
 

 

 

Abstract— This paper describes a study regarding the detection 

of silent visual reading mental activity through electroencephalogram 

(EEG) analysis and processing. Our work is in the context of human 

computer interaction research field, and we pretend to use EEG 

signals in applications to assist and analyze reading tasks.  

The need of users to be constantly and tightly coupled with the 

applications is being highly stimulated by the design of universally-

accessible interactive systems. In this context, the use of biomedical 

signals has become an emerging area.  Visual reading has a great 

interest to us, since it is a frequent activity while users interact with 

applications. Users will stop reading whether they feel disturbed or 

lost, or lose their interest, or even if application visual characteristics 

(such as font size and color) make it difficult. The analysis of visual 

reading flow will allow a better understanding of users mind while 

interacting with applications and help to objectify some still 

subjective usability tests.  

 

The work focuses on building reliable capture and preprocessing 

procedures, extracting relevant features and testing simple learning 

algorithms. The detection process uses left hemisphere EEG signals, 

which are referred to as being the relevant brain area for this type of 

tasks. The signals were processed to extract the power spectrum 

density of delta, theta, and alpha rhythms, known frequencies of this 

type of signals. We also present two real time demonstration 

applications of assisted reading. 

 

Keywords—Reading Detection, Electroencephalogram Signal 

Preprocessing, Feature Extraction, Pattern Recognition, Human 

Computer Interaction. 

I. INTRODUCTION 

ISUAL reading activity has always been of great concern 

to the human factors area, as it is highly involved in most 

of the cognitive processes associated with human interaction 

[1]. Eye tracking devices [2] already monitor human gaze, the 

external demonstration of reading, but the parsing of the visual 

reading mental flow allows a better understanding of user’s 

mind while interacting with applications. The analysis of this 

flow can be used, for example, to study interface legibility, a 

major area of usability, in a more objective form, provided 

that the appropriate experiments are designed [3]. Actually in 

spite of usability being a critical success factor for any type of 

software system, its testing methods still rely substantially on 

totally “external” techniques such as expert reviews, direct 

observation or questionnaires [4][5]. An alternative is to use 

physiological signals to analyze more intrinsically users’ 

mental states. But we can go on further and try also to 

objectively confirm some usability rules and heuristics. 

 

The concept of coupled interaction suggests that, to achieve 

stronger adaptation between humans and applications, the 

implicit and automatic signals generated by human physical 

processes should be understood and used by computational 

systems [6]. [7] Brain computer interfaces (BCI) are one 

important example of this kind of systems. A BCI is defined 

as “a communication system that does not depend on the 

brains normal output pathways of peripheral nerves and 

muscles” [8][9]. BCI mental tasks are usually related with 

device manipulation (e.g. cursors), item selection (e.g. 

pictures) or imaginary tasks (e.g. arithmetical or geometrical 

operations) [10]. EEG signal has actually been widely studied 

for the development of this kind of interfaces [30]. 

 

Neuroergonomics is a recent research field that studies the 

behavior of the brain in the context of the usage of real world 

artifacts and situations, relating the disciplines of 

neurosciences and ergonomics [11]. The use of its findings in 

software systems design will benefit substantially usability 

analysis and interaction studies. The integration of the 

appropriate biomedical signal, such as EEG, ECG, EMG, or 

skin conductance, will bring into usability studies the intrinsic 

data that they have been analyzing from the outside [12]. The 

use of neurophysiologic signals, where EEG is included, has 

thus become a relevant source of information [29][31]. 

 

This paper presents a study about the detection of silent 

visual reading and non reading mental activities through EEG 

processing. We pretend to integrate EEG signals in 

applications to assist and analyze visual reading tasks. The 

choice of EEG signals in detriment of other neural or 

physiological measurements is due to its small temporal 

resolution and non-invasiveness [10]. EEG also reveals 

properties that vary with performed mental tasks and thus 

make it eligible for pattern recognition applications [13][14]. 

