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Abstract— In this paper, we propose a family of Bayesian 

estimators for single channel speech enhancement. The Bayesian 

estimators, which utilize the cost function of the log-spectral 

amplitude (LSA) estimator, are based on generalized Gamma 

distribution under speech presence probability. The cost function 

obtained from the LSA estimator is weighted by psychoacoustically 

motivated speech distortion measure to take advantage of the 

perceptual interpretation. The experimental results show that the 

proposed estimators provide less residual noise and better speech 

quality compared to the traditional state-of-the-art estimators. 
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measure, Generalized Gamma distribution. 

I. INTRODUCTION 

HERE are a wide variety of scenarios in which it is desired 

to enhance the signals of speech corrupted by additive 

background noise. Voice communication, for instance, over 

cellular telephone system typically suffers from background 

noise. Speech enhancement algorithms improve the perceptual 

quality of speech through extracting the desired signal from its 

corrupted observations [1].  

Significant progress has been made in developing the speech 

enhancement algorithms in the last few decades [2-11]. Among 

the various existing algorithms, the nonlinear estimators have 

shown to be effective in single channel speech enhancement. 

Various approaches exist in the estimation theory literature [12] 

for deriving these nonlinear estimators. Bayesian approach is 

particularly attractive due to its superior performance among 

them. In Bayesian approach, an estimator of the clean speech is 

derived by minimizing the conditional expectation of a cost 

function that penalizes errors in the clean speech estimate. 

Several Bayesian estimators of the short-time spectral 

amplitude (STSA), in place of the short-time Fourier transform 

(STFT) complex coefficients, have been proposed. The main 

feature of the Bayesian STSA estimators is to produce a residual 

background noise that is whiter than the residual musical noise 

produced by the STFT estimators such as Wiener filter [13]. A 
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well-known Bayesian estimator of the STSA is the minimum 

mean square error (MMSE) estimator that minimizes the 

conditional expectation of a squared-error cost function [7]. The 

squared-error cost function in logarithmic domain, resulting in 

log-spectral amplitude (LSA) estimator [8], is more effective in 

reducing musical noise. A further modification of these cost 

functions has also been conducted by incorporating speech 

presence probability (SPP) in [14]-[16]. More 

psychoacoustically motivated Bayesian estimators that use 

variants of speech distortion measures as the cost function, in 

place of the squared-error cost function, were proposed in [17], 

[18]. 

The aforementioned approaches for speech enhancement in 

discrete Fourier transform (DFT) domain assume that the clean 

speech and noise DFT coefficients are Gaussian distributed. 

Although this assumption might hold for the noise DFT 

coefficients, it does not hold for the speech DFT coefficients. 

For this reason, several researchers [19], [20] have proposed the 

use of super-Gaussian such as Laplacian or Gamma distribution 

for modeling the speech DFT coefficients.  

This paper is devoted to derive perceptually motivated 

Bayesian estimators for single channel speech enhancement. 

Two different kinds of estimators are derived by exploiting the 

generalized Gamma distribution (GGD) assumption for the 

speech DFT coefficients under SPP. The cost function of the 

proposed estimators, which is obtained from the LSA estimator, 

is weighted by Euclidean distortion measure so that it takes into 

account the loudness and masking properties of the human 

auditory system. The incorporation of these properties into the 

gain function under SPP makes the proposed method to perform 

well by removing a certain amount of noise while keeping the 

speech components as undistorted as possible. Parts of this 

paper have been previously reported in [21] and in [22]. The 

present work constitutes a substantial extension of these. 

The paper is structured as follows. In Section II, we introduce 

the signal model with basic assumptions. Section III derives the 

perceptually motivated Bayesian estimators, while Section IV 

shows the experimental results. Finally, Section V concludes the 

paper with discussions.  

II. SIGNAL MODEL 

Let the observed noisy speech signal at frame   be assumed 

as 
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where n  is the sampling index,  ns  is the clean speech, 

 nd  is the additive noise and N  is the frame length. The thk  

DFT coefficient of the noisy speech signal can be expressed as 
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where  nh  is the analysis window and }1,...,1,0{  Nk  is the 

frequency index. By considering the DFT coefficients of the 

clean speech and noise, denoted as kS ,  and kD ,  respectively, 

which are assumed to be statistically independent, (2) becomes 

                                .,,, kkk DSY                       (3) 

The preceding equation can also be expressed by dropping the 

frame index for notational convenience in polar form as: 
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where  kkk NAR ,,  and   ,,  denote the amplitudes and 

phases of the noisy speech, clean speech and noise, respectively. 

