach can keep both benefits of 
the global features based category and the region based 
category. We make video frames searching more ordinary, 
comfortable, and straightforward. In the future, we hope 
video frames searching will become more widespread as 
the way we currently search text information on the World 
Wide Web.  
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Fig. 1  Searching by keywords (e.g., MLB) on the World Wide Web in Google 
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Fig. 2  Overview of our system 
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Fig. 3 the 20 X 20 pixels 32 bits color map with white and black, and its color cipher [We use purple color (e.g., W) instead 

of white color to be seen clearly by readers.] 
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Fig. 4 (a) An original frame of sport videos; (b) Resized frame of  sport videos (20 X 20 pixels) ; (c) Resized the 20X20 
pixels frame of  sport videos to  322 X 322 pixels) to be seen clearly by readers; (d) Transfer the frame of the resized frame 
of  sport videos (20 X 20 pixels) to a color cipher array. From the 1D cipher array, you can see the layout of the sportsman 
with a gesture of victory.  
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Fig. 5(a) demonstrates the R. P. Kumar’s system is defective in various lighting circumstances. The error detection is maked 
with red circles. 

 

Fig. 5(b) exhibits ours is perfect in various lighting conditions. 
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Fig. 6 (a) displays the R. P. Kumar’s system is not spotless for contemplating of spatial relation (only some parts are 
moving). The error detection is marked with red circles. 

Fig. 6(b) illustrates ours is wonderful for contemplating of spatial relation (Only some parts are moving, and the moving 
parts are marked with red circles.) 
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Fig. 7(a) demonstrates the R. P. Kumar’s system is defective in diverse color saturation situations. 

 

Fig. 7(b) illustrates ours is remarkable in sundry color saturation conditions. 
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Fig. 8(a) demonstrates the R. P. Kumar’s system is imperfect in blurred circumstances. 

 

Fig. 8(b) illustrates ours is outstanding in blurred situations. 
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Fig. 10(a) demonstrates the R. P. Kumar’s system is not work in "blurred first, then add noise" circumstances. 

 

Fig. 10(b) illustrates ours is marvelous in "blurred first, then add noise" conditions.
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Fig. 10(a) demonstrates the R. P. Kumar’s system is deficient in "add noise first, next blurred the frames" circumstances. 

 

Fig. 10(b) illustrates ours is outstanding in "add noise first, next blurred the frames" conditions. 
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Fig. 11(a) demonstrates the R. P. Kumar’s system is unsatisfactory in occlusion circumstances. 

 

Fig. 11(b) illustrates ours is remarkable in occlusion situations. 
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