The paper initially focuses on building robust and reliable 
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capture and preprocessing procedures, extracting relevant 

features and testing simple learning algorithms. The detection 

process uses left hemisphere EEG signals, considered a 

relevant area related with visual language [20]. These signals 

were processed to extract the power spectrum density of 

specific known frequencies ranges of EEG signals.  

 

We also describe the framework that encapsulates the 

abstractions needed to implement the referred functionalities. 

This toolkit offers reusable components for preprocessing, 

processing, and classifying EEG signals. This framework is 

demonstrated through two preliminary applications, 

ReadingScroller and ReadingTester. 

The final sections present and discuss the processing and 

analysis results, and reason about additional opportunities 

inspired by the developed work. 

 

II. HARDWARE AND CAPTURE PROCEDURE 

The signal was captured using MindSet-1000, a digital 

system for EEG mapping with 16 channels, connected to a PC 

using a SCSI-interface. MindSet channels are connected to a 

cap, produced by Electro-Cap International. It is an EEG 

electrode device that is made of an elastic fabric with pure tin 

electrodes (sensors) attached.  

 

 
 

Fig.1- The EEG capture montage. 

 

The electrodes are positioned using the International 10-20 

method (see Fig. 2) [13]. The signals from the electrodes are 

amplified in differential manner relative to the ear electrodes 

and are sampled with 256Hz frequency. 

 

 
 

Fig. 2 – Mapping of EEG device electrodes (International 

10-20 method). 

 

A. Capture Equipment Montage 

The montage of the capture equipment revealed to be 

complex. Working with EEG capture procedures, as other 

kinds of biomedical signals, demands having specific 

technical skills to achieve correct setup of the capture device 

and also to visually understand and validate the resulting 

signal. This requires a learning process that should not be 

underestimated.  

All the requirements indicated by suppliers and technicians 

were fulfilled, and we gathered a significant set of reliable 

samples. Our sample capture procedure includes “grounding” 

the subjects.  

To guarantee the reliability of captured samples the 

experiment was replicated using a 30 channels professional 

medical capture device, Neurofax EEG-1100C. This 

equipment was in use in a hospital, so all experiment setup 

was entirely prepared and tuned by expert technicians. All 

electrodes were also positioned using the International 10-20 

method, but we restricted our processing to the same 16 

electrodes used in MindSet. These signals were captured with 

200Hz frequency. The results obtained with both capture 

devices were validated by EEG technical experts. 

Setting any EEG capture equipment requires putting 

conductive gel and measuring the impedance in each 

electrode. We actually must guarantee balanced impedance in 

all 16 electrodes bellow 6000Ω  (a threshold defined by the 

cap manufacturer). This assures us that the amplitude in all 

channels will be affected by similar impedances. To reduce 

impedance in an electrode it is necessary to put more gel. 

Impendence depends on subject-specific characteristics such 

as skin conductive or hair type. 

 

B. Read and Not Read Experience 

The cognitive processes regarding reading activity are a 

good indicator of the user concentration while interacting with 

an application [3]. Users will stop reading if they feel 

disturbed, confused, lose their interest, or even if the 

application visual characteristics, such as background color 

and text row size, difficult its legibility. 

Our first experiments were based in the presentation of 

alternate blank and text screens containing about 40 lines of 

daily news text.  

 

 
 

Fig. 3 - ReadingTester with a news text 
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Since watching a blank screen, and trying not to think in 

nothing special, had revealed to be very disturbing and tiring, 

we presented longer text, 30s, than blank screen periods, 20s. 

These types of periods were interlaced: one reading text 

sample, followed by 2 stare blank screen, and again back to 

read. Globally we captured 120s of both sample classes with 

each subject trial. All data was recorded without any previous 

or special training in 3 distinct subjects: all right handed, age 

bellow 60, two males, and one female and no relevant vision 

disabilities. 

 

C. Assisted Reading Applications 

We developed two preliminary assisted reading applications 

that demonstrate the above experiments in real time: 

ReadingScroller and ReadingTester. 

 

ReadingTester  tests a “reading event script” in real time. 

An event script is a sequence of events with certain duration 

that are generated by the application (see Fig. 4).  

