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ABSTRACT 

In hands free speech communication environments 

situation occurs that speech is superposed by background noise. 

Over the past few decades there is tremendous increase in the 

level of ambient environmental noise. This has been due to 

growth of technology. Noise is added by various factors like noisy 

engines, heavy machines, pumps, vehicles, over noisy telephone 

channel or using radio communication device in an aircraft 

cockpit. As speech is transmitted and received using various 

media it introduces distortions and have bandwidth constraints. 

These degradations lower intelligibility of speech message 

causing severe problems in downstream processing and user 

perception of speech signal. There has been a lot of research in 

speech denoising so far but there always remains room for 

improvement. The motivation to use wavelet as a possible 

alternative is to explore new ways to reduce computational 

complexity and to achieve better noise reduction performance. 

The wavelet denoising technique is called thresholding. It is 

divided in three steps. The first one consists in computing the 

coefficients of the wavelet transform (WT) which is a linear 

operation. The second one consists in thresholding these 

coefficients. The last step is the inversion of the thresholded 

coefficients by applying the inverse wavelet transform, which 

leads to the denoised signal. This technique is simple and 

efficient. In this paper wavlet is used as denoising algorithm. 

Performance of the Haar and Daubechies wavelets are 

experimentally evaluated. 
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INTRODUCTION 

Speech is a very basic way for humans to convey 

information with the emotion of a human voice to one another. 

People use speech to communicate messages.[1] Human speech 

can be modeled as filter acting on excitation waveform. The vocal 

tract shape causes certain frequencies in the excitation to be 

amplified and attenuates other frequencies. The excitation takes 

the form of quasi periodic puffs of air, which causes the output 

speech to appear periodic. Speech can be divided into voiced and 

unvoiced. Voiced speech has a spectrum with energy concentrated 

at discrete frequencies i.e. at the fundamental frequency of the 

vocal folds and its multiples (harmonics). About one third of 

speech is completely a periodic (unvoiced) resulting from a 

random excitation that resembles white noise, caused by air 

rapidly passing through a narrow constriction in vocal tract.[2]. 

There often occur conditions under which we measure and then 

transform the speech signal to another form in order to enhance 

our ability to communicate with a band width of only 4 kHz. With 

the advent of the wonders of digital technology, the analog to 

digital converter samples the electrical speech e.g.  8000 samples 

per second for telephone speech, so that speech signal can be 

digitally transmitted and processed. During transmission and 

reception signals are often corrupted by noise which is unwanted 

signal. There are many forms of noise. One of the most common 

sources of noise is background noise which is always present at 

any location. Other types of noise include channel noise which 

affects both analog and digital transmission, quantization noise 

which results from over compression of speech signals, multi 

talker babble, reverberation noise or delayed version of noise are 

also present in some situations.[5] The additive background noise 

is random in nature and also uncorrelated with speech[11]. It 

present in various environment scenarios like offices, cars, city 

streets fans, factory environment, helicopters etc. Incas of additive 

background noise the assumptions made for developing 

enhancement methods are 1) Speech and noise signals are 

uncorrelated at least over a short time basis. 2) Noise is stationary 

or slowly varying over several frame of speech and 3) Noise can 

be represented as zero mean random processes [13]. In case of 

reverberation, reflections of speech from various objects will be 

mixed with the speech in a convolutive fashion. Thus degradation 

in case of reverberation is signal dependent, whereas, it is 

independent in case of additive background noise. Speech from 

other speakers may also get mixed with desired speaker’s speech 

in an additive fashion. Since the characteristics of degradation are 

different in each case, degraded speech may need to be processed 

in different ways. Therefore an automated means of removing the 

noise would be an invaluable first stage for many signal 

processing tasks. Denoising has long been a focus of research and 

yet there always remains room for improvement. Speech 

enhancement in general various objectives to increase accuracy of 

speech recognition systems operating in noisy environments.[5] 

Broad classification of speech enhancement methods is 

classified as time domain approach and transforms domain 

approach. Filtering performed directly on time sequences includes 

techniques such as LPC based digital filtering , kalman filtering 

and hidden markov model(HMM). In the transform domain 

approach noise attenuation is performed on transform coefficients. 

Transform can be Fourier transform (FT), Karhunen Loeve 

transform, discrete cosine transform (DCT) or wavelet transform 

(WT).Time domain filtering of the corrupted signal are simple 

methods originally employed however, this is only successful 

when removing high frequency noise from low frequency signals 

and does not provide satisfactory results under real world 

conditions.[5] The problem of denoising consists of removing 

noise from corrupted signal without altering it. Fourier domain 

was long been the method of choice to suppress noise [3].The 
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classical methods based on spectral subtraction are effective for 

this purpose; however they introduce artificial noise and alter the 

original signal. While solving engineering problems t

of wavelets in signal and image processing has been found t

very useful tool.  

1.1 Wavelet Transform: 
 The Wavelet transform was inspired by the idea that we could 

vary the scale of the basis functions instead of their frequency. 

The fundamental idea behind wavelets is to analyze according to 

scale, instead of representing a function as a sum of weighted 

delta functions (as in the time domain), or as a sum of weighted 

sinusoids (as in the frequency domain), it represents the function 

as a sum of time-shifted (translated) and scaled (dilated) 

representations of some arbitrary function, which is called a 

wavelet. An advantage of wavelet transforms is that, Wavelet 

analysis allows the use of long time intervals for low

information, and shorter regions for high

information.[8] The Discrete Wavelet Transform (DWT) involves 

choosing scales and positions based on powers of two. So called 

dyadic scales and positions. The mother wavelet is rescaled or 

dilated.[4][5][6] 

1.2 Signal Decomposition: 

Starting with a discrete input signal vector s, the first 

stage of the DWT algorithm decomposes the signal into two sets 

of coefficients. These are the approximation coefficients cA1 (low 

frequency information) and the detail coefficients cD1 (high 

frequency information). The coefficient vectors are obtained by 

convolving s with the low-pass filter Lo_D for approximation and 

with the high-pass filter Hi_D for details. This filtering operatio

is then followed by dyadic decimation or down sampling by a 

factor of 2. Mathematically the two-channel filtering of the 

discrete signal s is represented by the expressions[7][8]

       

Figure 1.   Filtering operation of the DWT

 

These equations implement a convolution plus down 

sampling by a factor 2 and give the forward fast wavelet 

transform. If the length of each filter is equal to 2N and the length 

of the original signal s is equal to n, then 

lengths of the coefficients cA1 and cD1 are given by the formula:

 

 

The decomposition process can be iterated, with 

successive approximations being decomposed in turn, so that one 

signal is broken down into many lower resolution components. 