The DFT coefficients of noise are assumed to obey a Gaussian 

distribution. The Gaussian assumption that corresponds to a 

Rayleigh distribution, however, is not necessarily the best 

model for estimation of the speech DFT amplitudes [19], [20]. 

A GGD assumption for speech amplitude can perform much 

better than the Rayleigh distribution assumption. The GGD is 

given by 
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where  .  the Gamma function,   and   denote the shaping 

parameters, and   is called the scaling parameter. The special 

cases of generalized priors in (5) for different estimators depend 

on choosing the value of   [23]. For different cases of , the 

scaling parameter   is related to the second moment of the 

distribution as 
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where  ks  is the variance of speech. In this paper, we 

consider 1 and 2 for deriving the perceptually 

motivated Bayesian estimators. 

III. PERCEPTUALLY MOTIVATED ESTIMATORS 

In this section, we derive the proposed Bayesian estimators 

under GGD with SPP. 

The Bayesian spectral amplitude estimator minimizes the 

conditional expectation of a cost function, )],ˆ,([ kk AACE  

where kÂ  denotes the estimated spectral amplitude of .kA  The 

estimator is, then, combined with the phase of the noisy speech 

to derive the estimator of the complex spectral component of the 

clean speech as .ˆˆ j
kk eAS   Finally, the enhanced time signal is 

obtained by taking inverse DFT of .ˆ
kS  The motivation is thus 

to compute the gain function kG  so that it satisfies the estimator  

.ˆ
kkk RGA   

In the logarithmic domain, which was proposed in [8], the 

cost function of the Bayesian estimator is chosen as 

                     .ˆ log logˆ,
2

kkkk AAAAC                      (7) 

The LSA estimator shown in [8] can be derived by exploiting 

the moment generating function of kk YA | log  for complex 

Gaussian distributed clean speech and noise DFT coefficients as 
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where   is a real parameter. Equation (8) is equivalent to 
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By applying L'Hopital's rule, (9) can be expressed as 
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For a small value of ,  (10) can be simplified as 
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where   is approximated as .10    Note that (11) is a 

special case of the approach proposed in [24]. 

 The spectral amplitude estimator in (11) is now considered 

under SPP. Given two hypotheses,   kk DYkH :0  and 

  ,:1 kkk DSYkH  which indicate speech absence and 

presence, respectively, assuming a complex Gaussian 

distribution of the DFT coefficients for both speech and noise 

[7], the conditional SPP,   ,|1 kk YkHP  is given by 
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where   kHPqk 0  is the a priori probability of speech 

absence,    kk dsk    is the a priori SNR in which  kd  

denotes the variance of noise,  kR dkk  2  is called the a 

posteriori SNR, and  .1 kkkk    By taking into account 

the SPP ,k  the estimator in (11) is obtained as 
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where 0ˆ
kA  denotes the optimal spectral amplitude estimator 

under consideration of SPP. It is interesting to mention that the 

estimator 0ˆ
kA  in (13) is a special case of the method proposed in 

[15]. Since the gain is constrained to be larger than a threshold 

minG  during speech absence, we consider 

                             .,| min0


kkk RGkHYAE                          (14) 

Accordingly, the conditional gain function during speech 
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presence is defined by 

                            
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where w

kG  is the weighted gain function considered with GGD. 

The proposed method is based on deriving w

kG  with 

generalized Gamma distributed speech priors. As can be seen 

from (7), the chosen cost function of the LSA estimator is the 

squared-error between the estimated and actual clean speech. 

This type of squared-error cost function, however, is not 

necessarily subjectively meaningful [17]. A more perceptually 

significant cost function is used in [17] based on a weighted 

error criterion that exploits the masking properties of the human 

auditory system. The chosen cost function is given by 

   2ˆˆ, kkkkk AAAAAC                (16) 

where   is a real parameter. To obtain the gain function w

kG  

corresponding to the above cost function in (16), we simplify 

(11) as  
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We now consider tow cases for GGD priors with 1  and 