 

 
 

Fig. 4.  Example of a reading event script. 

 

The subject is exposed to the events, while its EEG is 

captured and analyzed. Only two types of events are being 

considered at the moment: blank screen and show text, but 

more can be added with insignificant effort. Fig. 3 shows the 

look of the application while a news text is being displayed. 

When the detection process stops, the application builds a 

report containing performance measures. It can also record an 

EEG signal to a file and test events against a previously 

recorded file. 

 

The idea behind ReadingScroller is to control a text 

scrolling through EEG signals: while the user is reading the 

scrolling should occur; if the user stops the scrolling should 

also stop. 

 

 
 

Fig. 5.  ReadingScroller Application. 

 

This interface posed us several interesting problems that 

have to be addressed in future. First of all, we must define 

what the state of not reading is while using this interface. This 

will probably require a one class classifier, more complicated 

to train and tune then a two-class one. Second, as the text is 

always moving it is very hard to stop reading, since the subject 

is always tempted to read a few words. 

 

III. PROCESSING AND PATTERN RECOGNITION 

In this section, the more relevant aspects related with 

feature extraction, feature selection, and classification 

procedures used in the reading detection, are addressed. These 

functionalities are encapsulated in EEGLib framework, an 

object oriented toolkit that can be easily integrated in 

applications. This framework is has two distinct layers, one 

implemented in C++ [24], other in MatLab [25].   

 
 

 

Fig. 6.  EEGLib Framework main layers. 

 

C++ layer analysis and processing operations are performed 

in integration with the MatLab Engine, which allows calling 

MatLab routines from C [25]. This integration is mediated 

through a single object that encapsulates the interface between 

both layers, called EEGMatLabEngineInterface. 

 

A. Feature Extraction 

The most common features used in EEG pattern recognition 

are the power spectrum density (PSD) of a set of rhythms and 

electrodes [15][16], coefficients from simple or multivariate 

autoregressive models [17][18] and Event Related Potentials 

[19]. The feature extraction step of the detection process 

determines the mean PSD in Alpha (α) – 8 to 13Hz, Theta (θ) 

– 4 to 8 Hz and Delta (δ) – 1 to 4 Hz – rhythms in each left 

hemisphere electrode. These frequency bands are very well 

studied EEG properties that vary spatially with performed 

mental tasks [13].  

The mean PSD measures the amount of energy that exists in 

a certain rhythm and thus characterizes well its relevance in 

the global signal. This measure was determined in frames of 

256 samples (1 sec), with an overlapping of 128 samples (0.5 

sec), and was calculated using the Burg method, which had 

shown better results for this kind of problem, when compared 

with other algorithms [15]. The first 5sec and the last 3sec of 

each sample were discarded in order to minimize the possible 

MatLab Layer

C++ Layer

Presentation Layer 

(ReadingTester, Reading Scroller)

EEGLib 

Framework 
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artifacts caused by start-end of the recording process. 

The current processing procedure is restricted to the 8 left 

hemisphere electrodes for right-handed subjects, since this 

area is considered to be a relevant area relating to visual 

language [20][21]. A full feature vector is therefore composed 

by 8x3 real values. 

 

All these functionalities are implemented in EEGLib, 

modeled as a C++ class, and integrated in a systematic 

hierarchy (see Fig. 7). 

 

 
 

Fig. 7 – EEG Feature Extraction Data Model. 

 

- EEGOperator is an abstract class that encapsulates all 

operations that can be applied to EEG signals, including 

feature extraction, selection and classification methods.  

- EEGStreamOP class abstracts all operations applied to 

EEG streams.  

- EEGFeatureExtractionOP leads the hierarchy of all 

operations that extract features used in classification.  

- EEGSpaceAndTimeOP, all methods that alter stream space 

and time dimensions. 

 

Streams are composed by several frames that can be 

overlapped. Frames are obtained from streams through 

windowing operations applied by iteration objects. All these 

concepts are also modeled as C++ classes (see Fig. 8). 

 

 

 
 

Fig. 8 – EEG Stream and Frame Data Model. 