This is called the wavelet decomposition tree.[7][8]
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Filtering operation of the DWT 

These equations implement a convolution plus down 

sampling by a factor 2 and give the forward fast wavelet 

transform. If the length of each filter is equal to 2N and the length 

of the original signal s is equal to n, then the corresponding 

lengths of the coefficients cA1 and cD1 are given by the formula: 

    

The decomposition process can be iterated, with 

successive approximations being decomposed in turn, so that one 

many lower resolution components. 

This is called the wavelet decomposition tree.[7][8] 

Figure 2. Decomposition of DWT coefficients

 

Since the analysis process is iterative, in theory it can be 

continued indefinitely. In reality, the decomposition can on

proceed until the vector consists of a single sample. Normally, 

however there is little or no advantage gained in decomposing a 

signal beyond a certain level. The selection of the optimal 

decomposition level in the hierarchy depends on the nature of the

signal being analyzed or some other suitable criterion, such as the 

low-pass filter cut-off. 

The original signal can be reconstructed or synthesized 

using the inverse discrete wavelet transform (IDWT). The 

synthesis starts with the approximation and detai

and cDj, and then reconstructs cA

with the reconstruction filters. 

 

Figure 3.  Wavelets reconstruction

The reconstruction filters are designed in such a way to 

cancel out the effects of aliasing introduc

decomposition phase. The reconstruction filters (Lo_R and Hi_R) 

together with the low and high pass decomposition filters. For a 

multilevel analysis, the reconstruction process can itself be 

iterated producing successive approximations at

and finally synthesizing the original signal.

 

1.3 Signal Denoising: 

 

It has been seen that wavelets can remove noise more 

effectively than the traditionally used methods

wavelet transforms to denoise data is accomplished by

wavelet transformation to the noisy data, thresholding the 

resulting coefficients which are below some value in magnitude, 

 
Figure 2. Decomposition of DWT coefficients 

Since the analysis process is iterative, in theory it can be 

continued indefinitely. In reality, the decomposition can only 

proceed until the vector consists of a single sample. Normally, 

however there is little or no advantage gained in decomposing a 

signal beyond a certain level. The selection of the optimal 

decomposition level in the hierarchy depends on the nature of the 

signal being analyzed or some other suitable criterion, such as the 

The original signal can be reconstructed or synthesized 

using the inverse discrete wavelet transform (IDWT). The 

synthesis starts with the approximation and detail coefficients cAj 

, and then reconstructs cAj-1 by up sampling and filtering 

 
Figure 3.  Wavelets reconstruction 

The reconstruction filters are designed in such a way to 

cancel out the effects of aliasing introduced in the wavelet 

decomposition phase. The reconstruction filters (Lo_R and Hi_R) 

together with the low and high pass decomposition filters. For a 

multilevel analysis, the reconstruction process can itself be 

iterated producing successive approximations at finer resolutions 

and finally synthesizing the original signal. 

It has been seen that wavelets can remove noise more 

effectively than the traditionally used methods[4,6]. Use of 

wavelet transforms to denoise data is accomplished by applying a 

wavelet transformation to the noisy data, thresholding the 

resulting coefficients which are below some value in magnitude, 
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and then inverse transforming to obtain a smoother version of the 

original data. 

In this work the concept of Additive White Gaussian 

Noise (AWGN) is used. This simply means a noise, which has a 

Gaussian probability density function and white power spectral 

density function (noise distributed over the entire frequency 

spectrum) and is linearly added to whatever signal being analyzed. 

In the simplest model we suppose that,[10] 

 

s �n�  �  f �n�  �  σ e �n� … … … … … … … … … 3 
 

Where time n is equally spaced. e(n) is a Gaussian white 

noise N (0,1) and the noise level σ .The de-noising objective is to 

suppress the noise part of the signal s and to recover f. The 

method is efficient for families of functions f that have only a few 

nonzero wavelet coefficients. 

 

1.4 Denoising procedure: 

 

The general de-noising procedure involves three steps. The basic 

version of the procedure follows the steps described below. 

1. Decompose - Choose a wavelet, choose a level N. Compute the 

wavelet decomposition of the signal s at level N. 

2. Thresholding: Threshold detail coefficients - For each level 

from 1 to N, select a threshold and apply soft or hard 

thresholding method to the detail coefficients. 

3. Reconstruct - Compute wavelet reconstruction using the 

original approximation coefficients of level N and the modified 

detail coefficients of levels from 1 to N. 

 

1.5 Soft and Hard Thresholding: 
Hard Thresholding is the simplest method. Soft 

Thresholding has nice mathematical properties and the 

corresponding theoretical results are available.[9][10][12]. 

 

 
Figure 4. Signal, hard thresholding and soft thresholding 

 

Let t denote the threshold. 

The hard threshold signal x is x if |x| > t, is 0 if |x| t. 

The soft threshold signal x is sign(x)(|x| - t) if |x| > t is 0 if |x| t. 

Hard thresholding can be described as the usual process 

of setting to zero the elements whose absolute values are lower 

than the threshold. Soft thresholding is an extension of hard 

thresholding, first setting to zero the elements whose absolute 

values are lower than the threshold, and then shrinking the 

nonzero coefficients towards 0. The hard procedure creates 

discontinuities at x = ±t, while the soft procedure does not. 

1.6 Choice of wavelet: 
Choosing a wavelet that has compact support in both 

time and frequency in addition to significant number of vanishing 

moments is essential for an algorithm. Several criteria can be used 

in selecting an optimal wavelet function. The objective is to 

minimize reconstructed error variance and maximize signal to 

noise ratio (SNR).Optimum wavelets can be selected based on the 

energy conservation properties in the approximation part of the 

coefficients. Wavelets with more vanishing moments should be 

selected as it provides better reconstruction quality and introduce 

less distortion into processed speech and concentrate more signal 

energy in few coefficients. Computational complexity of DWT 

increases with the number of vanishing moments and hence for 

real time applications it cannot be suggested with high number of 

vanishing moments. 