.2  

A. The Case for GGD Priors with 1  

Since the noise is assumed to be Gaussian distributed, the 

conditional probability of kY  can be written as [25] 
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where 0I  is the th0 -order modified Bessel function of the first 

kind. Applying the large-value approximation of the Bessel 

function 0I  in (18) and by specifying the GGD prior of kA  in 

(5), the th  conditional moment can be simplified as 
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where k  is defined as 
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In terms of confluent hypergeometric function [26], the 

conditional moment in (19) can be determined by (21), shown in 

the next page. In (21),  .  is called the confluent 

hypergeometric function. Substituting (21) in (17), the weighted 

gain function 
w

kG  via k

w

k

w

k RGA ˆ  is determined by (22), 

shown in the next page. In (22), we simplify 

5.0 p and 5.0 q . From (13), (14), 

(15) and (22), we obtain 

kkk RGA )1()1(ˆ                (23) 

where the gain function )1(

kG  is obtained in (24). In (23), the 

superscript is used for denoting the GGD priors considered with 

.1  

B. The Case for GGD Priors with 2  

By specifying the GGD prior of kA  in (5), the th  

conditional moment can be simplified as 
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where  ./ kkkk    Substituting (25) in (17), the 

weighted gain function w

kG  via k

w

k
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k RGA ˆ  is determined by 

(26), shown in the next page. From (13), (14), (15) and (26), we 

obtain 
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where the gain function )2(

kG  is obtained in (28). In (27), the 

superscript is used for denoting the GGD priors considered with 

.2  

 It is interesting to show that the gain function )2(

kG  converges 

to the Wiener gain function for 1k  and consequently 

for 1k . Using the following approximation of the confluent 

hypergeometric function 
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(where a  corresponds to real value) the gain function )2(

kG , for 

1k , converges to 

k

k
kG






)2(

                       (30) 

which is the gain function of the Wiener filter for 1 . The 

consideration of 1k  for large values of k  is not 

contradictory, since speech is almost present for large values 

of k . This provides the validity of the incorporation of SPP into 

the gain function. 

 The asymptotic behavior of the gain functions for large 

values of k  in all cases is obtained as 

  .1kG               (31) 

The above two gain functions obtained in (24) and (28) are 

functions of both the a priori SNR k  and posteriori SNR k . 

Figs. 1 and 2 plot the gain functions as a function of the 

instantaneous SNR, 1k , for a fixed value of k  ( 5k  dB 

in left panel and 5k  dB in right panel) for several values   

and . As can be observed, the shape of the gain functions is 

similar to all cases. The parameters   and   are found to 

control the trade-off between the amount of noise reduction and 

speech distortion. Small values of   provide higher 

attenuation, while small values of   provide lower attenuation. 

As a good compromise between the amount of attenuation and 

speech distortion, we use 3  dB and 10  dB in the 

experiment. 
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IV.  EXPERIMENTAL RESULTS 

In this section, we investigate the performance of the 

proposed estimators. 

The NOIZEUS speech corpus [27], which is comprised of 

phonetically balanced utterances, is used for investigation. The 

corpus comes with non-stationary noises at different SNRs. 

Two kinds of noises taken from the corpus are used in the 

experiments. These are babble noise and train noise. In addition 

to these, white Gaussian noise which is added by ourselves to 

the clean part of the corpus is also used for investigation. All 

utterances (30 utterances) of the corpus are used in experiments. 

The sampling frequency of the test utterances is 8 kHz. A 

20-msec analysis Hamming window is used with 50% overlap 

between frames. The lower bound threshold minG  is set to 40  

dB. The shaping parameter   is set to 2  dB. The a priori
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Fig. 1 Gain functions of the proposed estimator )1(ˆ
kA  (23) for several values of   and   as a function of the instantaneous SNR, 

1k , for 2  dB. The left panel plots the gain functions for 5k  dB, whereas the right panel plots the gain functions 

for 5k . 

 

 

Fig. 2 Gain functions of the proposed estimator )2(ˆ
kA  (27) for several values of   and   as a function of the instantaneous SNR, 

1k , for 2  dB. The left panel plots the gain functions for 5k  dB, whereas the right panel plots the gain functions 

for 5k . 

 

 SNR is estimated by the approach proposed in [7], and the a 

priori probability of speech absence for computing the SPP is 

estimated according to [14]. For estimation of noise variance, 

we use the approach proposed in [28]. 

The performance of the proposed estimators )1(ˆ
kA  and )2(ˆ

kA  is 

compared to the weighted-Euclidean distance estimator [17] 

and  -order MMSE estimator [24], referred to here as )(ˆ E

kA  

and )(ˆ 
kA , respectively. The typical parameter selection is the 

same as that in those approaches. The performance of all 

estimators is evaluated using both objective measures and 

subjective listening test. 