 

There are two main types of EEG streams:  

- Offline, coming from a file. 

- Real-time, captured directly from de SCSI device by using 

the Advanced SCSI Programming Interface (ASPI).  

 

ASPI is a norm that allows real-time communication with 

Small Computer System Interface (SCSI) peripheral devices, 

such as MindSet. It is through EEGASPIInterface object that 

we capture and analyze EEG signals in real-time. 

 

B. Feature Selection  

We reduced the dimensionality of the feature vector by 

using Principal Component Analysis (PCA) [17]. PCA is a 

linear mathematical transformation that transforms data, a 

number of possibly correlated variables, in a new uncorrelated 

coordinate system called principal components. These 

coordinates are ordered by variance, allowing discarding those 

with less variance, which are less relevant for the 

classification procedure.  

There is no fixed vector basis to determine the PCA, 

because it depends on the data itself. The main goal is to 

identify the most meaningful basis to express data, which 

willingly will filter noise and reveal hidden structure [27].  

Two main concepts are behind the vector basis choice of 

PCA: variance and redundancy [27]. A great variance is a 

desirable property because it increases signal-to-noise ratio, 

and consequently data precision. On the other hand, 

expressing data more concisely and reducing the number of 

electrodes reduces the classification computing effort. 

Redundancy can be minimized by reducing the correlation of 

the used dimensions. Two random variables are said to be 

correlated if they are linearly related, which means that one 

can be linearly computed from the other one. In this case, one 

of these variables can be discarded. 

 

EEGOperator

+ apply ()

EEGMatLabEngineInterface

+
+
+

open ()
close ()
eval ()

EEGStreamOP

+ applyStream ()

EEGFeatureExtractionOP

EEGPSDOP EEGMeanPSDOP

EEGSpaceAndTimeOP

EEGTrimOP

- time

EEGMeanFeatureOP
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To increase variance and reduce redundancy, PCA 

transformation uses eigenvectors of the covariance matrix by 

transforming x to u as below:  

 

 (1) 

 

where: ui is the i
th

 PCA components, vi is the i
th

 eigenvector 

of the covariance matrix, while they are ordered by decrease 

order, xi is the ith input feature. 

Covariance matrix is an mxm matrix, where m is the number 

of features that capture the covariance between all possible 

combinations pairs of feature dimensions [27]. Covariance 

between features f1 and f2 measures its linear relationship, 

generalizing the variance formula: 

 

 (2) 

 

When feature correlation is high, the magnitude of their 

covariance is also high [27].  

Diagonal terms of the covariance matrix are the variances of 

all dimensions; off-diagonal terms, are the covariance between 

dimensions. To get a high variance and low redundancy it is 

desirable to maximize covariance matrix diagonal terms 

(variance) and minimize its off-diagonal terms (redundancy) 

[27]. An optimal covariance matrix should be diagonal, having 

all off-diagonal terms null (uncorrelated), and each successive 

dimension should be rank-ordered according to variance. 

PCA diagonalizes the covariance matrix by computing its 

eigenvectors. It is demonstrated that any symmetric matrix 

(such as covariance matrix) is diagonalized by an orthogonal 

matrix of its eigenvectors [27]. Geometrically PCA performs a 

generalized rotation so that data is oriented according to a 

maximal variance axis. 

 

C.  Classification Method 

There are many references in relation to the application of 

standard learning methods to EEG signals [10][11][19]. At 

this stage, we did not want to spend much time developing 

new classification algorithms. Our goal was to set up and 

validate all the procedure, so we chose the K-nearest 

neighbors’ (KNN) implementation provided in SPRTOOL 

MATLAB Toolbox. 