 

 

2 RESULTS AND IMPLEMENTATION OF 

WAVELET: 
The speech signals used for the work are pronounced by 

male and female speakers, recorded using sound recorder facility 

with external microphone using mono channel. Samples used are 

11000. Signal is sampled at sampling frequency Fs=8000 Hz, 

encoded using 16 bits, and degraded by additive Gaussian white 

noise. Signal is corrupted by 5db, 10 db and 15 db additive noises. 

Thus we have the noisy signal in required SNRs. In case of 

additive background noise the assumptions made for developing 

enhancement methods are (i) speech and noise signals are 

uncorrelated at least over a short-time basis, (ii) noise is either 

stationary or slowly varying as compared to speech, and (iii) noise 

can be represented as zero mean random process. The degradation 

level of additive background noise is normally specified by the 

measure called Signal to Noise Ratio (SNR) and is defined as the 

ratio of signal energy to noise energy.  For evaluating 

performance of the method both objective and subjective tests are 

conducted. In objective test, SNR of signal after denoising is 

computed. Other two parameters used for comparing results are 

time required for reconstruction of signal and mean square error 

between clean signal and denoised signal. Haar and Daubechies 

wavelets are implemented on noisy signal and effort is made to 

remove additive white Gaussian noise from noisy signal. Signal is 

decomposed to level 4 and level 5. 

Let s (n) is the clean speech, y (n) the noisy, sˆ (n) the enhanced 

signal and w (n) the noise then we have:  

 

                            y (n) = s (n) + w (n) -------------------------------5  

                                                        

  SNR of denoised signal can be calculated as 

 

SNR out =   10 log10   

∑ �� ���

∑������ �^����2 ----------------------------6 

 

Minimizing mean square error (MSE) between the 

processed speech and the clean speech is a commonly used 

technique in the filtering algorithms. MSE is a valid distance 

measure between two speeches and it is computed directly as,  

   

MSE=
�

� 
∑ ��� ������     

��� �  �����2   --------------------------------7 

 

Speech signal pronounced by male speaker is as shown in figure 

and respective spectrogram of ‘.wav’ file is as shown. Results are 

shown for level 4 decomposition of noisy signal with Haar 

wavelet implementation. 
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3 RESULTS AND DISCUSSION 

From Table 1 it is observed that time elapsed and MSE are same 

for all Harr and Various Db Wavelets mentioned wavelets. 

Maximum SNR can be seen for Db6 and Db20. SNR using DB8 

and Db18 are also approximately give same results for AGN noise 

using hard thresholding. In case of soft thresholding Db18 gives 

highest SNR as compared to others.  

Haar wavelet gives worst results.  If results of random noise using 

hard thresholding are compared then MSE is maximum for Db6, 

Db10 and Db20 for hard thresholding and minimum for Db2. 

Maximum SNR is at DB18. Db6 also performs better. For soft 

thresholding Db6 and Db20 gives good results, Haar is giving  

least SNR. 

From Table 2 it is clear that in hard thresholding for AWGN, 

Db14 and Db16 are approximately gives same performance. Db16 

requires little more time in reconstructing signal. Db20 takes 

maximum time to reconstruct among all wavelets and SNR is also 

very less as compared to others. Though Db20 takes long time for 

reconstruction it has maximum SNR than others for soft 

thresholding. For same SNR as Db20, Db18 is better as it takes 

less time than Db20.  

For random noise of 10 dB, db20 is best but takes more time. 

Mean square error is same as that for Db10, 14, 16 and haar. 

When soft Thresholding is used Db6 and Db20 performs better 

and Db6 is preferable as it needs less time than Db20. 

Table 3 represents results for 15 dB noise added to signal b1.wav 

and decomposed up to 5 levels. Haar wavelet needs maximum 

time to reconstruct signal but also has maximum SNR. Db20 

gives same SNR as compared to Haar and also needs less time. 

For soft thresholding in AWGN db 20 gives maximum SNR and 

needs same time as Db10, 12, 14, 16, 18 which have 

comparatively less SNR. Db2 works better than others for random 

noise with hard thresholding. In soft thresholding results, it is 

observed that db2 and db6 are better. Out of these two wavelets 

db2 needs less reconstruction time.         

As shown in Table no. 4 for AWGN, for hard thresholding Db8 

and Db18 have approximately same SNR. Db18 requires little 

more time. From results it is clear that Haar needs least time and 

Db20 needs maximum time. Db18 also works well for soft 

thresholding. In case of random noise hard thresholding db20 is 

the best wavelet as it requires medium time to reconstruct and 

SNR value is also maximum. The Soft thresholding technique is 

best suited with Db16.  

From Table 5 it is clear that Db6, Db8 and Db18 give same SNR 

results for AWGN hard Thresholding where Db 18 needs more 

time to reconstruct than other two. In db16 for soft thresholding 

has maximum SNR than Db8. Random noise results clearly show 

that Db18 gives good performance as compared to Db10 having 

same SNR value but takes more time for reconstruction. When 

soft threshold is used reconstructed signal has maximum SNR 

using Db12 with approximately zero MSE and needs same time as 

other wavelets having comparatively less SNR values 

From results shown in Table 6 hard thresholding results for 

AWGN of 15 dB it seems that almost all wavelets have same or 

very close SNR values with approximately 0 MSE but take more 

or less time for reconstructing signal. Here Db8 takes maximum 

time than other wavelets. For soft thresholding method Db16 

gives highest SNR with 0 MSE but takes more time for signal 

reconstruction.  

Here Haar wavelet has least SNR with more reconstruction time 

for hard threshold and performs poor for both type of 

thresholding. When soft thresholding is used Db18 with 0 MSE 

but somewhat more time while reconstructing has maximum SNR 

than others. 

