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Abstract— For much of the past decade Hyperspectral Imaging
(HSI) systems have gained considerable attention among researchers.
Recent improvements in Optics have expanded the applications of
HSI systems. Real time processing of extensive volumes of Hyper-
spectral data calls for more efficient and accurate real time algorithms.
In current algorithms, speed comes at the expense of accuracy.
Nevertheless, our proposed Ultra Fast Transition and Replacement
(UFTR) approach shows a substantial improvement to the processing
speed while also increasing the accuracy of the present methods. In
the UFTR algorithm, Hyperspectral components’ signatures, known
as Endmembers, are estimated in an iterative approach. In each
iteration, a linear transformation of data into the abundance vectors
is calculated. This iterative process causes the speed of the algorithm
to be extraordinarily fast. To improve the accuracy, a correlation
based approach is used to project the estimated Endmembers into the
library spectrum. Accurate abundance vectors are calculated using
the final transition matrix and the chosen Endmembers from the
library. UFTR simulation results show that in low-SNR applications,
the accuracy can be improved up to 15% and the speed is 10 to 50
times faster compared to the existing methods for a data cube of 4096
pixel with 224 bands. Furthermore, unlike many existing approaches,
UFTR processing time dependency on the noise level is quite low.
UFTR is definitely a departure from the trade-off between speed and
accuracy and has a great potential for applications in the real time
Hyperspectral imaging.

Keywords— Hyperspectral imaging, Hyperspectral unmixing, Real
time Hyperspectral imaging

I. INTRODUCTION

Spatial pixel sizes for multispectral and Hyperspectral sen-
sors are often large enough that numerous disparate substances
can contribute to the spectrum measured from a single pixel.
This is known as mixed pixel in remote sensing nomenclature.
Consequently, many techniques have been exploited to extract
constituent materials (known as Endmember) in the mixture,
from a spectrum, as well as the proportions in which they
appear (known as Abundance). Multispectral imaging sensors
such as Landsat provided the first opportunity to derive mul-
tichannel spectral information from large scenes on a pixel-
by-pixel basis. Since then, hyperspectral sensors have been
developed with hundreds of spectral bands and significantly
improved spectral resolution. The predecessors of present day
HSI systems were the broad band space-borne multi-spectral
imaging systems like MSS and the more recent TM, which
provided data in 4 and 7 spectral bands respectively. Present
airborne HSI systems, like AVIRIS and HYDICE, operate in
the VIS-SWIR spectral region (0.4-2.5 m). They acquire data
at a higher spectral resolution (∼10 nm) and produce data
cubes with 224 and 210 bands respectively. Extensive spectral
bands of HSI sensors result in large-sized data sets. For

example, an AVIRIS image of size 614 x 512 spatial pixels,
occupies about 140 Mbytes in a 2 byte binary storage format.
Ultra-spectral sensors with even higher number of channels
have placed a correspondingly higher burden on data storage
and data manipulation requirements, consequently calling for
much faster unmixing algorithms. In this paper, we have intro-
duced a novel method based on a double Least Square Error
(LSE) method that uses a transforming matrix for fast cal-
culation of the abundance vectors. Further we have improved
the accuracy by means of a library spectrum matching process
that recalculates all abundances using the exact data from the
library. The concept of Spectral Information Divergence (SID)
[2] has been employed to evaluate our method and to compare
UFTR with other unmixing approaches.

A. Linear Mixture Model
In multispectral/hyperspectral imagery, a pixel is generally

mixed by a number of materials present in the scene. Two
well known models have been proposed in the past [6] to
describe such mixing activities. In the macroscopic mixture, a
mixed pixel is modeled as a linear combination of materials
with relative concentrations. An intimate spectral mixture, is
a nonlinear model of mixing materials [6]. Nevertheless, this
model can be linearized by a method proposed in [7]. We will
consider the linear spectral mixture analysis (LSMA) here due
to its effectiveness and simplicity. Observation data on this
model for the ith pixel is formulated as:

xi = Ac Si + wi (1)

where the elements of xi ∈ Rl are the measured solar radiation
at different spectral bands.
Ac = [a1 a2 ... ac] is an ` × c source matrix (or material
signature matrix) with each column aj being the spectral
signature of endmember j. The abundance vector Si =
[si1, si2, .., sic] ∈ Rc consists of the mixing coefficients for
the ith pixel. The last term wi takes into account possible
errors and sensor noises. We consider a zero-mean Gaussian
noise. In order for a LSE-based method to provide accurate
and reliable estimates of abundance fractions for material
quantification, two constraints must be imposed on the abun-
dance fractions of materials in a pixel: 1) Abundance Sum-
to-one Constraint (ASC)