 

KNN algorithm is an instance based, lazy-learning method, 

since it memorizes all training data and just searches for 

similar samples (neighbors) when we pretend to classify a new 

sample [23]. Non classified samples are classified accordingly 

with K nearest neighbors’ samples in the training set: 

 

K is the desired number of nearest neighbors  

S={s1,...,sn} is the set of training samples already 

classified  (ci = class label of si) 

 

For each unknown sample s' to be classified: 

(a) For all si compute di = distance d(s', si)  

(b) Sort in ascent order all si according to di 

(c) Select the first K samples from the sorted list, those 

are the K closest training samples to s'. Assign a class 

to s' based on majority vote:  

 

     c' = argmaxc CLASS sum{(si,c) belong S}  

 

 

KNN has been successfully used in EEG based BCI 

applications with low dimensional vectors [10] [28]. It is not 

advisable to use KNN with high dimensional vectors because 

its computation cost is quite high. KNN requires computing 

the distance of each test sample to all training samples.  

KNN has the advantage of being robust to noisy training 

data, and EEG data is always corrupted by eye and muscle 

artifacts. But a significant drawback is that it is just effective if 

the training data is large, and EEG samples corpus are usually 

small due to its capture complexity.  

KNN algorithm also requires determining the value of K, 

and to produce best results it is not clear which distance 

measure and which features should be used. So it is desirable 

to use feature selection procedures such as PCA to reduce 

vector dimensionality.  

 

Both PCA and this classifier are supported through EEGLib 

classes (see Fig. 9). 

 

 
 

Fig. 9 – PCA and KNN Data Model. 

 
The PCA operator allows the setting of the threshold; KNN 

operator has as a parameter for the number of nearest 

neighbors. 

 

IV. RESULTS  

This section describes and discusses the results regarding 

the supported procedures for feature extraction and selection, 

and classification.  
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A. Experiment Subject Selection 

As mentioned above all data was recorded without previous 

training on 3 distinct subjects. All of these were right handed, 

with age between 30 and 50, two males, one female, 

Caucasian and without relevant vision disabilities. The female 

was the main subject having about 20 experiment trials. Men 

were tested once for comparison purposes.  

We kept a journal about the impedance and environment 

conditions, subjects’ degree of sleepiness and time of day. We 

had not met impedance requirement with male subjects: in 

one, the values rounded 10000Ω, the other 7000Ω. Skin 

conductance is influenced by factors such as the amount of 

hair, the usage of hair products such as gel, or race. The 

female subject was in fact the one with more hair and was 

considered having an excellent skin conductance by an EEG 

technician while subjected to a similar experiment in a clinical 

environment. 

 

B. Classification Results 

The following results were averaged in 100 trials where the 

number K of nearest neighbors was maintained constant. In 

each trial, the training and test sets were randomly selected 

from the reading and non-reading sample sets.  

 

Fig. 10 shows the average classification error rate 

determined in all samples sets captured in the female subject, 

while varying the number of nearest neighbors. 

 

 
 

Fig. 10 - Average classification error rate. 

 
Error rate was below 14% in this subject: two thirds of the 

sample sets were above this value, the remaining was bellow. 

This would probably be justifiable by user and environmental 

conditions, but this is not supported by our logging.  

We chose 5-NN because it represents a minimum in the 

error rate, probably due to feature relevance problems. Next 

results are in relation to this choice.  

 

We present the following measures in Table 1. 

- Precision rate: the number of items correctly labeled as 

reading in relation to the total number of elements labeled as 

reading. 

- Recall rate: the number of items correctly labeled as 

reading in relation to the total number of elements that 

actually belong to the reading class. 

- False Positive rate: the number of items incorrectly labeled 

as reading in relation to the total number of elements that 

actually belong to the non reading class. 

- False Negative rate: the number of items incorrectly 

labeled as non reading in relation to the total number of 

elements that actually belong to the reading class. 

 

 Error 
Rate 

False Pos. 
Rate 

False Neg. 
Rate 

Precision 
Rate 

Recall 
Rate 

Set 1 7,22% 6,55% 7,87% 93,55% 92,13% 

Set 2 17,55% 20,64% 13,74% 77,19% 86,26% 

Set 3 10,37% 12,21% 8,35% 87,19% 91,65% 

Set 4 20,62% 25,42% 13,50% 69,63% 86,50% 

Set 5 11,77% 13,15% 10,27% 86,36% 89,73% 

Average 13,51% 15,59% 10,75% 82,78% 89,25% 

 

Table 1 – Performance measures obtained in 5 sample sets 

with 5-KNN. 