 Further discussion is about performance of Haar and different 

Daubechies wavelets on two signals b1.wav and j4.wav for level4 

decomposition. For level 4 overall SNR values seems to be more 

than that of for level5. As signal energy is distributed in less 

number of levels  

From results in Table 7, for level 4 decomposition of signal in 

AWGN and hard Thresholding, Db8 and Db16 both have good 

performance. In this case Db16 takes somewhat more time. Haar 

wavelet though needs less time for reconstructing as per results 

has lowest SNR. When soft Thresholding is used Db18 gives 

maximum SNR. In this case also it was found that Haar wavelet is 

giving poor performance. In case of random noise Db18 with 

0.002 MSE has highest SNR. For soft thresholding Db 20 with 

0.003 MSE and less time among all wavelets gives maximum 

SNR. 

When hard Thresholding is used and signal is corrupted with 

AWGN, Db2 wavelet gives same MSE as other wavelets have 

good SNR. Using same method for random noise Db6 is found to 

have good results and less MSE than for AWGN. 

 For soft thresholding Db18 with comparatively more time gives 

good SNR. For random noise with soft thresholding it is observed 

that it takes same time to reconstruct with same MSE. Db16 

performs better than Db6. 

From results in Table 9 Haar takes less time to reconstruct and 

give same SNR as Db8, Db10, Db12. Db18 can be said to be good 

for AWGN when hard thresholding is used.  Db18 has highest 

SNR among all wavelets. Db20 wavelet with hard thresholding 

and Db6 with soft thresholding performs well against random 

Noise. 
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Table 1: Results for B1.Wav input file for application of Haar and Db wavelet 

Level 5 decomposition with  addition of 5dB noise 

 

Wavelet 

       Additive White Gaussian noise                       Random noise 

Hard thresholding Soft thresholding Hard thresholding Soft thresholding 

Time  MSE SNR Time  MSE SNR Time  MSE SNR Time  MSE SNR 

Haar 0.04 0.004 19.96 0.04 0.004 21.161 0.04 0.002 24.25 0.04 0.002 22.70 

Db2 0.04 0.004 19.91 0.04 0.004 21.666 0.04 0.001 24.82 0.04 0.003 23.47 

Db4 0.04 0.004 19.92 0.04 0.004 22.023 0.04 0.002 25.81 0.04 0.001 23.41 

Db6 0.04 0.004 20.00 0.04 0.004 22.106 0.04 0.003 25.90 0.04 0.002 23.61 

Db8 0.04 0.004 19.99 0.04 0.004 21.955 0.04 0.002 25.52 0.04 0.002 23.50 

Db10 0.06 0.004 19.91 0.04 0.004 22.079 0.04 0.003 25.67 0.04 0.002 23.37 

Db12 0.04 0.004 19.92 0.04 0.004 22.052 0.04 0.002 25.08 0.04 0.003 22.99 

Db14 0.04 0.004 19.95 0.04 0.004 22.219 0.04 0.002 25.05 0.04 0.002 22.84 

Db16 0.04 0.004 19.89 0.04 0.004 22.303 0.04 0.002 25.15 0.04 0.002 23.51 

Db18 0.04 0.004 19.98 0.04 0.004 22.343 0.04 0.002 26.43 0.04 0.002 23.46 

Db20 0.04 0.004 20.00 0.04 0.004 22.037 0.04 0.003 25.70 0.04 0.002 23.53 

  

 

Table 2: Results for B1.Wav input file for application of Haar and Db wavelet 

 

 

Table 3: Results for B1.Wav input file for application of Haar and Db wavelet 

Level 5 decomposition with  addition of 15 dB noise 

 

Wavelet 

       Additive White Gaussian noise                       Random noise 

Hard thresholding Soft thresholding Hard thresholding Soft thresholding 

Time  MSE SNR Time  MSE SNR Time  MSE SNR Time  MSE SNR 

Haar 0.048 0.004 20.01 0.037 0.004 21.29 0.037 0.002 21.30 0.036 0.002 21.37 

Db2 0.037 0.004 20.00 0.038 0.004 21.73 0.038 0.003 21.82 0.037 0.002 21.48 

Db4 0.037 0.004 20.00 0.038 0.004 22.16 0.038 0.003 22.03 0.038 0.003 21.24 

Db6 0.038 0.004 19.98 0.041 0.004 22.28 0.039 0.003 21.87 0.039 0.003 21.47 

Db8 0.038 0.004 20.00 0.038 0.004 22.18 0.041 0.002 21.39 0.039 0.003 20.94 

Db10 0.038 0.004 19.98 0.039 0.004 22.22 0.039 0.000 21.63 0.039 0.002 21.25 

Db12 0.038 0.004 19.98 0.039 0.004 22.19 0.039 0.002 21.48 0.039 0.002 21.12 

Db14 0.039 0.004 19.99 0.039 0.004 22.35 0.042 0.003 21.61 0.039 0.002 21.18 

Db16 0.039 0.004 20.00 0.039 0.004 22.36 0.040 0.003 21.87 0.039 0.002 21.19 

Db18 0.039 0.004 19.99 0.039 0.004 22.49 0.039 0.003 21.49 0.040 0.002 21.15 

Db20 0.040 0.004 20.01 0.039 0.004 22.31 0.040 0.003 21.61 0.040 0.002 21.11 

Level 5 decomposition with  addition of 10 dB noise 

 

Wavelet 

       Additive White Gaussian noise                       Random noise 

Hard thresholding Soft thresholding Hard thresholding Soft thresholding 

Time  MSE SNR Time  MSE SNR Time  MSE SNR Time  MSE SNR 

Haar 0.037 0.004 19.97 0.043 0.004 21.13 0.036 0.003 22.33 0.036 0.003 22.02 

Db2 0.037 0.004 20.01 0.038 0.004 21.72 0.038 0.002 23.67 0.038 0.003 22.33 

Db4 0.037 0.004 19.97 0.038 0.004 22.01 0.039 0.002 23.04 0.037 0.002 22.14 

Db6 0.038 0.004 19.95 0.039 0.004 22.11 0.039 0.002 23.16 0.039 0.001 22.48 

Db8 0.038 0.004 19.96 0.040 0.004 22.21 0.039 0.002 22.99 0.039 0.002 22.02 

Db10 0.039 0.004 19.92 0.039 0.004 22.18 0.039 0.003 23.53 0.039 0.002 21.96 

Db12 0.039 0.004 20.00 0.039 0.004 22.21 0.039 0.002 23.60 0.039 0.003 22.09 

Db14 0.038 0.004 20.03 0.039 0.004 22.29 0.039 0.003 23.25 0.039 0.003 21.93 

Db16 0.039 0.004 20.02 0.039 0.004 22.30 0.039 0.003 23.46 0.039 0.003 21.95 

Db18 0.040 0.004 20.01 0.040 0.004 22.34 0.039 0.002 22.98 0.039 0.002 22.05 

Db20 0.044 0.004 19.94 0.140 0.004 22.34 0.040 0.003 24.13 0.039 0.003 22.41 
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Table 4: Results for j4.Wav input file for application of Haar and Db wavelet 