∑c
j=1 sij = 1 and 2) Abundance

Nonnegativity Constraint (ANC) sij ≥ 0 for all 1 < j < c.
While the ASC is easy to deal with, the ANC is difficult
to implement in practice, since the ANC results in a set of
inequalities and cannot be solved analytically. In this case, we
must rely on numerical methods for optimal solutions. Due
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to such mathematical intractability, many LSE-based methods
are unconstrained and can produce only suboptimal solutions,
e.g., the subspace projection approach [10]. Furthermore, the
abundance fractions estimated by the unconstrained LSE do
not generally reflect the true and accurate abundance fractions.
As a result, they cannot be used for material quantification.
Some efforts were made to solve fully constrained linear
mixing problems. However, the approaches used to implement
these constraints were designed mainly for a small number of
material signatures. In [8] a constrained least square solution is
obtained by solving an overdetermined system that consisted
of ` equations with c unknowns(c < `), where ` is the number
of bands and c is the number of signatures. Since there are no
closed-form solutions, one must examine possible solutions
in a feasible region bounded by the ASC and ANC. The
use of quadratic programming techniques to impose the ASC
and ANC was investigated in [9]. Nevertheless, the algorithm
used was computationally expensive. Other methods presented
also suffered from excessive computational complexity as
the number of materials increased. In another note, LSMA-
based methods require a priori knowledge of the signatures of
materials(endmembers) present in the image scene, which is
generally not available. Thus, selection of an appropriate set of
material signatures is crucial for successful performance of any
LSMA-based method. In the ideal case, these signatures would
represent pure spectral signatures of all materials in the image
scene. Unfortunately, this is rarely true in practical situations
since all the signatures are generally obtained directly from
the image scene, in either a supervised or an unsupervised
fashion. Retrieving the abundance vectors generally needs the
application of the condition of identifiability”. This condi-
tion basically means that the number of linear independent
endmembers cannot exceed the number of linear independent
bands. Considering the improvements recently made in optics
and imaging systems, the number of bands is always greater
than the number of components to be identified, so the condi-
tion of identifiability” is mostly met. The UFTR approach uses
this fact along with the fact that the sensor measurement yi

is actually a convex combination of endmember signatures.
This fact indicates that in the c − 1 hyperspace, all the
mixtures are within a simplex, whose vertices correspond to
the endmembers given in the model in 1. This fact makes the
UFTR approach valid when using the concept of endmember
transformation and invalidates the limitation discussed in [11]
about the limited number of bands. To clarify the concept
of endmember transformation, Fig. 1 has been provided. We
demonstrate a 3D example and will extend the conclusion
to multi-dimensional cases. Consider the case that x1 is a
linear combination of three endmembers a1, a2, a3, such that
x1 =

∑3
i=1 ais1i as shown in Fig. 1. In the absence of noise,

vector x1 will fall on the convex hull formed by the three
endmembers. But in reality, the noisy data vector x1 would fit
somewhere in a scattered area (shown as the star marked area
in the figure) to simulate the effect of noise. The abundance
vector for the data vector x1 is [s1 s2 s3]T . In this case for

the abundance vector the LSE solution is:


s1

s2

s3


 = T3 x1

where:

T3 = (A′3 A3)−1 A′3 , A3 = [a1 a2 a3] (2)

In UFTR, the process of finding a transformation matrix
is performed iteratively. The endmember matrix Aκ in κth
iteration is calculated as:

Aκ = [a1 a2 ... aκ] κ < C < ` (3)

Where C is the number of maximum endmembers available in
the spectrum library. In fact, Aκ is a subset of complete library
spectrum AC in κth iteration encompassing κ endmembers in
the spectrum library. Product of transform matrix and the ith
pixel data xi would result to the estimated abundance vector
for that pixel in κth iteration. Transformation matrix always
exists regardless of the structure of hyperspectral sensor. Since
the transformation matrix is calculated only once for all pixels,
the projection process is much faster than the other existing
methods. Simulation results has shown that UFTR improves
the processing speed up to 50 times faster than some well
known unmixing methods. In next section, we will explain
how UFTR would be utilized to expedite the process of
unmixing.
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Fig. 1. 3D example of endmember transformation