A. Objective Evaluations 

Many objective measures can be used to assess speech 

enhancement algorithms. The segmental SNR (SSNR) is 

generally used to measure the amount of noise reduction of the 

speech signals. However, the SSNR is not strongly correlated 

with the subjective measures such as the mean opinion score 

(MOS), since it does not closely emulate the signal processing 

involved at the auditory periphery. A study of the correlation 

between MOS and objective measures was conducted in [27]. 

One of the objective measures that was found to have the best 

correlation with MOS was the perceptual evaluation of speech 

quality (PESQ) measure with correlation coefficients of 0.89. 

The PESQ was found to have well correlated with both signal 

and background distortions. We will use the SSNR and PESQ 

measures for evaluation in the following. 
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The SSNR in each frame is calculated as follows 
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where  ns  is the original signal,  nŝ  is the enhanced signal, 

M is the number of frames averaged, and N  is the frame length. 

Fig. 3 shows the averaged SSNR for various types of noise and 

levels. As can be seen, the proposed estimators achieve larger 

SSNR values than the other estimators do under all tested 

conditions. 

 The PESQ measure was not generally intended to assess 

speech enhancement algorithms. However, it has been used in 

the past years in several speech enhancement algorithms. It 

converts the disturbance parameters in speech to a MOS-like 

listening quality score in a very wide range of conditions that 

may include codec distortions, errors, filtering, and variable 

signal delay. The higher score means better perceptual speech 

quality. 

The results of the experiments, in terms of the mean PESQ 

scores for different types of noise and levels, are presented in 

Fig. 4. As can be observed, the proposed estimators give better 

results compared to the conventional estimators. A competitive 

result between the estimators )1(ˆ
kA  and )(ˆ E

kA  is obtained only in 

babble noise. The PESQ, however, is deaf to residual musical 

noise. A listening test should be, thus, conducted to investigate 

the subjective speech quality. 

B. Subjective Evaluations 

To evaluate the quality of speech produced by the four 

estimators, an informal listening test is conducted. Ten 

utterances of the corpus (produced by five male and five female 

speakers) corrupted by train noise at 10 dB SNR are used in the 

listening test. Listeners participated in the experiments are ten 

persons who have normal hearing ability. The listening test is 

conducted using a paired-preference paradigm. The listeners are 

presented with pairs of sentences: one enhanced with our 

proposed estimators and the other enhanced with either )(ˆ 
kA  

or )(ˆ E

kA . The listeners are asked to choose the sentence which is 

(1) more natural (2) easier to listen, and (3) less distorted in 

terms of having less residual noise. The overall preference is 

assessed for speech enhanced by the proposed estimators 

compared to the speech enhanced by the conventional 

estimators. A higher percentage of preference, for a particular 

speech type processed by a method, indicates that the speech 

type is more preferred. On the other hand, a smaller percentage 

of preference indicates that the speech type is less preferred. 

The listening test results are shown in Table I. As is evident, 

the proposed estimators have a higher preference than that of the 

conventional estimators. This is mostly due to the fact that the 

perceptually meaningful cost function with GGD speech priors 

is utilized in the proposed estimators. 

V. DISCUSSION AND CONCLUSIONS 

In this paper, we have proposed two Bayesian estimators for 

single channel speech enhancement. The experimental results 

show that the proposed estimators, particularly the estimator 

considered with 2 , are effective for speech enhancement.  

The conventional approaches generally increase the quality 

of speech by reducing the amount of noise, while they decrease 

the intelligibility in terms of perceptuality of speech. In contrast 

to the conventional approaches, the proposed estimators are 

devoted to increase the amount of noise reduction as well as 

perceptual speech quality. This can be observed by the SSNR 

and PESQ results. 

As can be observed from the results, the proposed estimators 

maximize the amount of noise reduction, while they increase or 

keep the same perceptuality of speech compared to that the 

conventional approaches tested here do. This is also consistent 

to the results of the listening test in which the proposed 

estimators are more preferred than the conventional approaches. 

This is mainly due to the use of the weighted criterion that takes 

the advantage of the perceived loudness of the LSA estimator 

and masking properties of the Euclidean measure. The weighted 

estimators have further considered with generalized Gamma 

distributed speech priors under SPP that makes the proposed 

estimators to be superior. 
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Fig. 3 Speech quality, in terms of SSNR, for various kinds of noise and levels. The left, middle and right panels show the SSNR for 

white Gaussian noise, babble noise and train noise, respectively. 

 

 

 
 

Fig. 4 Speech quality, in terms of PESQ, for various kinds of noise and levels. The left, middle and right panels show the PESQ 

values for white Gaussian noise, babble noise and train noise, respectively. 
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