Level 5  decomposition with  addition of  5 dB noise 

 

Wavelet 

       Additive White Gaussian noise                       Random noise 

Hard thresholding Soft thresholding Hard thresholding Soft thresholding 

Time  MSE SNR Time  MSE SNR Time  MSE SNR Time  MSE SNR 

Haar 0.036 0.000 19.92 0.038 0.001 20.79 0.041 0.000 21.23 0.036 0.001 20.03 

Db2 0.038 0.000 19.92 0.037 0.000 21.11 0.038 0.001 21.64 0.038 0.000 20.53 

Db4 0.040 0.000 19.94 0.038 0.000 21.49 0.038 0.001 21.94 0.038 0.001 20.76 

Db6 0.039 0.000 19.92 0.039 0.000 21.64 0.038 0.001 22.09 0.038 0.001 20.88 

Db8 0.039 0.000 19.96 0.039 0.000 21.77 0.039 0.001 22.27 0.038 0.001 20.83 

Db10 0.039 0.000 19.89 0.039 0.000 21.64 0.040 0.000 22.23 0.039 0.001 20.87 

Db12 0.039 0.000 19.94 0.040 0.001 21.53 0.039 0.001 22.39 0.038 0.001 20.80 

Db14 0.039 0.000 19.90 0.039 0.000 21.81 0.041 0.001 22.48 0.042 0.001 20.80 

Db16 0.039 0.000 19.95 0.041 0.000 21.64 0.041 0.000 22.18 0.039 0.002 20.91 

Db18 0.040 0.000 19.97 0.039 0.000 21.83 0.039 0.001 21.95 0.039 0.001 20.87 

Db20 0.045 0.000 19.90 0.040 0.000 21.78 0.039 0.001 22.60 0.039 0.000 20.76 

 

 

Table 5: Results for j4.Wav input file for application of Haar and Db wavelet 

Level 5 decomposition with  addition of 10 dB noise 

 

Wavelet 

       Additive White Gaussian noise                       Random noise 

Hard thresholding Soft thresholding Hard thresholding Soft thresholding 

Time  MSE SNR Time  MSE SNR Time  MSE SNR Time  MSE SNR 

Haar 0.036 0.000 19.97 0.036 0.000 21.00 0.037 0.001 20.87 0.036 0.001 20.09 

Db2 0.037 0.000 19.97 0.038 0.000 21.24 0.038 0.000 21.10 0.040 0.001 20.00 

Db4 0.039 0.000 19.98 0.038 0.000 21.60 0.037 0.000 21.22 0.038 0.002 20.39 

Db6 0.039 0.000 20.00 0.038 0.000 21.73 0.039 0.000 21.16 0.039 0.000 20.19 

Db8 0.039 0.000 20.00 0.039 0.000 21.84 0.038 0.000 21.48 0.039 0.001 20.21 

Db10 0.038 0.000 19.97 0.039 0.000 21.78 0.045 0.001 21.73 0.041 0.001 20.28 

Db12 0.043 0.000 19.97 0.039 0.000 21.92 0.038 0.000 21.49 0.039 0.000 20.56 

Db14 0.042 0.000 19.99 0.039 0.000 21.77 0.039 0.001 21.23 0.039 0.001 20.47 

Db16 0.038 0.000 19.97 0.040 0.000 21.91 0.039 0.001 21.57 0.041 0.001 20.29 

Db18 0.041 0.000 20.00 0.039 0.000 21.82 0.039 0.001 21.74 0.039 0.001 20.39 

Db20 0.040 0.000 19.97 0.040 0.000 21.75 0.040 0.001 21.31 0.039 0.001 20.49 

 

 

Table 6: Results for j4.Wav input file for application of Haar and Db wavelet 

Level 5 decomposition with  addition of 15  dB noise 

 

Wavelet 

       Additive White Gaussian noise                       Random noise 

Hard thresholding Soft thresholding Hard thresholding Soft thresholding 

Time  MSE SNR Time  MSE SNR Time  MSE SNR Time  MSE SNR 

Haar 0.036 0.000 20.00 0.036 0.000 20.97 0.072 0.000 19.85 0.036 0.001 19.57 

Db2 0.038 0.000 20.00 0.038 0.000 21.32 0.037 0.000 20.14 0.038 0.000 19.74 

Db4 0.038 0.000 19.99 0.039 0.000 21.61 0.038 0.001 20.21 0.038 0.000 19.82 

Db6 0.039 0.000 20.00 0.039 0.000 21.68 0.038 0.002 20.12 0.038 0.001 19.65 

Db8 0.045 0.000 19.99 0.039 0.000 21.85 0.042 0.001 20.26 0.039 0.000 19.81 

Db10 0.040 0.000 20.00 0.039 0.000 21.85 0.039 0.002 20.28 0.039 0.000 19.68 

Db12 0.040 0.000 19.99 0.039 0.000 21.82 0.039 0.001 20.66 0.038 0.001 19.85 

Db14 0.039 0.000 19.99 0.040 0.000 21.87 0.039 0.001 20.79 0.039 0.000 19.83 

Db16 0.039 0.000 20.00 0.041 0.000 21.90 0.041 0.001 20.61 0.039 0.002 19.79 

Db18 0.042 0.000 19.99 0.039 0.000 21.79 0.044 0.001 20.09 0.040 0.000 19.96 

Db20 0.042 0.000 20.00 0.039 0.000 21.83 0.041 0.001 20.58 0.039 0.001 19.81 
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Table 7: Results for B1.Wav input file for application of Haar and Db wavelet. 