II. UFTR UNMIXING ALGORITHEM

In this section we describe the UFTR algorithm in four
different steps as follows:

A. Step 1: LSE Based Extraction Method

In order to detect endmembers from the given hyperspectral
data cube, we have adopted the LSE-based method in [3] to
maximize the fitness between the sensor measurement and the
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estimation. The algorithm starts with certain initial endmem-
bers, then finds the most possible abundance distributions of
all image pixels based on the constrained least squares. A
new endmember is selected as the pixel that generates the
largest residual. To suppress the noise effect, it has been
proposed to take the average of a set of pixels as the new
estimate. This process is repeated until the desired number of
endmembers is identified or the predetermined error tolerance
is reached. The method starts from initialization of the first
two endmembers (κ = 1, 2). As part of the initialization step,
the first endmember is selected as the pixel with the largest
magnitude; that is

k1 = arg max
i
‖xi‖ â1 = xk1 (4)

where the operator ‖.‖ is the Euclidean norm and âi is the ith
estimated endmember. The theoretical reason behind choosing
this pixel as the first endmember is that no convex combination
can yield a vector that is longer than the individual compo-
nents, thus it must correspond to one of the purest pixels.
The second endmember is chosen as the pixel that is the most
distinct from â1 based on the Euclidean distance measure:

k2 = arg max
i
‖â1 − xi‖ â2 = xk2 (5)

Further, we calculate the first estimated endmember matrix
and abundance vector using the LSE solution:

Â2 = [â1 â2] (6)

T2 = (Â′2 Â2)−1 Â′2 (7)
Si,2 = T2 xi (8)

Given the two initial endmembers, the UFTR algorithm is
applied to all pixels to find the abundances related to each
pixel using a double-LSE based method. In each iteration, the
estimated endmember matrix Aκ is calculated by augmenting
the previous endmember matrix and the new estimated end-
member:

Âκ = [Âκ−1 âκ] (9)

In the κth iteration, the new endmember âκ is selected
from the pixels yielding the largest residual (First LSE so-
lution). Maximum residual based endmember extraction is
implemented as:

i∗ = arg max
i∈1..N

‖ xi − Âκ−1Si,κ−1 ‖ (10)

âκ = xi∗ (11)

B. Step 2: Second LSE (κ > 2)

In previous step we calculated Aκ. The goal is to find the
related abundance vectors using the transformation matrix. In
the second step, the transformation matrix will be extracted
from the second LSE solution:

Si,κ = arg min
Si,k

‖ xi −AκSi,k ‖2 (12)

where:

Si,κ = Tκ xi (13)

Tκ = (Â′κ Âκ)−1 Â′κ (14)

Calculation of the endmembers and abundance vectors will
be continued iteratively until all c endmembers are extracted
from the hyperspectral data cube.

C. Step 3: Suppressing the Noise Effect

Since the averaging scheme that is normally adopted tends
to smooth out the spectral details when the noise level is
low, the UFTR approach first estimates the noise level of the
given data. If the signal-to-noise ratio (SNR) is higher than a
predetermined threshold, only the pixel with the largest LSE
is used as the new endmember. Otherwise, the method takes
the average of a set of pixels with the largest LSEs as the
new endmember. In this way, the noise effect is successfully
suppressed when the SNR is low and the smoothness effect
is avoided when the SNR is high. The estimation of SNR is
given by:

SNR = 10 log
PD

PX − PD
(15)

where PX = E[XT X], and PD = E[XT UcU
T
c X]. Uc is

l×c matrix formed by the leftmost singular vectors of singular
value decomposition (SVD) of the given data matrix.

D. Step 4: Library Spectral Matching

In LSE-Based endmember Extraction method we calculate
the estimation of endmembers Âκ in each iteration which
is not necessarily a subset of the real spectrum library, AC .
However, it is easy to find the exact endmember match in the
library as long as the reference library set is available(which is
mostly the case). The result shows that the error performance
will be improved at least by 5% to 10% compared to the previ-
ous cases when replacement from library was not considered.
This process has been shown to be much more effective for
a high noise level of SNR< 15. The process of finding the
exact matched endmembers is performed by comparing the
identified endmembers with the spectral library data, based on
their spectral correlations. Correlation between two random
variables V and W is defined as:

ρ
V,W

=
E(V − µV )(W − µW )

σV σW
(16)