 

 

False positive rate is usually greater than false negative rate, 

suggesting that non reading class is more complicated to 

classify. As we described before non reading activity requires 

less concentration than reading, and can be “contaminated” by 

a diverse number of other mental activities. This factor also 

affects precision-recall relation, since precision is in general 

inferior to recall.   

 

Fig. 11 shows an example of bad results obtained with a 

different subject that did not fulfilled impedance requirements. 

 

 
 

Fig. 11 – Average classification error rate in another 

subject: an example of bad results. 

 

C. Applying PCA  

The application of PCA to select features was also tested in 

iterations of 100 trials.  Fig. 12. displays the average error rate 

in relation to the number of features used in the detection 

procedure. 

The error rate variation is initially mild, but as we expected 

it starts to increase after using 13 features. This means that 

relevancy of the removed components to the detection 

procedures starts to be significant. We obviously chose 13 

features and determined some detection performance measures 

(see Table 2.) 
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Fig. 12 – PCA application with 5-KNN. 

 

 

 Error 
Rate 

False Pos. 
Rate 

False Neg. 
Rate 

Precision 
Rate 

Recall 
Rate 

Set 1 4,80% 8,04% 2,25% 97,75% 91,96% 

Set 2 13,44% 23,96% 4,97% 95,03% 76,04% 

Set 3 9,12% 13,39% 5,58% 94,42% 86,61% 

Set 4 16,74% 29,39% 6,76% 93,24% 70,61% 

Set 5 6,54% 9,65% 3,99% 96,01% 90,35% 

Average 10,13% 16,89% 4,71% 95,29% 83,11% 

 

Table 2 – Performance measures obtained after PCA    

application (selection of 13 features). 

 

The comparison between Tables 1 and 2 shows that the 

error rate with PCA decreased from 1 to 3% in all sample sets, 

essentially caused by significant decrease in false negative 

rate. As consequence, precision had also dropped, but recall 

had increased.  

 

V. CONCLUSIONS AND FUTURE WORK  

This paper described a study about the detection of reading 

and non reading mental activities through EEG processing. 

We have demonstrated that this method has potential to be 

used in usability research and coupled interaction design.  

The paper also presented the main issues regarding the 

construction of robust and reliable capture and preprocessing 

procedures, extracting relevant features and testing some 

simple learning algorithms. These functionalities were 

included in a framework that offers reusable components for 

preprocessing, processing and classifying EEG signals, and 

currently support applications like ReadingScroller and 

ReadingTester. This work inspired relevant additional 

opportunities. 

 

A. Generalization and user differences 

The tests mentioned above were made with a restricted 

number of subjects. The focus has been the development and 

optimization of the framework and tools. More subjects and 

samples are needed, in order to increase the results’ 

robustness. Some degree of diversity related with user 

differences is expected, such as skin conductance, hair type or 

sleepiness, as well as contextual constraints, such as 

environmental differences. We would like to compensate these 

aspects by defining and designing adequate calibration 

procedures that adapt to the individual user profiles and 

conditions.  

 

B.  Feature Selection  

Before applying PCA, the feature selection is being 

performed according to referenced domain source information 

[20], which indicates that visual reading cognitive processes 

are more intense in left hemisphere for right-handed people.   

With PCA, we go further by applying a global mathematical 

transformation, but this does not consider the spatial 

distribution of the signals nor its specificities regarding 

functional neurosciences knowledge. Functional neurosciences 

try to map cognitive processes into skull areas. These 

processes cause certain activity patterns (rhythms) in specific 

electrodes related with those areas. 

A further step in feature selection should rely on this kind of 

information analysis. In order to do that we are going to use 

dissimilarity measures in each of the features streams. This 

analysis should be performed independently of a specific 

classification method, in order to validate the selection itself, 

by determining whether main differences are situated in 

electrodes and rhythms related with visual language 

processing. 
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