Level 4 decomposition with  addition of 5 dB noise 

 

Wavelet 

       Additive White Gaussian noise                       Random noise 

Hard thresholding Soft thresholding Hard thresholding Soft thresholding 

Time  MSE SNR Time  MSE SNR Time  MSE SNR Time  MSE SNR 

Haar 0.038 0.004 19.84 0.036 0.004 21.07 0.032 0.003 24.84 0.051 0.002 23.87 

Db2 0.039 0.004 19.92 0.038 0.004 21.49 0.033 0.002 25.96 0.039 0.002 24.73 

Db4 0.037 0.004 19.88 0.039 0.004 21.84 0.032 0.002 26.72 0.040 0.002 25.22 

Db6 0.037 0.004 19.97 0.038 0.004 22.19 0.034 0.002 26.61 0.038 0.002 25.22 

Db8 0.037 0.004 19.93 0.038 0.004 21.95 0.037 0.003 26.66 0.039 0.001 25.01 

Db10 0.037 0.004 19.87 0.056 0.004 22.09 0.037 0.002 26.48 0.038 0.002 25.34 

Db12 0.038 0.004 19.87 0.039 0.004 21.99 0.037 0.003 26.91 0.038 0.002 25.07 

Db14 0.037 0.004 19.91 0.039 0.004 21.97 0.031 0.002 26.98 0.039 0.003 25.20 

Db16 0.038 0.004 19.93 0.040 0.004 21.94 0.034 0.002 26.92 0.038 0.002 25.20 

Db18 0.041 0.004 19.91 0.040 0.004 22.31 0.035 0.002 27.04 0.041 0.002 25.12 

Db20 0.040 0.004 19.91 0.039 0.004 22.16 0.035 0.002 26.88 0.038 0.003 25.46 

 

 

Table 8: Results for B1.Wav input file for application of Haar and Db wavelet. 

Level 4 decomposition with  addition of 10  dB noise 

 

Wavelet 

       Additive White Gaussian noise                       Random noise 

Hard thresholding Soft thresholding Hard thresholding Soft thresholding 

Time  MSE SNR Time  MSE SNR Time  MSE SNR Time  MSE SNR 

Haar 0.035 0.004 19.98 0.036 0.004 21.24 0.031 0.003 23.04 0.036 0.001 23.70 

Db2 0.036 0.004 20.02 0.038 0.004 21.76 0.033 0.002 23.64 0.037 0.003 25.00 

Db4 0.036 0.004 19.93 0.037 0.004 22.05 0.033 0.003 24.48 0.037 0.002 24.93 

Db6 0.037 0.004 19.95 0.040 0.004 22.19 0.034 0.003 24.72 0.038 0.002 25.52 

Db8 0.037 0.004 19.94 0.071 0.004 22.20 0.034 0.003 24.29 0.039 0.002 25.23 

Db10 0.038 0.004 19.97 0.038 0.004 22.19 0.034 0.002 24.24 0.038 0.002 25.34 

Db12 0.037 0.004 20.00 0.039 0.004 22.12 0.036 0.002 23.72 0.038 0.002 25.04 

Db14 0.038 0.004 20.01 0.041 0.004 22.30 0.034 0.003 24.18 0.040 0.002 25.04 

Db16 0.038 0.004 19.96 0.041 0.004 22.33 0.034 0.002 24.55 0.038 0.002 25.54 

Db18 0.044 0.004 19.98 0.043 0.004 22.46 0.035 0.002 24.27 0.039 0.002 25.25 

Db20 0.040 0.004 19.93 0.039 0.004 22.26 0.036 0.003 24.32 0.039 0.002 25.34 

 

 

Table 9: Results forB1.Wav input file for application of Haar and Db wavelet 

Level 4 decomposition with  addition of   15 dB noise 

 

Wavelet 

       Additive White Gaussian noise                       Random noise 

Hard thresholding Soft thresholding Hard thresholding Soft thresholding 

Time  MSE SNR Time  MSE SNR Time  MSE SNR Time  MSE SNR 

Haar 0.035 0.004 20.00 0.036 0.004 21.23 0.031 0.002 21.41 0.036 0.002 24.02 

Db2 0.036 0.004 19.98 0.037 0.004 21.74 0.034 0.003 22.00 0.037 0.002 24.71 

Db4 0.037 0.004 20.01 0.044 0.004 22.17 0.034 0.003 22.27 0.039 0.002 25.21 

Db6 0.037 0.004 19.98 0.038 0.004 22.24 0.038 0.002 21.99 0.037 0.002 25.46 

Db8 0.039 0.004 20.00 0.038 0.004 22.22 0.034 0.002 21.97 0.038 0.001 25.23 

Db10 0.038 0.004 20.00 0.040 0.004 22.23 0.034 0.003 22.34 0.038 0.003 25.05 

Db12 0.038 0.004 20.00 0.038 0.004 22.19 0.036 0.003 21.94 0.038 0.002 25.15 

Db14 0.040 0.004 19.99 0.039 0.004 22.31 0.035 0.003 22.20 0.038 0.001 25.27 

Db16 0.038 0.004 19.99 0.040 0.004 22.44 0.036 0.002 22.30 0.042 0.003 25.08 

Db18 0.039 0.004 20.00 0.039 0.004 22.48 0.035 0.002 22.19 0.038 0.002 25.37 

Db20 0.039 0.004 19.97 0.039 0.004 22.30 0.036 0.002 22.36 0.040 0.003 24.97 
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Table 10: Results forJ4.Wav input file for application of Haar and Db wavelet. 