Where σV , σW denote the standard deviation and µV , µW

denote expected values of V,W . Using the estimation of the
spectral correlation in [14], the library spectrum with the
highest correlation would be selected as the improved version
of the estimated endmember:

ρai,âj
=

(âj − β̂)T (ai − β)

‖ âj − β̂ ‖‖ ai − β ‖
i = 1..C, j = 1..c (17)

improved (âj) = arg max
ai

ρai,âj
(18)

where âj , ai correspond to the estimated spectrum and the
library spectrum of each endmember. endmember vectors ai
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are selected from the spectrum library AC . The mean value
of all estimated spectra and all library spectra, denoted by
β̂ = 1

c

∑c
i=1 âi and β = 1

c

∑c
i=1 ai , are subtracted from the

original spectra to give more accurate correlation coefficients.

III. ESTIMATING COMPONENT DIMENSIONALITY (c)

In previous sections we assumed that the number of end-
members is known a-priori. In fact, Intrinsic Dimensionality
(ID) refers to the minimum number of parameters required to
account for the observed properties of the data. Component
dimensionality is defined by the number of components in a
sample data vector. The true dimensionality of hyperspectral
data is difficult to determine in practice, since its ID cannot
be simply determined by the component dimensionality [5]. In
general, the ID is expected to be much smaller than the com-
ponent dimensionality. This is specially valid for hyperspectral
imagery. A Neyman-Pearson detection theory-based eigen-
threshold method, referred to as the HFC method [13], was
previously developed to determine the number of endmembers
in hyperspectral data. The method first calculates the sample
correlation matrix R`×` and sample covariance matrix K`×`

and then finds the difference between their corresponding
eigenvalues.
Let γ1 > γ2 > .... > γ` and λ1 > λ2 > .... > λ` be two sets
of eigenvalues generated by R`×` and K`×` , called correlation
eigenvalues and covariance eigenvalues matrices, respectively.
By assuming that signal sources are non-random unknown
positive constants and noise is white with zero mean, we can
expect that the eigenvalues in the lth spectral channel can be
related by:

γ` > λ` > σ2
nl for l = 1, ..., c (19)

γ` ≈ λ` ≈ σ2
nl for l = c + 1, ..., ` (20)

where σ2
nl is the noise variance in the lth spectral channel.
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Fig. 2. The relation between Eigenvalues of correlation and covariance matrix
for SNR=10 and #EM=6

Now consider the matrix X = [x1 x2 ...xN ] as our ob-
servation data matrix. We can estimate the sample covariance
matrix and sample correlation matrix for the column-vector
valued random variables X to determine the dimensionality c.

Harsanyi [13] formulated the problem of determination of c
as a binary hypothesis problem as follows:

H0 : zl = γl − λl ≈ 0 (21)
H1 : zl = γl − λl > 0, for l = 1, 2, ...., ` (22)

where the null hypothesis H0 and the alternative hypothesis
H1 represent the case that the correlation eigenvalue is equal
to its corresponding covariance eigenvalue and the case that
the correlation eigenvalue is greater than its corresponding
covariance eigenvalue, respectively. In other words, when H1

is true implies that there is an endmember contributing to the
correlation eigenvalue in addition to noise, since the noise
energy represented by the eigenvalue of R`×` in that particular
component is same as the one represented by the eigenvalue
R`×` of its corresponding component. Fig. 2 shows this fact
in an example where the hyperspectral data has been created
synthetically using six endmembers considering a Gaussian
noise with SNR = 10. Eigenvalues have been sorted in a
descending order and the horizontal axis represents the index
of eigenvalues in that order. It can be seen that the sam-
ple Correlation eigenvalues drastically drop when the index
becomes equal to the number of constituent endmembers.
This is also true for the sample covariance matrix. This
behavior originates from the fact that eigenvalues of the sample
correlation matrix are an indication of the contribution of
endmember components and noise. In this paper, we use this
concept to calculate the number of endmembers available in
the scene.

IV. UFTR ALGORITHM

We can summarize the steps taken by UFTR to implement
a fast unmixing approach in a pseudo-code as explained in
Algorithm 1.

============================================
Algorithm 1: UFTR Algorithm
============================================
Data: Mixture data X ∈ <`×N (N is the number of pixels, `
is the number of spectral bands.
Result: The estimated source matrix Âc ∈ <`×c and the
estimated abundance matrix S ∈ <c×N where c is the number
of endmembers
//Initialization
κ = 2 ; Aκ ← [a1 a2], where a1 and a2 are chosen based on
Eq. 4 and 5
//Main loop
while κ ≤ c do

Set Sκ as a κ×N zero matrix
Calculate Transformation matrix Tκ from 14
//Calculation of residuals
for every pixel xi (i=1:N) in the image

Calculate Si = Tk xi

Calculate the residual of pixel xi as ‖xi−AκSi,κ‖2
Save Si as the ith column of matrix Sκ

end
//LSE-based endmember selection
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Identify a new endmember aκ+1 using
the LSE-based method
Find the exact match of aκ+1 in the library using the
spectral correlation method and include it into Aκ+1

Increase κ by 1
end
Âc ← Aκ, S ← Sκ

V. SID EVALUATION CRITERION

The SID criterion for two pixels x1 = [x11 x12... x1`]T and
x2 = [x21 x22... x2`]T is defined as:

SID(x1, x2) = D(x1 ‖ x2) + D(x2 ‖ x1) (23)

Where:

D(x1 ‖ x2) =
∑̀

i=1

pi log(pi | qi) (24)

pi = x1i/
∑̀

i=1

x1i , qi = x2i/
∑̀

i=1

x2i (25)

It can be seen from the definition of SID that this criterion
is symmetric. Lower SID values indicate lower divergence or
in other words higher correlation between estimated and true
measurements. Therefore, we use this value as one of the key
evaluation criteria in our simulation results to compare UFTR
with other methods.

VI. SIMULATION RESULTS

In this section, we provide two different rank estimation
examples. In the first example, we consider the synthetic
data generated using an available spectrum library as the test
endmembers and a set of random numbers as the abundance
vectors. In the second example, we use the real data collected
by AVIRIS [15].

A. Experiment 1: Experimental Results Using Synthetic Data

The spectral reflectances used in the subsequent experiments
are selected from the USGS digital spectral library which
contains 224 spectral bands covering wavelengths ranging
from 0.38 m to 2.5 m. A set of four spectral profiles is
selected as the endmembers to create the mixture as shown
in Fig. 3 (indicated as true EM). To create linear mixtures, we
randomly selected positive abundance vectors then multiplied
them to spectral endmembers and added a Gaussian noise.
The resulting image was then degraded by a spatial η × η
average filter to produce mixed pixels (η controls the degree
of mixing). With a small η, only the pixels close to the block
boundary are mixed, so the mixture data are very likely to
contain pure pixels. Using Equ. 19 and 20, we compared
the eigenvalues of sample covariance matrix and correlation
matrices to achieve the dimensionality of the hyperspectral
data. The comparison revealed that there are four distinct
components in the mixed data which match the correct value.
The result of unmixing is shown in Fig. 3 for SNR=5. As we
can see all four spectral endmembers have been successfully

extracted from the image. To show the abundance values
we selected a gray scale mapping so the brightness of the
pixels is proportional to the abundances values. We calculated
the MSE error, for all N pixels, between the noiseless data
and the estimated data. The MSE error was equal to 0.012.
Furthermore, the results from improving the error performance
showed an MSE error equal to 0.01 which indicates 15%
improvement in total error. Fig. 4(a) shows a comparison of
computational speed (based on Matlab code) between UFTR
and three other methods. It can be seen that GDME and FCLS
are 10 to 20 times slower than the UFTR approach. The VCA
approach used in [4] offers close competition to UFTR. The
SID evaluation criterion explained in Section V was used for
this comparison. Fig. 4(b) shows how SID is changed with
different SNR values for the UFTR and VCA approaches. It
can be seen that the SID variation for UFTR is almost three
times less than that for VCA. This indicates that estimations
in UFTR are closer and correlated to the real spectrums. Fig.
4(c) shows the line of true and estimated abundances for all
four endmembers in 32 consecutive pixels. It can clearly be
seen that estimated abundances more closely follow the true
abundances compared to results for VCA. Also the divergence
in amplitude is much more for VCA. At some points it is even
higher, up to 50%. This implies that UFTR is an improvement
not only in speed but also in accuracy.

B. Experiment 2: Experimental Results Using a Real Hyper-
spectral Scene

The real hyperspectral data used in this paper were col-
lected by the AVIRIS sensor over Cuprite, NV. Cuprite is
a relatively undisturbed acid-sulfate hydrothermal system in
volcanic rocks with well exposed alteration mineralogy, lo-
cated approximately 200 km northwest of Las Vegas along
U.S. Highway 95. The relevant minerals consist of kaolinite,
alunite, chalcedony, muscovite and other materials listed in
[16].