Level 4 decomposition with  addition of 5 dB noise 

 

Wavelet 

       Additive White Gaussian noise                       Random noise 

Hard thresholding Soft thresholding Hard thresholding Soft thresholding 

Time  MSE SNR Time  MSE SNR Time  MSE SNR Time  MSE SNR 

Haar 0.035 0.001 19.91 0.036 0.001 20.76 0.031 0.000 22.05 0.037 0.001 21.54 

Db2 0.039 0.000 19.94 0.037 0.001 21.31 0.033 0.000 22.65 0.037 0.000 21.92 

Db4 0.037 0.001 19.94 0.037 0.001 21.31 0.037 0.000 22.77 0.037 0.001 22.16 

Db6 0.037 0.001 19.90 0.038 0.001 21.68 0.033 0.001 23.10 0.045 0.000 22.28 

Db8 0.037 0.001 19.87 0.038 0.001 21.78 0.032 0.001 23.63 0.040 0.001 22.57 

Db10 0.038 0.001 19.92 0.039 0.001 21.54 0.034 0.001 23.05 0.041 0.000 22.34 

Db12 0.037 0.001 19.87 0.038 0.000 21.71 0.034 0.000 23.31 0.039 0.000 22.55 

Db14 0.040 0.001 19.95 0.038 0.001 21.68 0.055 0.000 23.18 0.038 0.001 22.71 

Db16 0.042 0.001 19.95 0.044 0.001 21.69 0.038 0.001 23.56 0.040 0.000 22.75 

Db18 0.039 0.001 19.90 0.039 0.001 21.78 0.052 0.001 23.05 0.040 0.001 22.62 

Db20 0.041 0.001 19.94 0.039 0.000 21.54 0.039 0.000 23.57 0.039 0.001 22.56 

 

 

Table 11: Results forJ4.Wav input file for application of Haar and Db wavelet. 

Level 4 decomposition with  addition of 10 dB noise 

 

Wavelet 

       Additive White Gaussian noise                       Random noise 

Hard thresholding Soft thresholding Hard thresholding Soft thresholding 

Time  MSE SNR Time  MSE SNR Time  MSE SNR Time  MSE SNR 

Haar 0.035 0.001 19.96 0.036 0.001 20.90 0.033 0.001 21.07 0.035 0.000 21.534 

Db2 0.039 0.002 19.97 0.037 0.001 21.29 0.032 0.000 21.56 0.040 0.001 21.978 

Db4 0.037 0.001 19.97 0.037 0.001 21.49 0.034 0.000 21.97 0.038 0.000 22.285 

Db6 0.038 0.001 19.98 0.038 0.001 21.70 0.035 0.001 22.21 0.040 0.001 22.405 

Db8 0.038 0.001 19.97 0.038 0.001 21.86 0.038 0.002 22.07 0.039 0.000 22.515 

Db10 0.038 0.001 19.98 0.038 0.001 21.72 0.034 0.000 22.12 0.038 0.001 22.404 

Db12 0.038 0.001 19.99 0.039 0.001 21.70 0.035 0.001 22.05 0.039 0.000 22.531 

Db14 0.038 0.001 20.00 0.039 0.001 21.83 0.038 0.000 22.19 0.040 0.001 22.626 

Db16 0.040 0.001 19.99 0.039 0.001 21.85 0.038 0.002 22.55 0.039 0.001 22.641 

Db18 0.040 0.000 19.99 0.039 0.001 21.89 0.039 0.001 22.36 0.039 0.001 22.600 

Db20 0.039 0.001 19.99 0.039 0.001 21.83 0.040 0.001 22.39 0.039 0.002 22.643 

 

 

Table 12: Results for J4.Wav input file for application of Haar and Db wavelet. 

Level 4 decomposition with  addition of  15 dB noise 

 

Wavelet 

       Additive White Gaussian noise                       Random noise 

Hard thresholding Soft thresholding Hard thresholding Soft thresholding 

Time  MSE SNR Time  MSE SNR Time  MSE SNR Time  MSE SNR 

Haar 0.035 0.001 20.00 0.036 0.001 20.97 0.032 0.000 20.22 0.035 0.001 21.59 

Db2 0.039 0.001 19.99 0.038 0.001 21.29 0.033 0.001 20.56 0.037 0.000 21.95 

Db4 0.037 0.001 19.98 0.037 0.001 21.60 0.033 0.002 20.67 0.045 0.000 22.21 

Db6 0.039 0.001 19.99 0.040 0.001 21.73 0.034 0.002 20.98 0.038 0.001 22.34 

Db8 0.037 0.001 19.99 0.038 0.001 21.80 0.034 0.001 21.06 0.041 0.001 22.61 

Db10 0.038 0.001 19.99 0.039 0.001 21.74 0.034 0.001 20.77 0.045 0.001 22.67 

Db12 0.038 0.001 19.99 0.039 0.001 21.89 0.035 0.000 20.86 0.041 0.000 22.51 

Db14 0.038 0.001 19.99 0.041 0.001 21.87 0.038 0.001 21.20 0.039 0.000 22.49 

Db16 0.040 0.001 20.01 0.039 0.001 21.87 0.039 0.001 21.17 0.039 0.000 22.60 

Db18 0.040 0.001 19.99 0.041 0.001 21.82 0.038 0.001 20.67 0.040 0.001 22.58 

Db20 0.039 0.001 20.00 0.039 0.001 21.79 0.038 0.000 21.00 0.039 0.001 22.65 
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For AWGN hard thresholding condition two wavelets 

namely Db14 and Db16 have maximum SNR. Both of these need 

more time as compared with others. In soft thresholding also Db8 

and Db18 have same and higher SNR than others. Db8with very 

less reconstructing time gives highest SNR for hard and Db16 

with 0 MSE and more time has higher SNR for soft in random 

noise.  Db14 has maximum SNR and all other have similar SNR 

response with more or less time for reconstruction. Db16, Db18 

need maximum reconstruction time and haar needs least time for 

hard thresholding of AWGN. Db12 to Db20 require same time to 

reconstruct signal out of which Db18 is better for soft 

thresholding. If hard thresholding is applied to signal corrupted by 

random noise Db16 performs better with MSE of 0.002. Db20 

takes maximum and haar takes minimum time to reconstruct. For 

soft thresholding Db20 gives maximum SNR. Db16 also gives 

approximately close SNR with same reconstructing time and less 

MSE than DB20.  From Table 12, for AWGN hard thresholding 

Db16 has highest SNR but needs long time to reconstruct signal. 

DB20 and haar have same SNR values where DB20 needs much 

more time than haar. Here haar is found to be performing well. 

For soft thresholding of AWGN Db16 gives maximum SNR. 