This site has been extensively used for remote sensing
experiments since the 1980s, and much research has been
published [4]. The image shown in Fig. 5 is a subimage at
the eastern center (250 × 190 pixels and 188 bands) of a
data set acquired on the AVIRIS flight June 19, 1997, in
which the noisy bands as well as the water vapor absorption
bands (including bands 1, 2, 104-113, 148-167, 221-224) were
removed from the original 224-band data cube to improve the
detection performance.

In order to find the number of endmembers in Cuprite data,
the HFC method has been used. A noise whitening process
was used as a preprocessing step to remove the second-order
statistical correlation. Sample correlation matrix and sample
covariance matrices were calculated to perform the eigenvalue
comparison. The result of comparison for the cuprite image
showed an estimate of endmember quantity equal to 13 with a
false-alarm rate of 0.001. Based on the ground truth provided
in [16], we know that there are more than 20 materials present
in the real hyperspectral scene. Analyzing the signal energy
showed that the first eight eigenvalues cover 99.72% of the
total signal energy. This means that most of the endmem-
bers occur only in a small set of mixed pixels leading to
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Fig. 3. UFTR estimation of endmembers and abundances
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Fig. 6. Abundance fractions estimated with the UFTR algorithm
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underestimating the number of endmembers in cuprite data.
Accurate estimation of the number of endmembers is very
important in mixed-pixel decomposition. Underestimating the
number of endmembers would lead to overestimation of the
abundance of certain endmembers. On the other hand, if this
value is more than the actual number of endmembers, the
abundance estimate tends to spread out among extra spurious
endmembers resulting in underestimation of abundances. The
HFC method was able to estimate the number of endmembers
in cuprite data equal to 13. Accordingly, UFTR has identified
13 signatures as shown in Figures 6 and 7. It can be seen
from the figures that the estimated endmembers match the
laboratory data. A visual comparison between the UFTR
results on the Cuprite data set and the ground truth presented

TABLE I
’SPECTRAL ANGLE DISTANCE BETWEEN EXTRACTED ENDMEMBERS AND

LABORATORY REFLECTANCE FOR UFTR, N-FINDR, AND PPI
ALGORITHMS’

UFTR N-Finder PPI

Pyrope #1 3.9 4.0 4.0

Andradite 3.9 4.4 3.7

Pyrope # 2 3.3 3.4 3.2

Dumortinite 4.1 4.1 5.6

Kaolinite # 1 4.5 4.8 4.8

Alunite 4.0 4.0 4.2

Kaolinite # 2 5.0 5.2 5.2

Buddington 2.8 - -

Sphene 2.7 2.9 3.1

Natronite 3.9 4.0 3.8

Moscovite 5.3 5.2 6.1

Kaolinite # 3 2.4 2.6 2.6

Fig. 5. Band 100 in Cuprite Site data

in [16] can identify the exact type of endmember materials
matched to the library. Minerals shown in the figures match
the library available for cuprite listed in [16]. In some cases
the comparison of the abundance maps will be more accurate
due to the close correlation of some spectral signatures. Table
I compares the spectral angles between extracted endmembers
and laboratory reflectance for UFTR, N-Finder [18], and pixel
purity index (PPI) [17] algorithms. It can be seen from the
table that with the exception of Moscovite, UFTR achieves
lower spectral angles indicating a better estimation. For the
case of Buddington there was no data available for the N-
finder and PPI to be compared with UFTR. The displayed
results follow the pattern of behavior shown in the simulations,
where UFTR outperformed other methods.

VII. CONCLUSION

A novel fast and accurate unmixing approach, UFTR, was
introduced in this paper. UFTR is based on the concept of
endmember transformation and spectral matching. The first
concept substantially improves the processing speed while
the second greatly improves the error performance. It was
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Fig. 7. Extracted signatures using UFTR algorithm

shown that existing fast approaches such as VCA estimate
the pixels information with much higher spectral information
divergence (SID) compared to UFTR. Speed improvement in
UFTR enables this method to be used in real time hyperspec-
tral applications. In other applications where a high level of
accuracy is a requirement (e.g., medical applications), UFTR
could be an alternative solution. As a future work, application
of this new algorithm in non-linear mixing models could
be explored and some other accurate dimension estimation
methods could be used.
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