Db14, Db16 have same SNR which is approximately close to 

SNR of Db12. In case of hard thresholding for random noise 

Db14 has highest SNR value. Haar and Db12 have 0 MSE and all 

other wavelets have some error in reconstructed signal as 

compared to original signal. In soft threshold method, signal Db20 

has better results than Db10 with maximum SNR but requiring 

more time than Db10. 

Reconstructed signals which are denoised are as shown in 

following figures. Male and female speaker signals corrupted by 

white noise decomposed to level 4 and level 5 and reconstructed 

after thresholding the coefficients.  Following figures indicate 

results for speech signal of male speaker with level 4 

decomposition. 

 

 

 
Figure 6 Noisy signal corrupted db 10 db AWGN and 

its Spectrogram 

 

 
 

 

 

 

 

 

F 

 
Figure 5: Original Speech Signal and Its Spectrogram  

 

 

 

Figure 7: noisy signal corrupted by of 10 db random noise and 

Spectrogram of noisy signal. 
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Figure 8: Reconstructed signal using Haar wavelet for 10 db 

AWGN. 

 

 

Figure 9: Reconstructed signal using Haar wavelet for random 

noise 10 db 

From figure 8 it is observed that denoised signal is 

approximately same as of original signal with Haar wavelet for 

hard thresholding in additive white Gaussian noise. For random 

noise of 10 db for the same speech signal reconstructed signal has 

some noise which is tolerable as shown in figure 9. When same 

speech signal is denoised using soft thresholding, SNR of 

reconstructed signal improves. Reconstructed signal using soft 

thresholding is as shown in figure 10 and 11. 

 

 

Figure 10: Reconstructed signal for AWGN of 10 db for soft 

thresholding 
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Figure 11: Reconstructed signal for Random noise of 10 db for 

soft thresholding 

Following are the results of signal decomposed up to level5 with 

Haar wavelet implementation for hard as well as soft thresholding 

. 

 

 

Figure 12: Reconstructed signal for random noise of 10 db using 

hard threshold 

 

 

Figure 13: Reconstructed signal for AWGN 10 db 

Following are the results of implementation of soft thresholding 

 

 

Figure 14: Reconstructed b1.wav for AWGN 10 db 
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Figure 15: Reconstructed signal for Random 10 db

 

4. IMPLEMENTATION OF DAUBECHIES 

WAVELET 
Following figures show signals reconstructed by hard 

thresholding and decomposed up to level 4 using db18 wavelet. 

Reconstructed signal seems to be close to the original 

is also around 24 dB. Signal was corrupted using random noise of 

10 dB. It is observed that Daubechies wavelet needs more time to 

reconstruct signal. 
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Reconstructed signal for Random 10 db 

IMPLEMENTATION OF DAUBECHIES 

Following figures show signals reconstructed by hard 

4 using db18 wavelet. 

Reconstructed signal seems to be close to the original signal. SNR 

pted using random noise of 

. It is observed that Daubechies wavelet needs more time to 

 

Figure 16: Reconstructed signal b1.wav using db18

Figure 17: Reconstructed signal b1.wav using db18 for 10 dB

AWGN

When the signal is denoised with s

reconstructed signal is found to be similar to the original signal. 
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Reconstructed signals are as shown in figure 18.
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gnal b1.wav using db18 for 10 dB 

AWGN 

the signal is denoised with soft thresholding, 

reconstructed signal is found to be similar to the original signal. 

Soft thresholding performs better than hard thresholding. 

Reconstructed signals are as shown in figure 18. 
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Figure 18: Reconstructed signal using db18 for AWGN 

Figure 19 shows reconstructed signal which was corrupted with 

10 db random noise. From figure  it is clear that still noise is 

present in reconstructed signal and not totally removed, 

spectrogram also do not match to that of original and is quite is 

blurred & indicates presences of noise 

 

 

Figure 19: reconstructed b1.wav for random noise 

 

5. PERFORMANCE EVALUATION USING 

SUBJECTIVE TEST 
           It is well known that SNR cannot faithfully indicate speech 

quality. For evaluation of performance of wavelets for speech 

enhancement one more criteria used is subjective test [5]. While 

conducting this test 15 listeners are selected in the age group of 18 

to 22 years. Listeners are divided into group of five and they were 

asked to listen to the test material. Participants were not familiar 

with the test material. Listeners participated in two sessions. In the 

first session they were asked to carefully listen noisy signal and 

denoised signal. In second session they were asked to listen 

original signal and denoised signal. Throughout the subjective test 

input SNR was set to 10 dB.  

For both AWGN and random noise, listeners preferred 

denoised signal with soft thresholding. For additive white 

Gaussian noise listener observed that original signal is superior 

than denoised signal and signal strength is also poor for later one. 

With implementation of wavelet transform denoised signal which 

is reconstructed from approximate and detail coefficients is found 

to be audible and approximately similar to that of original signal. 

 

6. SUMMARY AND CONCLUSION 
In the present work wavelet based speech Denoising 

algorithm is addressed. Wavelet Denoising is a non-parametric 

estimation method that has been proposed in recent years for 

speech enhancement applications. In this work both objective and 

subjective methods were used for evaluation of wavelets 

performance in speech Denoising confirms its superiority. Haar 

wavelet has comparatively good performance than some other 

wavelets from Db family. SNR for level 4 is better than for level5. 

If SNR obtained for speech signals in any noise with all type of 

wavelets is below 19 db then it is not properly denoised and still 

some noise components are remained. Therefore From results 

obtained it can be concluded that Haar wavelet is not suitable for 

speech Denoising application. As Haar is not smooth as compared 

to other wavelets it has limitations when applied to non stationary 

signal such as speech. Higher order Daubechies can be used and 

are found to be suitable for the work done. Also soft thresholding 

is better than hard thresholding. Depending upon application trade 

off is to be made between time required for reconstructing the 
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signal by wavelet and signal to noise ratio. Use of a unique 

threshold for all wavelet bands is disadvantage for speech 

applications. The work carried out here can be extended to speech 

Denoising for sentences recorded in varies noisy environment also 

it can be extended for the real time signal Denoising or speech 

enhancement. In the work carried out noisy signal is directly 

decomposed without silence Detection therefore the work may be 

extended by separating existence of speech and absence of speech 

(Silence) and then computing thresholds separately. Wavelet 

packet transform can be implemented further to achieve good 

performance. 
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